In this study, researchers developed a workflow for detecting psychoactive substances and drugs in urban wastewater.
In this work a comprehensive suspect screening workflow following liquid chromatography – high resolution mass spectrometry analysis was established utilising the open-source InSpectra data processing platform and the HighResNPS library. In total, 278 urban influent wastewater samples from 47 sites in 16 countries were collected to investigate the presence of NPS and other drugs of abuse. A total of 50 compounds were detected in samples from at least one site. Most compounds found were prescription drugs such as gabapentin (detection frequency 79%), codeine (40%) and pregabalin (15%). However, cocaine was the most found illicit drug (83%), in all countries where samples were collected apart from the Republic of Korea and China. Eight NPS were also identified with this protocol: 3-methylmethcathinone 11%), eutylone (6%), etizolam (2%), 3-chloromethcathinone (4%), mitragynine (6%), phenibut (2%), 25I-NBOH (2%) and trimethoxyamphetamine (2%). The latter three have not previously been reported in municipal wastewater samples. The workflow employed allowed the prioritisation of features to be further investigated, reducing processing time and gaining in confidence in their identification. The complexity around the dynamic markets for new psychoactive substances (NPS) forces researchers to develop and apply innovative analytical strategies to detect and identify them in influent urban wastewater. (Published Abstract Provided)
Downloads
Similar Publications
- Elucidation of the Effect of Solar Light on the Near-Infrared Excitation Raman Spectroscopy-Based Analysis of Fabric Dyes
- Detection of Synthetic Cathinones in Seized Drugs Using Surface-enhanced Raman Spectroscopy (SERS)
- Determining the Precision of High-Throughput Sequencing and Its Influence on Aptamer Selection