U.S. flag

An official website of the United States government, Department of Justice.

NCJRS Virtual Library

The Virtual Library houses over 235,000 criminal justice resources, including all known OJP works.
Click here to search the NCJRS Virtual Library

Machine Learning Analysis on Gunshot Recognition

NCJ Number
309747
Author(s)
Siddat B. Nesar; Bradley M. Whitaker; Robert C. Maher
Date Published
May 2024
Length
6 pages
Annotation

This article examines machine learning analysis of gunshot recognition.

Abstract

This paper investigates the efficiency of various machine learning models for gunshot recognition. The ability to recognize a gunshot has significance in reinforcing public safety, assisting in crime scene investigations, and preventing gun violence. The authors present a model to identify the type of pistol or rifle discharged by analyzing only an audio signal of the gunshot. Among the array of methods explored, AdaBoost performed the best achieving an accuracy of 99.9% and sustaining over 80% accuracy with 40 dB conditions. Additionally, the researchers experimented with the importance level of the features to identify the most relevant variables that boost the performance of the algorithms. (Published Abstract Provided)