U.S. flag

An official website of the United States government, Department of Justice.

Low Cost Microfluidic Microarray System for Typing Y Chromosome SNPs

NCJ Number
Date Published
March 2009
44 pages
The goal of this project was to determine the feasibility of using Akonni's patented gel element microarray technology (TruArray) for the typing of single-nucleotide polymorphisms (SNPs) for forensic applications.
The Phase I project demonstrated successful in-cartridge DNA extraction from semen and oral (saliva) samples, successful multiplexed PCR amplification without the need for sample splitting (with various biochemistries and subcircuit/array configurations), and successful DNA analysis using a well-established microarray platform with forensic-type samples. The next phases of this effort will build on the successful Phase I component and assay development tasks. Phase II will focus on defining protocols and assay chemistries, as well as packaging components and reagents into an integrated system for automated, sample-to-answer results. The system will consist of the instrument (i.e., liquid handling, Akonni Bladder Thermal Cycler, Akonni Reader, and cartridge locking station) and a disposable, integrated cartridge (i.e., Akonnie TruTip, Akonni PCR and TruArray flow cell chamber, microfluidic circuits, and microfluidic valves). Emphasis will be on refining fluid paths, liquid handling and fluidic control, modeling of the disposable plastic cartridge parts, developing an intuitive software and graphical user interface, and reducing the instrument footprint (approximately 2-3 cubic feet). Protocols and assays will be streamlined for minimum complexity, time, and cost. In addition, assay reagents will be transitioned to a lyophilized format for long-term storage and field deployment. The successful development of an end-to-end SNP-typing cartridge would have direct implications for translating forensically important assays into a low-cost, user friendly format. 6 tables, 32 figures, and 35 references

Date Published: March 1, 2009