This report is a response to the National Institute of Justice’s (NIJ’s) Recidivism Forecasting Challenge 2021, which aimed to increase public safety and improve the fair administration of justice across the United States.
The models and procedures outlined in this report were judged to be the third best performance in the Challenge for predicting recidivism in Year 1 for male parolees, female parolees, and on average accuracy. This report outlines the process of developing such a forecasting model. Two main algorithms were used for developing a prediction model in this effort. The first type of model is a simple penalized regression model. The second type of model is Extreme Gradient Boosting, XGBoost, a highly effective gradient tree-boosting algorithm that has been demonstrated in many data science competitions. Both modeling approaches typically provide optimal solutions for rectangular data. The datasets provided by NIJ for the Challenge are described, along with supplemental datasets compiled by the researcher.
Downloads
Similar Publications
- A Meta-analysis of the Outcomes of Bullying Prevention Programs on Subtypes of Traditional Bullying Victimization: Verbal, Relational, and Physical
- An Exploratory Study of Veterans Treatment Court Peer Mentors: Roles, experiences, and Expectation
- Access Differential: Comparing Problem-solving Courts and Probation