Initial systematic analysis was conducted on dye standards and extracts taken from fibers colored with the respective dyes of interest. Absorbance, excitation, and fluorescence spectra were compared between standards and extracts to determine the optimal area of the fiber to investigate dyes, fluorescent impurities, or the whole fiber. High performance liquid chromatography investigations were performed to obtain detailed information on the number of dye and fluorescent components present in extracts. Three-way Excitation Emission Matrix (EEM) data were found to give the greatest amount of spectral information and provide the highest level of discrimination. Successful discrimination between non-similar and similar fibers was achieved with the aid of second order MCR-ALS chemometric analysis. The level of discrimination obtained via RTF-EEM spectroscopy was sufficient to differentiate between two types of visually indistinguishable fibers and between fibers obtained from two separate cloths of the same material and colored with the same dye reagent. (Publisher Abstract Modified)
Downloads
Similar Publications
- Enhancing Our Genetic Knowledge of Human Iris Pigmentation and Facial Morphology
- Examining the Relationship between Aptamer Complexity and Molecular Discrimination of a Low-Epitope Target
- Development and Evaluation of a Nontargeted Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS) Screening Method Applied to Authentic Forensic Seized Drug Casework Samples