U.S. flag

An official website of the United States government, Department of Justice.

NCJRS Virtual Library

The Virtual Library houses over 235,000 criminal justice resources, including all known OJP works.
Click here to search the NCJRS Virtual Library

Optimization of the qualitative and quantitative analysis of cocaine and other drugs of abuse via gas chromatography - Vacuum ultraviolet spectrophotometry (GC - VUV)

NCJ Number
Talanta Volume: 222 Dated: 2021
Z. R. Roberson; J. V. Goodpaster
Date Published

Gas Chromatography-Vacuum UV Spectroscopy (GC-VUV) has seen increased attention in many areas; however, a statistical optimization of VUV method parameters has not been published, so this article presents the first statistical optimization of parameters influencing analytes such as cocaine in the VUV flow-cell.



Flow-cell temperature, make-up gas pressure, and carrier gas flow rate from the GC were examined and optimized for the detection of controlled substances. The accuracy, precision, linearity, and optimized detection limits for drugs such as cocaine (98.5%, 1.2%, 0.9998, 1.5 ng), heroin (99.3%, 0.94%, 0.9998, 2.0 ng), and fentanyl (98.5%, 1.7%, 0.9752, 9.7 ng) are reported. In general, the limits of detection for cocaine, heroin, fentanyl, and methamphetamine after optimization were comparable to gas chromatography-mass spectrometry (GC-MS) in “scan mode”, which had detection limits of 1.1–38 ng on column. The VUV absorption spectra of cocaine, PCP, lorazepam, and HU-210 are also reported. And three samples of “real world” cocaine are analyzed to demonstrate applicability to forensic drug analysis. (Publisher Abstract Provided)