In this paper, researchers analyze differential DNA preservation of thermally altered tissue and bone.
This study examining DNA preservation of thermally altered tissue and bone found that between the temperatures of ~200-300 ℃ (burn category 2) and ~300-350 ℃ (burn category 3), tissue was the most efficient extraction type, especially from tissue taken from the surface of ii the ilium and the rib. As for bone, both the Dabney and the Loreille protocol performed similarly, so choice in extraction type comes down to personal preference, type of equipment on hand, and training. Although, for samples with low input material, the Dabney protocol is optimal. Recovering high-quality deoxyribonucleic acid (DNA) from thermally altered human remains poses a significant challenge for research and law enforcement agencies due to high levels of DNA degradation resulting from exposure to extremely high temperatures. The current standard practice for the DNA identification of badly burned skeletal remains is to extract DNA from dense cortical bone collected from recovered skeletal elements. Some of the problems associated with this method are that it requires specialized equipment and training, is highly invasive, time-consuming, and does not reliably guarantee the successful identification of the remains in question. Burned/charred tissue was collected from skeletal samples as a part of a controlled burn from donor individuals, for downstream laboratory processing and DNA analysis as part of the Stone Lab (Arizona State University, School of Human Evolution and Social Change). DNA from this charred tissue was extracted using the Qiagen DNeasy Blood and Tissue Kit, and resulting yields were quantified via fluorometry using the Qubit Fluorometer 2.0 and Agilent TapeStation 4200 High-Sensitivity D5000 assay.
Downloads
Similar Publications
- Forensic Discrimination of Dyed Hair Color: I. UV-Visible Microspectrophotometry
- Introducing the NIJ Forensic Intelligence Framework: Pillars and Guiding Principles for Successful Implementation
- Superhydrophobic Surface Modification of Polymer Microneedles Enables Fabrication of Multimodal Surface-Enhanced Raman Spectroscopy and Mass Spectrometry Substrates for Synthetic Drug Detection in Blood Plasma