The purpose of this research was to develop and validate a comprehensive analytical method for the detection and quantification of morphine, 6-acetylmorphine, buprenorphine, U-47700, U-49900, U-50488, AH-7921, MT-45, W-18 and W-15 in oral fluid collected via Quantisal.
The opioid epidemic has become a national health emergency in the USA. Although heroin and prescription opioid abuse is not uncommon, synthetic opioid use has risen dramatically, creating a public safety concern. Like traditional opioids, novel synthetic opioids are abused due to their analgesic and euphoric effects. Some adverse side effects include respiratory distress, nausea and decreased consciousness. Synthetic opioids have emerged into the illicit and online drug market, including AH-7921, MT-45, U-series and W-series. Although originally developed by pharmaceutical companies, these substances are not well studied in humans, and comprehensive analytical methods for detecting and quantifying these opioids are limited. Oral fluid is a useful biological matrix for determining recent drug use, does not require a trained medical professional, and can be collected under direct observation, deterring adulteration. The current project used solid-phase extraction followed by liquid chromatography-tandem mass spectrometry. The limits of detection and quantitation were 5 ng/mL and 10 ng/mL, respectively. Linearity was observed between 10 and 500 ng/mL (R2 greater than or equal to 0.9959). Bias and imprecision were < +/- 11.1 percent. Matrix effects ranged from -21.1 to 13.7 percent. No carryover was detected following injection of the highest calibrator. All analytes were stable (within +/- 15 percent change from baseline) under all tested conditions (24 h at room temperature, 72 h at 4 degrees C, and in the autosampler for 60 h at 4 degrees C). (publisher abstract modified)
Downloads
Similar Publications
- Evaluating the Robustness and Ruggedness of a Statistical Model for Comparison of Mass Spectral Data for Seized Drug Identification
- Simultaneous Imaging of Latent Fingermarks and Detection of Analytes of Forensic Relevance by Laser Ablation Direct Analysis in Real Time Imaging-Mass Spectrometry (LADI-MS)
- Estimating the Impact of Research Practitioner Partnerships on Evidence-based Program Implementation