Results showed that the energy needed for fracture initiation was nearly four times higher against a flat surface than against the other surfaces. Although characteristic measures of fracture, such as number and length of fractures, did not vary with impact surface shape, the fracture patterns did depend on impact surface shape. Experimental impacts against the flat surface produced linear fractures initiating at sutural boundaries peripheral to the point of impact (POI); however, more focal impacts produced depressed fractures initiating at the POI. These findings support the case-based forensic literature that suggests cranial fracture patterns depend on impact surface shape and that fracture initiation energy is lower for more focal impacts. (Publisher abstract modified)
Downloads
Similar Publications
- DNA Capacity Enhancement for Backlog Reduction Program
- Development and Evaluation of a Nontargeted Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS) Screening Method Applied to Authentic Forensic Seized Drug Casework Samples
- Development and Validation of a Method for Analysis of 25 Cannabinoids in Oral Fluid and Exhaled Breath Condensate