U.S. flag

An official website of the United States government, Department of Justice.

NCJRS Virtual Library

The Virtual Library houses over 235,000 criminal justice resources, including all known OJP works.
Click here to search the NCJRS Virtual Library

Phosphorus-doped Nickel-cobalt Layered Hydroxide Supported Three-dimensional Substrate as Efficient Oxygen Evolution Electrocatalyst

NCJ Number
310073
Author(s)
Jingchun Zhang; Erin Weatherspoon; Abdullah Saad Alsubaie; Ethan Burcar; Ashley Demerle; Zeinhom M. El-bahy; Zhe Wang
Date Published
February 2025
Annotation

This paper proposes a practical approach for developing layered hydroxides as an oxygen evolution reaction catalyst and contributes to ongoing efforts to advance sustainable clean energy sources as alternatives to fossil fuels.

Abstract

Developing new clean energy sources and equipment to replace fossil fuel usage is an urgent global priority. However, one such essential method, electrolytic water hydrogen production’s characteristics of slow kinetics and high potential barrier of the anodic oxygen evolution reaction (OER), hinders the large-scale application of such an approach. While precious metal catalysts have shown excellent catalytic activity, their high cost limits their feasibility for large-scale implementation. As a result, the development of stable and low-cost oxygen evolution reaction catalysts is critical. Transition metal layered hydroxides (TM LDHs) have been widely studied as a promising candidate for water electrolysis catalysis for their unique two-dimensional layered structure, high specific surface area, great electron exchangeability, and densely distributed active sites. Here in this research, the authors have synthesized nickel cobalt phosphide LDH (P-NiCo-LDH) that maximizes the utilization of foam nickel as the conductive substrate while protecting the phosphated LDH. This work proposes a practical approach for developing LDH as an OER catalyst and contributes to the ongoing efforts to advance sustainable clean energy sources. (Published Abstract Provided)

Downloads