U.S. flag

An official website of the United States government, Department of Justice.

NCJRS Virtual Library

The Virtual Library houses over 235,000 criminal justice resources, including all known OJP works.
Click here to search the NCJRS Virtual Library

Parasitic Layer-Based Reconfigurable Antenna Design by Multi-Objective Optimization

NCJ Number
249131
Journal
IEEE Transactions on Antennas and Propagation Volume: 60 Issue: 6 Dated: June 2012 Pages: 2690-2701
Author(s)
Xiaoyan Yuan; Zhouyuan Li; D. Rodrigo,; H. S. Mopidevi; O. Kaynar; L. Jofre; B. A. Cetiner
Date Published
June 2012
Length
12 pages
Annotation
This article describes the features of a parasitic layer-based multifunctional reconfigurable antenna (MRA) design based on multi-objective genetic algorithm optimization used in conjunction with full-wave EM analysis.
Abstract

The MRA is capable of steering its beam into three different directions (èi = -30 degrees , 0 degrees , 30 degrees ) simultaneously with polarization reconfigurability (Pj = Linear, Circular) having six different modes of operation. The MRA consists of a driven microstrip-fed patch element and a reconfigurable parasitic layer, and is designed to be compatible with IEEE-802.11 WLAN standards (5-6 GHz range). The parasitic layer is placed on top of the driven patch. The upper surface of the parasitic layer has a grid of 5 5 electrically small rectangular-shaped metallic pixels, i.e., reconfigurable parasitic pixel surface. The EM energy from the driven patch element couples to the reconfigurable parasitic pixel surface by mutual coupling. The adjacent pixels are connected/disconnected by means of switching, thereby changing the geometry of pixel surface, which, in turn, changes the current distribution over the parasitic layer, resulting in the desired mode of operation in beam direction and polarization. A prototype of the designed MRA has been fabricated on quartz substrate. The results from simulations and measurements agree well, indicating ~8 dB gain in all modes of operation. (Publisher abstract modified)