Traditional forensic DNA interpretation methods are restricted as they are unable to deal completely with complex low level or mixed DNA profiles. This type of data has become more prevalent as DNA typing technologies become more sensitive. In addition they do not make full use of the information available in peak heights. Existing methods of interpretation are often described as binary which describes the fact that the probability of the evidence is assigned as 0 or 1 (hence binary) (see for example [1] at 7.3.3). These methods are being replaced by more advanced interpretation methods such as continuous models. In this paper researchers describe a series of models that can be used to calculate expected values for allele and stutter peak heights, and their ratio SR. This model could inform methods which implement a continuous method for the interpretation of DNA profiling data. (Published Abstract)
Similar Publications
- Sex Estimation Using Metrics of the Innominate: A Test of the DSP2 Method
- Development and Evaluation of a Nontargeted Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS) Screening Method Applied to Authentic Forensic Seized Drug Casework Samples
- Discrimination Between Human and Animal Blood Using Raman Spectroscopy and a Self-Reference Algorithm for Forensic Purposes: Method Expansion and Validation