GC/MS is a "workhorse" instrument for chemical analysis, but it can be limited in its ability to differentiate structurally similar compounds. The coupling of GC to vacuum ultraviolet (VUV) spectroscopy is a recently developed technique with the potential for increased detection specificity. To date, GC/VUV has been demonstrated in the analysis of volatile organic compounds, petroleum products, aroma compounds, pharmaceuticals, illegal drugs, and lipids. In the current project, the general figures of merit and performance of GC/VUV were evaluated with authentic standards of nitrate ester explosives (e.g., nitroglycerine (NG), ethylene glycol dinitrate (EGDN), pentaerythritol tetranitrate (PETN), and erythritol tetranitrate (ETN)). In addition, the explosive analytes were thermally degraded in the VUV cell, yielding reproducible, complex, and characteristic mixtures of gas phase products (e.g., nitric oxide, carbon monoxide, and formaldehyde). The relative amounts of the degradation products were estimated via spectral subtraction of library spectra. Lastly, GC/VUV was used to analyze milligram quantities of intact and burned samples of double-base smokeless powders containing nitroglycerine, diphenylamine, ethyl centralite, and dibutylphthalate. (publisher abstract modified)
Downloads
Similar Publications
- Dyed Hair and Swimming Pools: The Influence of Chlorinated and Nonchlorinated Agitated Water on Surface-Enhanced Raman Spectroscopic Analysis of Artificial Dyes on Hair
- Atmospheric Chemistry of Chloroprene Initiated by OH Radicals: Combined Ab Initio/DFT Calculations and Kinetics Analysis
- Solving Cases of Sudden Unexpected Natural Death in the Young through Comprehensive Postmortem Genetic Testing