This article presents a workflow for unsupervised clustering a large collection of forensic images.
Large collections of images, if curated, drastically contribute to the quality of research in many domains. Unsupervised clustering is an intuitive, yet effective step towards curating such datasets. The workflow in the current project utilizes classic clustering on deep feature representation of the images in addition to domain-related data to group them together. The manual evaluation shows a purity of 89% for the resulted clusters. (Published abstract provided)
Similar Publications
- An enhanced computational method for age-at-death estimation based on the pubic symphysis using 3D laser scans and thin plate splines
- Commentary on: Alberink I, de Jongh A, Rodriguez C. Fingermark evidence evaluation based on automated fingerprint identification system matching scores: the effect of different types of conditioning on likelihood ratios. J Forensic Sci 2014; 59(1):70–81.
- Do Observer Effects Matter? A Comment on Langenburg, Bochet, and Ford