U.S. flag

An official website of the United States government, Department of Justice.

NCJRS Virtual Library

The Virtual Library houses over 235,000 criminal justice resources, including all known OJP works.
Click here to search the NCJRS Virtual Library

Intra- and Inter-Element Variability in Mitochondrial and Nuclear DNA from Fresh and Environmentally Exposed Skeletal Remains

NCJ Number
307040
Journal
Journal of Forensic Sciences Volume: 64 Dated: 2018 Pages: 88-97
Author(s)
Timothy C. Antinick; David R. Foran
Date Published
2018
Length
10 pages
Annotation

This article presents research into intra-bone DNA variability of skeletonized remains.

Abstract

Successful identification of skeletonized remains often relies upon DNA analyses, frequently focusing on the mid-diaphysis of weight-bearing long bones. This study explored intra-bone DNA variability using bovine and porcine femora, along with calcanei and tali. DNA from fresh and short-term environmentally exposed bone was extracted utilizing demineralization and standard lysis buffer protocols, and DNA quantity and quality were measured. Overall, femoral epiphyses, metaphyses, and the tarsals had more nuclear and mitochondrial DNA than did the femoral diaphyses. DNA loss was much more rapid in buried bones than in surface exposed bones, while DNA quality differed based on environment, but not bone region/element. The demineralization protocol generated more DNA in some bone regions, while the standard lysis was more effective in others, and neither significantly affected DNA quality. Taken together, these findings reinforce the importance of considering inter- and intra-bone heterogeneity when sampling skeletal material for forensic DNA-based identifications. (Published Abstract Provided)