In this study, Raman spectroscopy combined with multivariate statistical analysis was used for the detection and identification of drug traces in latent fingermarks (LFMs) when nonsteroidal anti-inflammatory drug (NSAID) tablets of aspirin, ibuprofen, diclofenac, ketoprofen and naproxen had been touched.
Recent advancements in analytical techniques have greatly contributed to the analysis of latent fingermarks’ (LFMs) “touch chemistry” and identification of materials that a suspect might have come into contact with. This type of information about the FM donor is valuable for criminal investigations because it narrows the pool of suspects. It is estimated that at least 30 million people around the world take over-the-counter and prescription nonsteroidal anti-inflammatory drugs (NSAIDs) for pain relief, headaches and arthritis every day. The daily use of such drugs can lead to an increased risk of their abuse. In the current study, partial least squares discriminant analysis of Raman spectra showed an excellent separation between natural FMs and all NSAID-contaminated FMs. The developed classification model was externally validated using FMs deposited by a new donor and showed 100% accuracy on a FM level. This proof-of-concept study demonstrated the great potential of Raman spectroscopy in the chemical analysis of LFMs and the detection and identification of drug traces in particular. (Publisher Abstract)
Downloads
Similar Publications
- Extraction of Ignitable Liquid Residues by Dynamic Capillary Headspace Sampling and Comparison to the Carbon Strip Method
- Improving and Evaluating Computed Tomography and Magnetic Resonance Imaging in the Investigation of Fatalities Involving Suspected Head Trauma
- IS2aR, a Computational Tool to Transform Voxelized Reference Phantoms into Patient-specific Whole-body Virtual CTs for Peripheral Dose Estimation