U.S. flag

An official website of the United States government, Department of Justice.

NCJRS Virtual Library

The Virtual Library houses over 235,000 criminal justice resources, including all known OJP works.
Click here to search the NCJRS Virtual Library

Simultaneous alignment and clustering for an image ensemble

NCJ Number
305610
Author(s)
Xiaoming Liu ; Yan Tong ; Frederick W. Wheeler
Date Published
2009
Length
8 pages
Annotation

Given an ensemble with multiple object classes, the authors propose an approach to solve two problems automatically and simultaneously, image alignment and clustering.

Abstract

Joint alignment for an image ensemble can rectify images in the spatial domain such that the aligned images are as similar to each other as possible. This important technology has been applied to various object classes and medical applications; however, previous approaches to joint alignment work on an ensemble of a single object class. In the authors’ approach, both the alignment parameters and clustering parameters are formulated into a unified objective function, whose optimization leads to an unsupervised joint estimation approach. It is further extended to semi-supervised simultaneous estimation where a few labeled images are provided. Extensive experiments on diverse real-world databases demonstrated the capabilities of the authors’ work on this challenging problem. (Publisher abstract provided)

Downloads