The described method is accomplished by using a dynamic locus and sample specific analytical threshold and a machine learning-derived probabilistic artifact detection model. The system produced an allele detection accuracy of 97.2 percent, an 11.4-percent increase from the lowest static threshold (50 RFU), with a low incidence of incorrectly identified artifacts (0.79 percent). This adaptive method outperformed static thresholds in the retention of allelic information content at minimal cost. (publisher abstract modified)
Downloads
Similar Publications
- Development and Evaluation of a Nontargeted Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS) Screening Method Applied to Authentic Forensic Seized Drug Casework Samples
- Just Science Podcast: Just Using Inadvertently Photographed Ridge Detail as Evidence
- Forensic Discrimination of Dyed Hair Color: I. UV-Visible Microspectrophotometry