This article presents the utility of using basic bone metrics to discriminate human and nonhuman elements to determine whether bones are of human origin.
Although nonhuman remains constitute a significant portion of forensic anthropological casework, the potential use of bone metrics to assess the human origin and to classify species of skeletal remains has not been thoroughly investigated. This study aimed to assess the utility of quantitative methods in distinguishing human from nonhuman remains and present additional resources for species identification. Over 50,000 measurements were compiled from humans and 27 nonhuman (mostly North American) species. Decision trees developed from the long bone data can differentiate human from nonhuman remains with over 90% accuracy (>98% accuracy for the human sample), even if all long bones are pooled. Stepwise discriminant function results were slightly lower (>87.4% overall accuracy). The quantitative models can be used to support visual identifications or preliminarily assess forensic significance at scenes. For species classification, bone-specific discriminant functions returned accuracies between 77.7% and 89.1%, but classification results varied highly across species. From the study data, the authors developed a web tool, OsteoID, for users who can input measurements and be shown photographs of potential bones/species to aid in visual identification. OsteoID also includes supplementary images (e.g., 3D scans), creating an additional resource for forensic anthropologists and others involved in skeletal species identification and comparative osteology. (Published Abstract Provided)
Downloads
Similar Publications
- Utilizing Derivatizing Agents for the Differentiation of Cannabinoid isomers in Complex Food, Beverage and Personal-care Product Matrices by Ambient Ionization Mass Spectrometry
- Enhancing Fault Ride-Through Capacity of DFIG-Based WPs by Adaptive Backstepping Command Using Parametric Estimation in Non-Linear Forward Power Controller Design
- Assessing Screw Length Impact on Bone Strain in Proximal Humerus Fracture Fixation Via Surrogate Modelling