This paper presents a novel and objective technique that uses deviation analysis and improves on current strategies for sorting commingled human remains at the sacroiliac joint, and suggests that the method will apply to additional joint surfaces in the future.
This study provides an innovative and novel method for sorting commingled human remains at the sacroiliac joint using deviation analyses. Virtual models were created at the University of Tennessee-Knoxville Donated Skeletal Collection from 69 os coxae and 66 sacra using an EinScan-Pro 2× + Handheld Surface Scanner. The shape of the auricular surfaces was analyzed in Geomagic Wrap 2017, and the congruency of the two auricular surfaces was measured using a deviation analysis. ROC curves were performed on a reference sample composed of 200 commingled and non-commingled joint pairs to identify threshold values that could help sort the commingled remains. A validation sample of 225 pairs was subsequently analyzed to demonstrate the efficacy of this new method on a sample of unknown individuals. Statistical analyses demonstrated that the deviation analysis values from sacroiliac joints of commingled pairs were significantly larger than those from non-commingled individuals (p < 0.0001). Based on the selected threshold values, 98%–100% of pairs were correctly sorted and reassociated. This novel and objective technique improves upon previously subjective strategies for sorting commingled remains and, in the future, will be applied to additional joint surfaces. (Published Abstract Provided)
Downloads
Similar Publications
- Criticality of Spray Solvent Choice on the Performance of Next Generation, Spray-Based Ambient Mass Spectrometric Ionization Sources: A Case Study Based on Synthetic Cannabinoid Forensic Evidence
- Learning from Our Casework: The Forensic Anthropology Database for Assessing Methods Accuracy
- Improving and Evaluating Computed Tomography and Magnetic Resonance Imaging in the Investigation of Fatalities Involving Suspected Head Trauma