Understanding the biochemical aging mechanisms of bloodstains is essential for developing reliable forensic methods to estimate the time since deposition (TSD). Although fluorescence spectroscopy is effective for tracking endogenous fluorophores such as tryptophan, nicotinamide adenine dinucleotide (NADH), and flavins, its utility is limited by spectral overlap and sample variability. In this study, we employed two-dimensional correlation spectroscopy (2D-COS) and 2D gradient mapping method to investigate the time-dependent fluorescence changes in bloodstains, gaining molecular-level insights into the aging process. 2D-COS uncovered hidden spectral components and revealed sequential molecular changes, especially in NADH- and flavin-associated bands. The 2D gradient maps further visualized these spectral trends quantitatively over 24 hours of aging. This study focuses on uncovering the biochemical mechanisms underlying bloodstain aging, probed by fluorescence spectroscopy. These findings deepen our fundamental understanding of ex vivo blood degradation and establish a foundation for more accurate and robust forensic applications.
(Publisher abstract provided.)
Downloads
Similar Publications
- Longitudinal and Geographic Trends in Perceived Racial Discrimination Among Adolescents in the United States: The Adolescent Brain Cognitive Development Study
- Designer Fentanyl Precursors Leading the Way to New Fentanyl Analogs—The Case of ortho-Methylfentanyl
- Femur loading during gait in newly walking children