The research team successfully down-selected two photo-degradable material compositions; and it formulated electro-spun fibers with improved wettability, bio-specimen pick-up, and sample release into the PCR workflow upon photo-degradation. This was done using a polymer-blending approach and form factor improvement. In the first year, the project focused on developing photo-degradable materials and testing the photo-degradation kinetics, implementing the materials in PCR workflow to study inhibition of PCR. The materials were down-selected based on the performance. In the first year, the project also demonstrated that the photo-dissolvable swabs (at wave length of 365 nm) did not inhibit PCR reactions. The DNA was not affected during photo-degradation of PHEMA-NBS (100 percent, 50 percent, and 25 percent functionalized polymers), nor were the byproducts formed inhibitory to PCR reaction and subsequent analysis. The degradation wave length was selected as a compromise between reduced sensitivity to sunlight and potential DNA damage during the irradiation process. In the project's second year, it worked on scaling up the down-selected material and worked on developing electro-spun compositions, developing protocols, and enabling formulation of photo-degradable fibers that were rolled onto Q-tip or spun onto aluminum foils to enable mat format for downstream PCR analysis. Protocols were developed for sample placement and pick-up into the mats/swabs. It also developed a prototype UV-breadboard light for faster degradation of the photo-dissolvable polymer, and the light fixture was used to develop the PCR workflow. 16 figures and 2 tables
Photo-dissolvable Swabs for Improved Recovery of Forensic Samples
NCJ Number
253069
Date Published
July 2018
Length
16 pages
Annotation
This is the Special Report Summary Overview of the findings and methodology of a research project whose goal was to develop novel photo-dissolvable swab materials that function as regular swabs during the collection of aqueous samples that can be completely degraded after exposure to DNA-friendly longwave UV lights, thereby enabling both high collection efficiency and maximum release for low abundance DNA samples.
Abstract
Date Published: July 1, 2018