Both shared and differentiating heteroplasmy were frequently observed in these closely related maternal relatives, with the minor variant often presented as 2-10 percent of the sequencing reads. A total of 17 pairs exhibited differentiating heteroplasmy (44 percent), with the majority of sites (76 percent, 16 of 21) occurring in the coding region, further illustrating the value of conducting sequence analysis on the entire mtgenome. A number of the sites of differentiating heteroplasmy resulted in non-synonymous changes in protein sequence (5 of 21), and to changes in transfer or ribosomal RNA sequences (5 of 21), highlighting the potentially deleterious nature of these heteroplasmic states. Shared heteroplasmy was observed in 12 of the 39 mother-child pairs (31 percent), with no duplicate sites of either differentiating or shared heteroplasmy observed; a single nucleotide position (16093) was duplicated between the data sets. Finally, rates of heteroplasmy in blood and buccal cells were compared, since it is known that rates can vary across tissue types, with similar observations in the current study. Study data support the view that differentiating heteroplasmy across the mtgenome can be used to frequently distinguish maternal relatives, and could be of interest to both the medical genetics and forensic communities. (publisher abstract modified)
Downloads
Similar Publications
- OpenSense: An Open-World Sensing Framework for Incremental Learning and Dynamic Sensor Scheduling on Embedded Edge Devices
- How the Work Being Done on Statistical Fingerprint Models Provides the Basis for a Much Broader and Greater Impact Affecting Many Areas within the Criminal Justice System
- Development Modeling of Phormia regina (Diptera: Calliphoridae)