The researchers succeeded in developing a fluometer by making a small black box with a 3-D printer. They used a low-cost cold cathode lamp to provide the fluometer's excitation light. The system is powered by a rechargeable lithium ion battery. The unit enables investigators to identify powders and other substances by using a paper test strip soaked in copper iodide. Certain classes of drugs react with the copper by giving off a fluorescent light signature unique to the drug. An investigator in the field can photograph the fluorescence spectrum with a earphone, upload the result to the Cloud, compare it with known spectra in an online database, and identify the substance. This method yielded fewer false positives and false negatives than the spot (color) tests since it does not allow multiple interpretations of the result. Also, the system does not require that officers who use it have extensive training.
Downloads
Similar Publications
- Rapid Determination of Monozygous Twinning with a Microfabricated Capillary Array Electrophoresis Genetic-Analysis Device1
- Determination of seventeen major and trace elements in new float glass standards for use in forensic comparisons using laser ablation inductively coupled plasma mass spectrometry
- Profiles of Law Enforcement Agency Body Armor Policies-A Latent Class Analysis of the LEMAS 2013 Data