U.S. flag

An official website of the United States government, Department of Justice.

NCJRS Virtual Library

The Virtual Library houses over 235,000 criminal justice resources, including all known OJP works.
Click here to search the NCJRS Virtual Library

DNA Damage Response and Checkpoint Adaptation in Saccharomyces cerevisiae: Distinct Roles for the Replication Protein A2 (Rfa2) N-Terminus

NCJ Number
249342
Journal
Genetics Volume: 199 Issue: 3 Dated: March 2015
Author(s)
Padmaja L. Ghospurkar; Timothy M. Wilson; Amber L. Severson; Sarah J. Klein; Sakina K. Khaku; Andre P. Walther; Stuart J. Haring
Date Published
March 2015
Length
0 pages
Annotation

This study used an aspartic acid/alanine-scanning and genetic interaction approach to delineate the importance of the phosphorylation domain in a DNA-damage response in budding yeast.

Abstract

In response to DNA damage, two general but fundamental processes occur in the cell: (1) a DNA lesion is recognized and repaired, and (2) concomitantly, the cell halts the cell cycle to provide a window of opportunity for repair to occur. An essential factor for a proper DNA-damage response is the heterotrimeric protein complex Replication Protein A (RPA). Of particular interest is hyperphosphorylation of the 32-kDa subunit, called RPA2, on its serine/threonine-rich amino (N) terminus following DNA damage in human cells. The unstructured N-terminus is often referred to as the phosphorylation domain and is conserved among eukaryotic RPA2 subunits, including Rfa2 in Saccharomyces cerevisiae. The current study determined that the Rfa2 N-terminus is important for a proper DNA-damage response in yeast, although its phosphorylation is not required. Subregions of the Rfa2 N-terminus important for the DNA-damage response were also identified. Finally, an Rfa2 N-terminal hyperphosphorylation-mimetic mutant behaves similarly to another Rfa1 mutant (rfa1-t11) with respect to genetic interactions, DNA-damage sensitivity, and checkpoint adaptation. Study data indicate that post-translational modification of the Rfa2 N-terminus is not required for cells to deal with "repairable" DNA damage; however, post-translational modification of this domain might influence whether cells proceed into M-phase in the continued presence of unrepaired DNA lesions as a "last-resort" mechanism for cell survival. (Publisher abstract modified)