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Assessing the Strength of Trace Evidence 
Fracture Fits through a Comprehensive, 
Systematic and Quantifiable Approach 

I SUMMARY OF THE PROJECT 

1.1.Abstract 
Criminal activities such as sexual assaults, kidnappings, hit and runs, and homicides often lead to the 
fracturing of materials. The realignment between fragments left at the scene and those items recovered 
from an individual, or object of interest, could become crucial evidence during the investigation. These 
fracture fits are often regarded as the highest degree of association of trace materials due to the 
common belief that fracture edges often produce individualizing patterns. Nonetheless, there is a need 
to demonstrate the scientific validity of this assumption. Currently, the examination of fracture edges 
involves the subjective judgment of the examiner without quantifiable uncertainty. There are no 
consensus-based standard methodologies for the identification of distinctive features on a fractured 
edge, a systematic criterion for informing a fit/non-fit decision, or methods for assessing the weight 
of the evidence. Thus, there is a critical need to develop, validate, and standardize fracture fit 
examinations and their respective interpretation protocols. In the absence of such foundations, the 
assessment of the value of the evidence and the reliability of the expert’s testimony would remain 
challenging. 

The overall goal of this research was to develop an effective and practical approach that provides an 
empirically demonstrable basis to assess the significance of trace evidence fracture fits. Our specific 
goals were first, to develop a systematic method for the comparison of fracture fits of common trace 
materials such as duct tapes, textiles, and automotive plastics, using both human-based protocols and 
automated computational algorithms. Second, to develop a relevant extensive database of nearly 9,000 
samples to evaluate performance rates in this field, and assess the weight of a fracture fit using 
similarity metrics, probabilistic estimates, and score likelihood ratios. Third, to evaluate the utility and 
reliability of the proposed approach through inter-laboratory studies that can establish consistency 
base rates. The partnership of experienced forensic researchers, computational material science 
physicists, statisticians, and practitioners was crucial for developing strategies to facilitate the future 
adoption of the developed approaches within crime laboratories. 

This research specifically addressed several research needs identified by NIST-OSAC1 and the NIJ-
TWG2 (quantitative assessment of error rates, scientific foundations, standardization, validation, 
interpretation, casework review, and proficiency assessment). As a result, this study is anticipated to 
transform current trace evidence practice by providing—for the first time—harmonized examination 
protocols and decision thresholds, effective mechanisms to ensure transparent and systematic peer-
review process and interlaboratory testing, and quantitative basis that substantiate the evidential value 
of fracture fit conclusions. 
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1.2.Major Goals and Objectives 
This study aims to contribute to the advancement of the trace evidence discipline by developing a 
practical approach with an empirically demonstrable basis to assess the probative value of fracture fits. 
The overall goal of this proposal is to answer the question: “how significant is a given fracture fit 
between two objects?” Specifically, the study is designed to answer this question within a context 
relevant to U.S. criminal justice by providing a quantifiable basis for assessing the weight of the 
evidence and reliable scientific grounds. As a result, it is anticipated that this study will provide a 
necessary foundation to help trace evidence examiners to move away from subjective conclusions of 
fracture matches and give the trier of fact tangible and understandable resources to assess the relevance 
of the evidence. The specific objectives of this research are to: 

1) Objective 1: Develop a systematic method for comparing fracture fits of common trace 
materials such as duct tapes, textiles, and plastics, using more objective human-based protocols 
and automated computational algorithms. 

2) Objective 2: Develop an extensive collection of trace physical fractures to validate methods 
for a quantitative assessment of the evidence and test the methods proposed under objective 
1. This collection will be encapsulated in a digital database management system. 

3) Objective 3: Evaluate the utility and reliability of the proposed approach in the casework 
context through inter-laboratory studies. 

These goals are accomplished through the following specific tasks: 
1) Task 1 (Objective 1)—Develop systematic methods to compare fracture fits of common 

trace materials such as duct tapes, textiles, and plastics. 
2) Task 2 (Objective 1) —Develop and validate automated computational algorithms to 

compare fracture fits. 
3) Task 3 (Objective 2) —Develop an extensive database on trace physical fractures of duct 

tape, textiles, and plastics, and test the methods proposed under Objective 1. 
4) Task 4 (Objective 2) —Validate quantitative methods for assessing the probative value of 

fracture fits. 
5) Task 5 (Objective 3) —Design interlaboratory studies for the evaluation of error rates of 

the proposed comparison approach among practitioners 

DISCLAIMER: This report summarizes the main findings of this research project. Some of these 
findings have been published in scientific journals3-6 , thesis, dissertations 7-8 , or have been submitted 
for publication and are under review.9-12 Therefore, some content, tables, and figures are an adaptation 
of published articles. As per journal copyright policies, the authors are entitled to re-use portions, 
excerpts, and their own figures or tables in other works that are not published commercially, without 
permission or payment (with full acknowledgment of the original article). More detailed information 
about the methods, data analysis, and results can be found in the published manuscripts listed in 
Section 3.1 and cited in the respective sections of this document. 
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1.3.Research Questions 
The separation of materials such as tape, plastics, and textiles from their original source frequently 
occurs during violent activities, leaving distinct patterns along the fractured edges. These features assist 
examiners when attempting to determine the source of the sample. During the examination of these 
materials, the analyst compares a known and questioned item to determine if they fit back together 
like a puzzle. The 3D realignment along the edges of the objects is known as a physical match and is 
often regarded as conclusive evidence. However, there are still several challenges in demonstrating the 
reliability and “individuality” of physical fits due to a lack of knowledge of error rates and uncertainty 
associated with such conclusions. Crime laboratories have no consensus-based standard methods 
describing which characteristics are most discriminating, or how to evaluate and document significant 
fracture features. The process is, therefore, extremely subjective. Moreover, when deciding if the edges 
are similar enough to be considered a match, the examiner does not have scientifically established 
criteria to inform their opinion. 

A decade ago, the National Academy of Sciences (NAS) raised awareness of the need for reporting 
error rates and uncertainties associated with subjective analysis in pattern evidence. These concerns 
resurfaced with the President’s Council of Advisors on Science and Technology (PCAST) report in 
2016 and statements from the American Statistical Association in 2019.13-15 Also, the Organization of 
Scientific Area Committees (NIST-OSAC) recently identified a major gap in research on trace 
evidence’s physical fits1, which coincides with the 2019 Forensic Science Research and Development 
Technology Working Group (TWG)2 identification of top priorities in this field. 

As a result, this study was designed to answer fundamental questions to build stronger scientific 
foundations of fracture fit examinations and provide the criminal justice system with reliable resources 
to assess the relevance of the evidence. These research questions are: 

1. Do all physical fits hold the same probative value?
2. Which individual or class characteristics can be evaluated in fractured edges to assist the

forensic examiner during a physical fit examination?
3. Are these features dependent on the fractured or separated material?
4. Which factors influence the occurrence of these features and the quality of a physical fit?
5. What are the performance rates of physical fit examinations? Are the performance rates

dependent on the type of object?
6. Can quantitative metrics demonstrate the quality of a fit and be used for the probabilistic

interpretation of the evidence?
7. Can computational and mathematical models be used to complement human-based

examinations?
8. What strategies can be developed to minimize potential bias and subjectivity during the

forensic examination of physical fits?
9. Can standardized protocols be developed for the examination, documentation, and

interpretation of physical fits through the assessment of the method via large datasets and
interlaboratory studies?
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1.4.Research Design, Methods, Data Analysis 

1.4.1. Research design and methods of analysis 

Project tasks and methodology 

The methodology and experimental design are described below within five major tasks to address 
the major research questions and objectives of this study (See figure 1). 

Figure 1. Summary of the main five experimental research tasks. 
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Task 1 (Objective 1)— Develop a systematic method for the comparison of fracture fits of 
common trace materials such as duct tapes, textiles, and plastics 

In this task, we have developed material-specific systematic methods for identifying and comparing 
relevant features along fracture edges. To optimize the impact of this study on criminal justice, we 
utilized a survey conducted by the newly formed NIST-OSAC Physical Fit Task Group16 to select the 
most prevalent materials submitted to forensic agencies. Thus, the three materials evaluated in this 
research were duct tapes, textiles, and plastics that are typically fractured or separated in a variety of 
crimes such as sexual assaults, homicides, suicides, and vehicular offenses, to mention some. 

Trace materials can be recovered from crime scenes as microscopic units often invisible to the naked 
eye or as larger pieces left behind during the contact between objects and individuals. The pieces 
should be relatively large (~ cm long) rather than small micro-traces to conduct a fracture alignment. 
For instance, sizeable pieces of duct tape are often received in cases where victims have been gagged 
or bound and in the construction of improvised explosive devices. Textile damage is observed in 
stabbing and tearing during forceful contact between individuals or sharp objects. Plastics are more 
commonly observed as a product of the bending of vehicle bumpers or the breaking of headlights 
during car collisions. As a result, our empirical datasets have been designed to simulate samples 
generated under these types of scenarios closely. 

Each of the materials of interest has different chemical and physical properties and manufacturing 
construction that inevitably imparts various features during the separation of objects (Figure 2). 
As a result, the first step in this task was to develop means to standardize the examination protocols. 
We have defined for each material: 1) what features are relevant for the comparison, 2) what is the 
smallest subunit “bin” of comparison across the tear or fracture, 3) how to document the examiner 
observations and decisions, 4) how to convert the qualitative observations to a quantitative measure, 
and 5) how to apply the qualitative and quantitative criteria in the assessment of the evidential value. 

Duct tapes
For duct tapes, we developed a 
systematic approach to compare 
edges. A typical duct tape has a 
backing layer, a reinforcement 
scrim fiber, and adhesive. All three 
components are considered during 
the examination. Duct tapes of 
different quality grade (high 
quality, HQ, medium quality MQ, 
M, and low quality LQ, L) were 
separated by hand-torn, HT, or 
scissor-cut, SC). A subset was also 
stretched to simulate complex case 
circumstances (S). We defined 
terms to describe overall fractured 
patterns and relevant features. 

Fig. 2. Example of physical fits of textiles (A, B), plastic (C), and duct Microscopic features include 
tape (D). 
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Fig. 3. Example of alignment of 
scrim bins to estimate ESS 

alignment of the edges, scrim in the warp direction across the 
tapes, weft fibers across the tear, stretching or distortion in the 
direction of tearing, backing dimples or markings across the edge, 
and protrusions and indentations or other loss of material across 
the edges). The examiners put the joint edges together and 
observed the tear patterns under a microscope at 10-40x. We used 
a stereo microscope with an automated stage and reflected and 
transmitted light and alternate UV and IR light to boost important 
features such as fillers or fiber fluorescence. 

Also, we have defined the smallest comparison bin as the torn 
area between a pair of warp scrims. The rationale for this selection 
is that the number of scrims is a constant feature across a tape 
roll and therefore provides a systematic means to evaluate the 
similarities and dissimilarities between tapes. The examiners then 
report an edge similarity score (ESS) for each tape comparison. 
An example edge is shown in Figure 3, where 12 scrim bins are 
visible. The examiner would divide the number of matching areas 
by the total number of scrim bins across the entire tape width to 
calculate the ESS. 

The comparison is then performed by flipping the tape and 
inspecting the alignment at the backing side. This has been shown 
to improve other methods that used relative alignment lengths. 

The estimation of the size of a fracture is somehow arbitrary because a tape fracture is rarely straight. 
In contrast, our method of estimating a score by scrim bins assures that the examiners will be looking 
at the same areas and the same number of regions when performing an examination. Moreover, the 
method applies to a large variety of tapes, regardless of their number of scrims, which is often 
associated with the tape grade quality. The match score is then utilized to make quantitative 
assessments of the weight of the evidence and provide a way to use a consistent reporting criterion 
across examiners. Also, an overall edge alignment and macro evaluation of the distinctive surface and 
edge features were incorporated, considering the feedback received by examiners during 
interlaboratory studies. 

In terms of documentation, the examiner notes any significant factors holding weight in their decision. 
Through this study, we found that incorporating detailed documentation of the comparison edge 
features by comparison bin has proven effective during the peer-review process, adds transparency to 
the decision-making process, and facilitates standardization of procedures. The use of bin-to-bin 
annotations on digital images has been a beneficial approach, as examiners can independently compare 
the same regions that served as the basis for their decisions and evaluate any potential discrepancies. 

Simple and practical Excel templates were designed with step-by-step instructions to document the 
observations, including auto-populated cells for each feature of interest and an embedded macro that 
color-codes each bin decision to aid the examiner in the quick assessment of the fit and non-fit areas. 
For example, the bin score cells have a built-in code where if the analyst enters the number 0 (non-fit 
bin), the cell turns red, yellow for 0.5 (inconclusive bin), or green for 1 (fit bin). The templates also 
calculate the ESS metric as the data is entered by the examiner and guide the examiner to document 
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final decisions, opinions, and observations in a systematic and reproducible manner. A template 
example is shown in Figures 4-1, 4-2, and 4-3, where each step of the comparison is broken down 
into three sections. 

In the first step, the analysts document overall observations regarding the tape morphology of each 
edge, along with general edge alignment characteristics. Tape edge’s standardized descriptions include 
one of four patterns: straight, angled, wavy, or puzzle-like (see Figure 5). 7 This first step allows the 
examiner to document the general observations of the questioned and the known item edges separately 
and use this overall assessment to determine the suitability of the specimens for fit examinations. 

In the second step, more detailed examination and documentation are conducted to identify major 
features in relatively large regions of the tape using macroscopic and microscopic observations. To aid 
with inter-examiner consistency, the template includes eight major features that we have found to hold 
the most weight in the decision process of a fit or non-fit in this study. Examples of these features are 
shown in Figure 6. Some of these features, such as severed dimpling and calendaring striations, are 
observable on the backing side of the tape, while many are observed while looking at the adhesive side 
of the tape. Distortion and missing material may be viewed on either side of the tape. These features 
provide important systematic qualitative criteria for the examination of duct tape fits. 

Finally, the last step consists of observation and documentation of the same eight defined features in 
step two, but here the observations are made on each bin-by-bin comparison, while the samples are 
compared under the microscope. An advantage of this step is that it adds objectivity since examiners 
must use standardized criteria to make a data-driven assessment of each bin independently to the 
results of previous bins. It is in this step that ESS is automatically calculated and displayed in the 
template to assist the examiner in forming their opinion. 
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Low confidence in Non-fit (I believe that generally th

High confidence in Non-Fit (I am confident that the s
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-
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WEST VIRGINA UNIVERSITY DUCT TAPE COMPARISON TEMPLATE 
Tape A Tape B 

Tape Pair 1-A 1-B 

General instructions 
Please use the three (3) consecutive steps protocol to examine and report your opinion on each step. 
Please report your observations and opinions based on the proposed method (regardless of the protocol used in your laboratory). 
If possible, conduct the observation of the duct tape edges through a transparency film so as to observe the scrim and adhesive without altering the edges in any way. When the tape ends are mounted on clear transparency films, they can be aligned and flipped back and forth without worrying about the edges and adhesive being stuck or 
altered 

Step 1. Overall Alignment of Tape Edges 
Section Guidelines: 
1. Start the physical fit examination by assessing the questioned/unknown edge. 
2. Examine the general features of the alignment of the edges (observe the backing and adhesive sides) 
3. Report your observations by clicking in the respective cell below for a drop-down menu of comparison edge overall results options. 
4. Click cell 1-1A and record general comments on your assessment of the overall edge appearance, and any overall features of note. 
5. Click cell 1-1B for a drop-down menu of the description of your opinion of the overall edge pattern for this tape edge. 

Step 1 1. Assessment of Known Tape Edge 

1-1A. Questioned Tape (Tape A) Edge Description 
1-1B. Edge Pattern of 

Questioned Tape (Tape A) 

Puzzle like protruding morphology at top of fracture edge, some slight disortion/stretching near the bottom of the edge Puzzle-Like 

Section Guidelines: 
1. Once analysis of the question tape edge is complete, move on to an independent assessment of the known edge. 
2. Examine the general features of the alignment of the edges (observe the backing and adhesive sides) 
3. Report your observations by clicking in the respective cell below for a drop-down menu of comparison edge overall results options. 
4. Click cell 1-2A and record general comments on your assessment of the overall edge appearance, and any overall features of note. 
5. Click cell 1-2B for a drop-down menu of the description of your opinion of the overall edge pattern for this tape edge. 

Step 1 2. Assessment of Questioned Tape Edge 

1-2A. Known Tape (Tape B) Edge Description 
1-1B. Edge Pattern of Known 

Tape (Tape B) 

Puzzle like indentation at top of fractured edge. Some minor distortion/curling near the bottom of the fracture edge Puzzle-Like 

Section Guidelines: 
1. Slide the transparency films until the edges of interest are positioned side by side. Examine the general features of the alignment of the edges (observe the backing and adhesive sides) 
2. Report your observations by clicking in the respective cell below for a drop-down menu of comparison edge overall results options (Cell 1-3A). A preliminary conclusion of fit, non-fit, or inconclusive can be selected for the overall alignment of the edges. 
3. Click the respective cell 1-3B for a drop-down menu of the description of your opinion of the overall edge alignment. 
4. Provide general comments on your assessment of the comparison pair edges in this first step of the examination in cell 1-3C. 
5. Regardless of your conclusion in this step (fit, non-fit or inconclusive) continue with the examination and reporting for the step 2. 

STEP 1 3. REPORTING OF STEP 1 COMPARISON RESULTS: Overall Alignment of Tape Edges 

1A. Comparison Pair Overall 
Alignment Conclusion 1B. Description of Overall Edge Tape Alignment 1C. Additional Edge Comparison Comments 

Fit 
High confidence in Fit (I am confident that the sample edges are a physical fit based on the 

observed general features) 
Edge morphology corresponds with distinct puzzle-like morphology. Some observable distortion/curling at bottom of 

fracture 

Figure 4-1 Example of step 1 of the documentation template with filled out annotations. This step covers the overall assessment of each edge independently and then 
a side-by-side comparison, where the analyst documents whether they observe the pair as a fit or non-fit and the confidence level in that decision.3 

1 
This resource was prepared by the author(s) using Federal funds provided by the U.S.  

Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 
necessarily reflect the official position or policies of the U.S. Department of Justice.



 
 

  
                       

                     
  

 
 
 
  

 
               

                
                               

         
                               

                      
                  
                       

     
 

  
 
 

              
 

           
 

              
 

            
 

            
 

 
    

 

     

   
  

     

 
 

       

 
 

   
  

              
              

   
  

   
  

          

      

              
              
              

Absent Absent
Present - indicative of fit Present an
Present - indicative of non-fit Present an

High confidence in Fit (I am confident that the 
Low confidence in Fit (I believe that generally
Inconclusive (I believe there are similarities an
Low confidence in Non-fit (I believe that gener
High confidence in Non-Fit (I am confident tha

Step 2. Macroscopic Assessment of Tape Edges 
Section Guidelines: 
1. Conduct a more detailed observation of the edge features by visually dividing the tape edge into approximately five macro sections (~1cm each) 
2. For each macro section, observe any alignment (or lack of) and the presence of any differences or presence of similar distinctive features. 
3. Select the observed different or similar characteristics in the macroscopic sections by clicking in the respective cells 2A (I to VIII) drop down options. Provide additional comments of observed features (Cell IX) or additional general comments you may want to share (Cell X). 
If additional features are present that are not listed here, please describe them in the comments. 
4. Report your observations by clicking the respective section on cell "2B" below for a drop-down menu of observations of compared areas. Select a decision of fit, non-fit, or inconclusive for the alignment of each of the ~1cm macro comparison sections. 
5. Click the respective cell for a drop-down menu of cell "2C" below to select the description of the macro section edge comparison that better describes your observations and opinion. 
6. If at the end of step 2, an obvious non-fit between the edges is determined, a non-fit may be reported with no further microscopic assessment. 
7. If the conclusion at the end of step 2 is fit, inconclusive, or a non-fit which is complex or otherwise difficult to observe, continue with the examination and reporting for the step 3. 

Macro 
Comparison 

Area 

2A. Observation of Distinctive Features and Comments on Macro Sections 

I. Alignment of Edge 
Pattern Morphology 

II. Alignment of Severed 
Dimples on Tape Backing 

III. Calendaring Striations 
across Edge 

IV. Macro Alignment of Warp 
Scrim 

V. Correspondence of 
Protruding Warp Yarns and 

the Respective Pattern Gaps in 
the Other Edge 

VI. Continuation of Scrim 
Weave Pattern 

VII. Distortion Explained by 
Stretching Directionality 

VIII.Weft Scrim at or near 
Edge Consistent with the 

Overall Weft Pattern 
IX. Missing Material 

X. Additional features not listed 
here (please write in comments 

what those features are) 
XI. Edge Comparison Comments 

1 Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Present - indicative of fit Present - indicative of fit Present and explained by 
stretching Consistent Not applicable (no 

missing material) 

Corresponding edge morphology and 
calendaring striations. Distortion present 

but consistent 

2 Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Present - indicative of fit Present - indicative of fit Absent Consistent Not applicable (no 
missing material) 

Corresponding protruding warp yarns and 
respective gaps. 

3 Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Present - indicative of fit Present - indicative of fit Present and explained by 
stretching Consistent Not applicable (no 

missing material) 

Corresponding edge morphology and 
calendaring striations. Distortion present 

but consistent 

4 Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit Present and explained by 
stretching Consistent Not applicable (no 

missing material) 

Corresponding edge morphology and 
calendaring striations. Distortion present 

but consistent 

5 Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit Present and explained by 
stretching Consistent Not applicable (no 

missing material) 

Corresponding edge morphology and 
calendaring striations. Distortion present 

but consistent 

REPORTING OF STEP 2 COMPARISON RESULTS: Macroscopic Assessment of Tape Edges 

Macro 
Comparison 

Sections 
2B. Macro Comparison 

Sections Conclusion 2C. Description of Macro Sections Edge Comparison 

1 Fit High confidence in Fit (I am confident that the sample edges are a physical fit based on the observed macroscopic features) 
2 Fit High confidence in Fit (I am confident that the sample edges are a physical fit based on the observed macroscopic features) 
3 Fit High confidence in Fit (I am confident that the sample edges are a physical fit based on the observed macroscopic features) 
4 Fit High confidence in Fit (I am confident that the sample edges are a physical fit based on the observed macroscopic features) 
5 Fit High confidence in Fit (I am confident that the sample edges are a physical fit based on the observed macroscopic features) 

Figure 4-2. Example of filled-out cells for step 2; this step covers the macroscopic assessment of the compared pairs of tapes. The edges are visually separated into five 
macroscopic sections, and nine major features are documented for their absence or presence. If present, the analyst document whether the feature indicates a fit or non-
fit. In addition, each section is documented as a fit or non-fit and the confidence level in that decision. 3 

2 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 
 

  
                     

                            
                         

                 

               

                   

                  

                  

 

  
               

  
      

   
   

   
   

    
 

    
 

   
   

 
  

   
      

 

       

             

        

     
 

High confidence in Fit (I am confident that the sample edges are a physical fit based on the observed features (e.g., ESS score 80 or higher))

Low confidence in Fit (I believe that generally the edges fit, but there are some areas where there are a lack of features, discrepancies in features across the edges, o

Inconclusive (I believe there are similarities and differences throughout the edges that do not let me support a decision of either fit or non-fit (e.g. ESS score between

Low confidence in Non-fit (I believe that generally the edges do not fit, but there are some areas of alignment or distortion that could be obscuring potential alignmen

High confidence in Non-Fit (I am confident that the sample edges are not a physical fit based on the observed features (e.g., ESS score lower than 30)
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Step 3. Subunit Assessment of Tape Edges (Edge similarity score) 
Section Guidelines: 
1. Examine the pairs under a stereomicroscope, both backing and scrim sides. 
2. Align the top edge first to help with the physical fit assessment 
3. Adjust the number of scrim areas to correspond with your tapes. Each scrim area is the edge region between the consecutive top and bottom scrims. 
4. Make observations on each of the scrim areas on cells "3A" below (consider alignment or lack off, and differences or presence of distinctive features) 
5. Type "1" if you observed fit in the scrim area, "0" is there is non-fit, or "0.5" is there are some similarities as well as differences (inconclusive). 
6. To facilitate the visual observation of the results, these cells should automatically populate once you have entered your area fit codes per scrim area. The cells will automatically populate in color (red = 0, yellow = 0.5, green = 1) 
7. Select the observed different or similar characteristics in each micro subunit by clicking in the respective cells 3A (I to VIII) drop down options. Provide additional comments of observed features (Cell IX) or additional general comments you may want to share (Cell X). 
8. The systematic documentation of observations per scrim area will facilitate the comparison of relevant features observed by each participant and understand decision processes. This intend to simulate the use of this tool for peer review or training purposes. 
9. The number of matching scrim areas (cell 3B) and Edge Similarity Score (cell 3C) for the comparison pair will be automatically calculated and displayed. 
10. Based on the ESS step, click the respective cell "3D" for a drop-down menu of comparison edge overall conclusion options (fit, non-fit, or inconclusive) 
11. Click the respective cell "3E" to select a drop-down menu of the description of your opinion on the overall subunit EES comparison 
12. Based on pilot studies, a score of 80 or above is usually indicative of a fit, while scores between 60 a 80 are indicative of a fit with less distinctive features. 
A score below 30 is indicative of a non-fit, beteeen 30 and 40 indicative of a non-fit with some similarities, and a score between 40-60 is indicative of inconclusive. You can use this criteria to form your opinion. 

5A  REPORT NG OF EACH SUBUN T 

Scr m Area 
Area F t Code 

(1 f F t, 0 5 NC 0 
Non F t) 

Area Comments A gnment o Edge Pattern 
Morpho ogy 

A gnment o Severed D mp es 
on Tape Back ng 

Ca endar ng Str ations 
across Edge 

V M cro A gnment of Warp 
Scr m 

V Correspondence o 
Protrud ng Warp Yarns and 
the Respective Pattern Gaps 

n the Other Edge 

V Continuation of Scr m 
Weave Pattern 

V D stortion Exp a ned by 
Stretch ng D rectiona ty 

V We t Scr m at or near 
Edge Consistent w th the 

Overa Weft Pattern 
X. M ssing Mater a 

X. Add tiona eatures not sted here p ease wr te n 
comments what those eatures are 

1 1 Consistent edge morphology and scrim weave Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material) 
2 1 Consistent edge morphology and protruding fiber Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Present - indicative of fit Present - indicative of fit Absent Consistent Not applicable (no missing material) 

3 0.5 Slight distortion of edge, missing partial warp scrim fiber Present - indicative of fit Absent Absent Present - indicative of fit Present - indicative of non-fit Present - indicative of fit 
Present and explained by 

stretching 
Consistent Not applicable (no missing material) 

4 1 Consistent edge morphology and scrim weave Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material) 
5 1 Consistent edge morphology and protruding fiber Present - indicative of fit Absent Absent Present - indicative of fit Present - indicative of fit Present - indicative of fit Absent Consistent Not applicable (no missing material) 
6 1 Consistent edge morphology and scrim weave Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material) 
7 1 Consistent edge morphology and scrim weave Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material) 
8 1 Consistent edge morphology and scrim weave Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material) 
9 1 Consistent edge morphology and protruding fiber Present - indicative of fit Absent Absent Present - indicative of fit Present - indicative of fit Present - indicative of fit Absent Consistent Not applicable (no missing material) 

10 1 Consistent edge morphology and protruding fiber Present - indicative of fit Absent Absent Present - indicative of fit Present - indicative of fit Present - indicative of fit Absent Consistent Not applicable (no missing material) 

11 0.5 Distortion of edge morphology Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit 
Present and explained by 

stretching Consistent Not applicable (no missing material) 

12 1 Consistent edge morphology and scrim weave Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material) 
13 1 Consistent edge morphology and scrim weave Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material) 
14 1 Consistent edge morphology and scrim weave Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material) 
15 1 Consistent edge morphology and protruding fiber Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Present - indicative of fit Present - indicative of fit Absent Consistent Not applicable (no missing material) 
16 1 Consistent edge morphology and scrim weave Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material) 

17 1 Consistent edge morphology and scrim weave Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit 
Present and explained by 

stretching 
Consistent Not applicable (no missing material) 

18 1 Consistent edge morphology and scrim weave Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit 
Present and explained by 

stretching 
Consistent Not applicable (no missing material) 

19 1 Consistent edge morphology and scrim weave Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material) 
20 1 Consistent edge morphology and scrim weave Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material) 
21 1 Consistent edge morphology and scrim weave Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material) 
22 0.5 Distortion of edge morphology Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material) 
23 
24 

0.5 
1 

Distortion of edge morphology 
Consistent edge morphology and scrim weave 

Present - indicative of fit 
Present - indicative of fit 

Present - indicative of non-fit 

Absent 
Absent 

Absent 

Present - indicative of fit 
Present - indicative of fit 

Absent 

Present - indicative of fit 
Present - indicative of fit 

Present - indicative of fit 

Absent 
Absent 

Absent 

Present - indicative of fit 
Present - indicative of fit 

Present - indicative of fit 

Absent 
Absent 

Present and not explained by 
stretching 

Consistent 
Consistent 

Consistent 

Not applicable (no missing material) 
Not applicable (no missing material) 

Observed Missing Material 25 0 Tape curled at area - missing material 

26 0.5 Consistent edge morphology and scrim weave Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material) 
27 1 Consistent edge morphology and scrim weave Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material) 
28 1 Consistent edge morphology and scrim weave Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material) 
29 1 Consistent edge morphology and scrim weave Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material) 

30 0.5 Distortion of edge morphology Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit 
Present and not explained by 

stretching Consistent Not applicable (no missing material) 

31 0 Tape curled at area - missing material Present - indicative of non-fit Absent Absent Present - indicative of fit Absent Present - indicative of fit 
Present and not explained by 

stretching Consistent Observed Missing Material 

32 0.5 Distortion of edge morphology Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit 
Present and not explained by 

stretching Consistent Not applicable (no missing material) 

33 0.5 Distortion of edge morphology Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit 
Present and not explained by 

stretching Consistent Not applicable (no missing material) 

34 0.5 Distortion of edge morphology Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit 
Present and not explained by 

stretching Consistent Not applicable (no missing material) 

35 0.5 Distortion of edge morphology Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit 
Present and not explained by 

stretching Consistent Not applicable (no missing material) 

REPORTING OF STEP # 3 COMPARISON RESULTS: Subunit Assessment 
3B. Number of 
Matching Scrim 

Areas 

3C . Edge Similarity 
Score 3D. Comparison Pair Overall Conclusion 3E. Description of subunit ESS overall comparison 3F. Edge Comparison Comments 

28 80 Fit 
High confidence in Fit (I am confident that the sample edges are a physical fit based on the 

observed features (e.g., ESS score 80 or higher)) 
While slight distortion, edges have consistent puzzle-like morphology, and 

demonstrate multiple instances of corresponding protruding fibers 

Figure 4-3. Step 3 of the documentation template, example of a filled-out form resulting in an ESS of 80. This step covers the microscopic assessment of the compared 
pairs of tapes. The edges are visually separated into bins based on the number of areas between the scrim fibers. In each bin, the same nine major features from Step 2 
are documented. In addition, each section is documented as a fit or non-fit and the confidence level in that decision. The analyst reports each bin as fit, non-fit, or 
inconclusive by coding it as 1, 0, or 0.5, which is then automatically colored and calculated as the ESS.3 

3 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



  

 

 
                

               
Figure 5. Examples of true fit pairs from the tape sets. The images show the distorted morphology observed in the MQ-
HT-S, LQ-HT, and LQ-HT-S edges. Despite also being hand-torn, the edges observed in the HQ-HT set are very 
straight and less distinctive, even when stretched.4 

1 
This resource was prepared by the author(s) using Federal funds provided by the U.S.  

Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 
necessarily reflect the official position or policies of the U.S. Department of Justice.



 
 

 
  

 
   

   
  

 

Fig 6. Examples of the eight descriptive features documented for duct tape edge comparisons. These features are some of the most observed on duct tapes regardless of 
grade. Oftentimes, they help establish and document standardized criteria during sample comparison. Alignment of severed dimples: these are severed dimples on tape 
backings that align from one edge to the other in shape, size and location across the fracture. This feature is only applicable on the backing side. When it is present 
and aligns across the separated edges, it can provide strong support to a fit decision because these manufactured-imprinted marks have some inherent variability 
across a single roll and when split through the fracture, those patterns are very unlikely to align by chance. Likewise, when there is major misalignment of the severed 
dimples, the feature provides strong support to the non-fit decision. 4,7 

2 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 
 

 
                  

           
            

           
  

 
           

         
           

               
               

             
               

                
             

          
  

  
                

              
                 

                
              

  
 

            
           
              

            
             

              
  

 
 

Textiles 
In the case of textiles, yarns are used to create fabric by either weaving or knitting. Yarns are then 
interlaced by various constructions, depending on the desired properties of the end-product. Modern 
weave and knit machines provide very consistent yarn constructions. After the fracturing process, 
samples are compared visually, including examining the general size and shape, weave/knit type, fiber 
type, and twist. 

In the proposed method, examiners first analyze a comparison pair's overall edge morphology and 
general fracture alignment using a stereomicroscope at 10-40x magnification with reflected and 
transmitted light. Here, features such as weave alignment and pattern/print alignment are observed. 
Weave alignment occurs when the direction of the weave is consistent between both samples being 
compared. Pattern or design alignment occurs when designs printed on the fabric, such as stripes or 
flowers, align across the fractured edge. Both features generally increase an examiner’s confidence in 
the presence of a physical fit between two samples. The examiner may also observe distortion in the 
form of curling or stretching of the fracture edge, which may limit their ability to determine the 
presence of a physical fit. During the development and optimization stage for textiles, we defined the 
main relevant features and terminology to standardize the observations, reporting, and criteria used 
during the decision-making process. (See Figure 7). 

Following this, the examiner subdivides the length of the fracture edge into ten (10) comparison bins 
or areas of equal size. The examiner conducts an independent comparison within each respective bin 
and identifies it as a fit, non-fit, or inconclusive, assigning a quantitative value of 1, 0, or 0.5, 
respectively for the bin. The examiner also uses UV light to identify any fluorescence exhibited by the 
fibers on either sample. The presence or absence of fluorescence on both samples being compared 
may increase an examiner’s confidence in the presence of a physical fit between the two samples. 

As described in the duct tape section above, the examiner also documents the overall morphological 
features and individual features observed in each comparison bin in a digital template throughout this 
process. This digital template follows similar approaches as the ones described for tapes, but it is 
customized for evaluating the textile’s features. The examiner documents the qualitative features per 
bin location, allowing for a straightforward peer review process, as previously discussed. Finally, the 
template macro will automatically generate an Edge Similarity Score (ESS). An example of the template 
is provided in Figure 8. 

3 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 
 

 
 

 
           

 
Figure 7. Prominent textile-relevant features and terminology defined in this study to assist analysts in making 
determinations of physical fits.8 

4 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 
 

 

 
   Fig. 8-1. Example of filled-out cells for step 1 for textile comparisons; this step covers the macroscopic assessment of the compared pairs.8 

5 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 
 

 

 
                        

                       
                          

 

Fig. 8-2. Example of filled-out cells for step 2 for textile examinations; this step covers the microscopic assessment of the compared pairs. The edges are visually 
separated into ten sections, and seven major features are documented for their absence or presence. If present, the analyst document whether the feature indicates a fit or 
non-fit. In addition, each section is documented as a fit or non-fit and the confidence level in that decision. At the bottom, the number of fitting areas and the edge 
similarity score is displayed along with the final opinion of the examiner. 8 

6 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 
 

 
            

              
             

          
          

 
 

             
          

            
             

            
              

 

            
            

           
                 
               

           
              
            

            
            

                
    

 

     

    

    

       

      

    

      

    

Plastics 
Plastics have a significantly different composition and construction than duct tape and fibers. Unlike 
the soft polymers used in duct tape, the composition of rigid plastics is designed to keep the material 
firm. Therefore, hard plastics are brittle, breaking by tension when enough force is applied. 
Automotive hard plastic objects commonly submitted to crime laboratories include the vehicle’s 
headlights, taillights, and fragments from the bumpers found in larger-sized fragments at scenes such 
as hit-and-runs and car accidents. 

To select the samples used in this study, we investigated first some of their mechanical properties and 
chemical compositions. The main polymers used in manufacturing these parts are polypropylene, 
polyurethane, and polycarbonate, but they can also include materials such as nylon or polyvinyl 
chloride. These polymers are common because they are durable and resistant to many environments 
or substances that would otherwise damage or weaken the polymer material. Automotive plastic 
objects can sometimes be marked with a serial number that can be used to establish the composition 
of the polymer material as reported by the manufacturer. 

The intended purpose of the material influences macroscopic features on the surface of the hard 
plastics. Polymers from taillights and headlights are generally transparent, may have some degree of 
curvature or patterning, and contain striations and markings across the surface. Plastics from bumpers 
may have several layers of paint on top of the polymer core, as well as striations or marks left from 
wear and tear on the bumpers. General features such as the color, thickness, hardness, presence of a 
coating or layers, patterning and texture, and manufacturing or spontaneous defects in the material 
are some characteristics that can be observed while comparing these samples. At the microscopic level, 
the curvature of pieces, smaller fractures radiating from the main fractured edge, overlapping material, 
along with distinctive fracture patterns and directionality, can inform the examiner’s opinion. Prior to 
fracturing, each intact polymer sample was analyzed using an ATR-FTIR spectrometer to identify the 
primary chemical makeup of the polymer. A summary of these findings can be seen below in Table 
1, which also includes the color and opacity of each polymer analyzed. 

Table 1. Description of polymer color, opacity, and chemical composition of the hard plastics collection set. 

Item Color Opacity Chemical Compounds 

H1.2 Clear Translucent Polycarbonate 

H1.5 Clear Translucent Polycarbonate 

H2.14 Red Translucent Polycarbonate, solvent red 111 

H3.1 Silver/Black Opaque Polypropylene Terephthalate (PPT) 

H3.2 Clear Translucent Polycarbonate 

H3.7 Orange Translucent PMMA, solvent orange 60 

H3.9 Clear Translucent Polycarbonate 

7 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 
 

     

     

     

    

    

    

      

     

    

      

     

    

              
             

             
           

     

         
             

             
              

           
              
              

               
             

               
              

        
           

             
    

Item 

H4.6 

Color 

Silver/Black 

Opacity 

Opaque 

Chemical Compounds 

PolybutyleneTerephthalate (PBT) 

H4.19 Black Opaque Polycarbonate, PMMA Acrylic 

H4.25 Clear Translucent Polycarbonate 

H4.36 Clear Translucent Polycarbonate 

H4.37 Clear Translucent Polycarbonate 

H4.40 Silver/Black Opaque Polypropylene Terephthalate (PPT) 

H5.4 Orange Translucent Polycarbonate, orange 60 

H5.6 Silver/Black Opaque Polypropylene 

T1.1 Clear Translucent Polybutylene Terephthalate (PBT) 

T3.2 Red Translucent PMMA Acrylic, solvent red 111 

T3.3 Clear Translucent Polycarbonate 

Images were captured of each intact polymer prior to fracturing using a DSLR camera. After imaging, 
the samples were taped with blue painter’s tape and fractured. Following this, each polymer was 
reassembled, using the original photographs as a guide, by individuals who would not be conducting 
any of the comparisons and then renamed with a unique identifier using random number generator. 
After the fragments were relabeled, they were packaged separately in labeled manila envelopes. 

Like tapes and textiles, a systematic method was developed and evaluated for the analysis and 
documentation of automotive plastics (see Table 2 and Figure 9). First, the examiner provides a brief 
description of each sample and documents the edge shape, color, and pattern (straight, curvy, puzzle-
like, or serrated). They then align the two fragments and offer a preliminary conclusion based on 
macroscopic observations. Following this, regardless of their preliminary conclusion, the examiner 
proceeds to the microscopic examination of the samples. The comparison edge of the polymer 
fragments was divided into five bins of equal length. Because the edges of fractured polymers are not 
often straight lines, strands of dental floss were aligned along the fracture edge and cut to size. Then, 
the dental floss was measured using a scale and divided into 5 equal lengths, which are marked on the 
floss. The floss is aligned to the fracture edge during physical fit comparison to determine where each 
bin starts and ends. During the comparison, examiners will look for ten features in the polymer, 3D 
edge alignment, surface plane/directionality alignment, edge curvature/directionality, pattern 
alignment, surface damage alignment, scratch alignment, fracture marks alignment, protruding feature, 
missing material, and extraneous material. Images and descriptions of each feature can be seen in 
Table 2 below. 

8 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

   

 

    
   
  

   
  

 
  

    
   

  
 

 

 

 

 
 

 

  
    

    
    

  
     

    
 

 

 

 

 

 
 

 

    
   

   
  
   
     

    
    

 

 

Table 2-1. Polymer features observed during physical fit comparison. 

Feature Description Image 

3D Edge Alignment 

The interior edge of the 
fragment (along the 
fracture) corresponds. 
This may be supported 
by protrusions and 
corresponding 
indentations, fracture 
marks, and/or shifts in 
fracture direction that 
should be consistent 
across both fragments 

Surface 
Plane/Directionality 
Alignment 

The top and bottom 
surfaces of the fragments 
retain the same plane 
across the fracture. This 
is maintained whether 
the surface is flat, curved, 
or undergoes a distinct 
change in directionality. 

Edge 
Curvature/Directionality 

The direction of the 
fracture starting from an 
origin point remains 
consistent when 
observing the two 
fragments side by side. If 
one fragment curves, the 
other fragment curves in 

9 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 

   

  

    
   

   
  

 

 
 

 
 

     
    

     
   

  
   
 

 

 

 

 

 

    
    

  
   

   
  

     
  

   
    

   
 

 

 

Table 2-2. Polymer features observed during physical fit comparison. 

Feature Description Image 

Pattern Alignment 

A consistent pattern or 
texture that maintains 
shape, location, size, 
plane, and direction 
across the fracture. 

Surface Damage 
Alignment 

A deep scratch, mark, or 
indent along a surface 
edge of the polymer that 
corresponds in depth, 
width, direction, and 
location across the 
fracture. 

Scratch Alignment 

Light scratches along the 
surface of the polymer 
that correspond in 
direction, depth, width, 
and location across the 
fracture. Note: Scratches 
can be present prior to 
fracturing, created during 
the impact and breaking 
of the polymer, or 
created during handling 
of the broken evidence. 

10 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 
 

 
 
 

 

 

Table 2-3. Polymer features observed during physical fit comparison. 

11 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 
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The features observed and the conclusions for each pair by the examiner are documented on a custom-
made template as an Excel sheet. In addition to the ESS metric, the examiner includes the effect of 
each feature on their decision-making process, by assigning each feature a prominence value (FPV). 
The prominence values for each feature in each comparison area are summed together to generate an 
overall Feature Prominence Sum (FPS). In general, positive FP number indicate the presence of a 
physical fit or an inconclusive decision, whereas negative FPVs indicate non-fits or inconclusive 
decisions. The examiner classifies each of the five individual comparison areas as fit, non-fit, or 
inconclusive. They then report the pair overall conclusion using the qualitative and quantitative 
criteria. 

The main analysts in this task are students who have followed at least 2-month material specific 
introductory training (i.e., duct tape, textiles, and/or plastics) established by the PI that includes: 

a) reading and discussion of relevant literature, 
b) testing on three modules in which the students will build knowledge of each material of interest 
(composition, manufacture, distribution, common cases, typical examination protocol, fracturing 
mechanisms, data analysis, and interpretation), 
c) hands-on training sets for the examination of fracture fits, for which the “ground” truth is 
known but maintained blind to the student, 
d) blind hands-on training tests in which the student’s ESS or FPS scores are compared to those 
reported by a consensus panel and the overall conclusions are evaluated based on the ground truth 
(i.e., known fit, or known-non fit). 

Our training quality control has set the accordance and concordance of +/- 10%. Accordance is 
associated with the probability that two identical samples tested by the same individual under the same 
conditions but at different times will be assigned the same similarity score and associating features. 
Concordance is related to the probability that two identical samples tested by separate individuals 
under the same conditions will be given the same similarity score. The analysis of accordance and 
concordance is focused on descriptive statistics. 

12 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 
 

 

 
 

 
                      

                       
                         

                    

Fig. 9. Sections 1-3: Example of filled-out cells for step 1 for plastic polymer comparisons; this step covers the macroscopic overall assessment of the compared pairs. 
Section 4: Example of filled-out cells for step 2 for plastics examinations; this step covers the microscopic assessment of the compared pairs. The edges are visually 
separated into five sections, and ten major features are documented for their absence or presence, and the weight these features hold in the bind decision, which is 
automatically estimated into a numeric feature prominence value then, the template automatically estimates the quality metrics of edge similarity score and feature 
prominence sum. 

13 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 

           
  

             
          
         

                
             

    
 

              
          

           
               

         
             

              
 

 
             

                 
            

           
             

            
              

  
 

  
 

  
              

           
             

             
            

                
                

              
           

             
            

            
     

 
 

          
              

            

Task 2 (Objective 1) — Development and validation of automated computational algorithms
for the comparison of fracture fits. 

The primary aim of this task is to supplement the ESS method by introducing a computational 
comparison model for fractured edges to provide additional objective support for a physical fit 
examination. Robust and practical computational algorithms are developed for fracture fit analysis for 
three main purposes: 1) establish a platform to create a database of fractured edges, 2) predict if a 
compared pair of samples present a physical fit or not using image-recognition algorithms, and 2) gain 
further understanding of the importance of evaluated features on the decision of a fit or non-fit.17-20 

To achieve this, we utilize a machine-learning model to process images of the fractured items.21-31 We 
first developed an open-source Python package designed for image analysis tasks, including edge 
detection, background noise-reduction, and image filtering for materials of interest in the field of 
forensics science.32 Additionally, the package contains a database handler to manage the flow of data 
to and from machine-learning models. We then construct a convolutional neural network (CNN) 
model that classifies the tape images into fits and non-fits, providing a fit membership probability 
output. We apply the CNN approach to the scrim and the backing of the scan images separately and 
combine the results using a decision tree classifier. 

There are different situations in forensic science where matching is performed, and the dimensionality 
of the objects control the method that can be used. In this project, we focus only on cases where 
images are captured from the objects, and edge analysis is performed to define the contour image. The 
approach evaluates the performance of machine learning algorithms based on neural networks (fully 
connected, FNN and convolutional, CNN) to predict if images of two pieces of evidence coincide. 
The matched objects are then classified and used as a discrete analysis of the matching process 
(singular prediction) or a more continuous statistical analysis, after a large number of those are 
performed, where trends on the information within the images can be extracted. 

ForensicFit: Fractured edges database 

Image database set preparation 
In this project, we center our investigation on duct tapes, textiles, and vehicle plastics and respective 
images from the fractured edges. A more detailed description of the samples is provided in the 
following task 3 section. The database has been created by producing images of high resolution using 
an EPSON 12000XL scanner with images scanned using SilverFast 8, version 8.8.0r14, an interface at 
a resolution of a minimum 600 dots-per-inch. Hard plastics, on the other hand, present several 
challenges to capturing the edge features due to the presence of various features in three dimensions, 
diverse angles and planes of surfaces of the materials. Also, the refractive and the reflective nature of 
some of the polymers produce some artifacts and difficulties in focusing at different depths of field. 
Regardless of efforts made with enhanced photography and microscopic imaging devices, the images 
did not meet optimal details to feed the CNN. In this dataset, images of 2D planes are stored to 
demonstrate some of the features. However, more advanced 3D imaging technology or 3D molds are 
recommended in the future to build image databases of hard polymers. Instead, we utilize information 
from the human-based examination and documentation to utilize computational and mathematical 
models to further the information derived from plastic fit examinations. 

The dataset of tape images includes tapes generated from three different qualities (low, medium, and 
high grade) and two separation methods (hand-torn or scissor-cut). As a result, there are six total 
subsets of tape samples. The database consists of images scanned from 900, 200, and 898 low-, 

This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.
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medium-, and high-quality tape samples, respectively, for a total of 1998 individual tapes and 3996 
images from the backing and adhesive/scrim sides. To improve contrast and consistency across 
images, the samples were placed on top of black cardboard. Each tape was scanned twice, once to 
capture the top surface of the tape (backing layer) and the second to capture the underside 
(adhesive/scrim layer). 

The textiles image dataset consists of 793 textiles samples of various constructions (knit, woven, or 
mixed), modes of separation (stabbed or hand-torn), compositions (cotton, polyester, rayon, or 
mixed), and color design (unicolor or multicolor). Each fractured textile was scanned with a white or 
black cardboard backing to enhance contrast, depending on the color if the fabric. 

Minor corrections to the images were made during scanning to enhance the contrast and visibility of 
the edges and features, such as setting the black point of the image to the posterboard to ensure the 
background was the darkest part of the image (or white for textiles of dark color). Additional 
corrections are performed using Adobe Photoshop on some images to address specific issues to 
remove artifacts. Each tape image is stored in a 2-dimensional matrix where each element represents 
a pixel intensity value between 0 and 255, corresponding to black and white, respectively. 

After the images are taken, data preprocessing consists of many steps such as data cleaning, 
transformation, feature extraction, and reformatting. Before setting up the architecture of the network 
the image dimensions are reduced by; 1) using the smallest image resolution where the edge surface 
details are still visible; 2) focusing only on the important part of the image— the comparison edge. 
Here, a python package (ForensicFit 32) has been developed to bridge the gap from raw images to data 
suitable for a machine-learning model. ForensicFit was developed to analyze images collected from 
materials of interest in forensic science. Additionally, it can receive different image formats and store 
them efficiently on a general and flexible database. This database is accessible from other parts of the 
code for image processing, statistical analysis, and training a machine-learning model. The essentials 
of the package are explained in Supplementary Information. The source code is hosted on GitHub. 32 

For this study, ForensicFit provides the means to automatically crop the image to only include the 
comparison edge of the tape. 

The dots-per-inch (dpi) resolution was set to the minimum scanned dpi value (600 dpi). A window of 
410×2400 px2 (pixels2) was selected around the comparison edge. The x-dimension (length of the tape) 
was achieved with relative cropping from the comparison edge (see Supplementary Information for 
more details). For the y-dimension (width of the tape), because tapes originating from different rolls 
may have different widths, they do not have the same size in the y-dimension. The width of the tapes 
used in this study range from 2200 to 2600 px. Because the CNN requires consistent inputs, the images 
were cropped on the borders of the tape and resized to 2400 px. Resizing can cause small alteration 
of the image; it is important to note that this type of alteration is different from the physical distortion 
due to the stretching of the tape. Physical stretching follows shearing and straining constraints that 
can cause the tape’s edge to warp in a wavy pattern, whereas the resized scanned image remains 
unchanged in its overall appearance. Nevertheless, because all tapes undergo the same distortion, it 
does not influence the outcome. 

The output comparison edge image was then further resized to be as small as possible and still retain 
the fine details of the tape. This resizing was done for computational efficiency and to accommodate 
GPU memory limitations. In this case, the edge images were reduced by half, leading to an edge image 
with a size of 205×1200 px2 and a resolution of 300 dpi. Figure 10 shows an example of the output 

15 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 
 

            
   

 

  
                       

                 
                  

                 
                 

              
  

 
  

            
            

            
          

of the reduction and the concatenated input resulting in two images (scrim and backing) of size 
410×1200 px2 ready to be passed on to the CNN. 

Figure 10. Top Left: Scanned image of a low-quality grade tape. Image shows the backing side of the tape. One of the 
edges has been cut into an arrow shape, representing a non-comparison edge. For this publication this image was manually 
cropped. Top Right: Preprocessing of tape image by ForensicFit. The image is automatically split in the middle of the 
tape, its background cleaned, rotated to be horizontal, and cropped to its boundaries in the y direction by ForensicFit. 
The dashed golden box shows area selected from the tape that is passed on as the input for the convolutional neural. 
network. Bottom: examples of the convolutional neural network image inputs. Left: Concatenated image of two tape 
edges on the backing side. Right: Concatenated image of two tape edges on the scrim side. 

ForensicFit database 
ForensicFit is a well-controlled and efficient database where the user can store, query, analyze, and 
use the data created for a particular application. ForensicFit uses state-of-the-art image processing 
methods to analyze and store the generated data. The data is compatible with well-known machine-
learning packages such as TensorFlow21, PyTorch, and SciKit-learn22. It utilizes NumPy23, SciPy24, 

16 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 
 

          
   

 
            

           
            

             
              

             
          

              
               

             
              

            
  

 
 

  

   
 
 

    
 

 
 

    
 

  
 

  
  

 
 

 
 

   
 

    
   

 

 
 

  
 

matplotlib25, OpenCV26-27, scikit-image28, PyMongo, and GridFS. Also, the package follows PEP-25729 

and PEP-48430 for documentation and type hints, respectively. 

The package is organized into three main sub-packages, core, database, and utils. A brief description is 
provided here, but more detailed information is provided in the Supplementary section and within the 
package instructions as well. The subpackage core, as the name suggests, contains the most important 
functionalities within the package. It contains python classes that manage the read/write, analysis, and 
metadata storage. These classes provide a skeleton for the data structure used in the package. 
Moreover, they define the standards for future implementations used for different types of materials. 
The database, provides an efficient and flexible method for storing and retrieving the raw and 
preprocessed data. The functionality of the rest of the package does not depend on this sub-package. 
It was added merely to simplify the storage and query process of the data. One can still store and 
access the raw or analyzed data using the traditional image storage approaches. Lastly, utils, contains 
all the image manipulation, plotting, and memory access tools that are used in different sections of the 
package. In addition to package documentation, three stand-alone python scripts accompany the 
package for batch processes, create_metadata.py, preprocess_bin_based.py, store_on_db.py. 

Convolutional neural network configuration 
This model uses a convolutional neural network (CNN) followed by a fully connected neural 
network as implemented in TensorFlow 21 to train on the prepared images. The CNNs contain a 
series of convolutional layers followed by a fully connected network. The convolutional layers carry 
out the tasks of pattern recognition (feature extraction) and dimensionality reduction, while the fully 
connected layers make the decision on whether the items’ pairs are a fit or non-fit. 

The network was built from a series of convolution layers, where filters with small kernel of 3×3 px2 

window (smallest size capable of capturing the notion of left/right, up/down, and center and strides 
of 1×1 was used. The convolutional layers used Rectified Linear Unit (ReLU) (31) activation 
functions and were followed by 2×2 pixel window Max-pooling layers to handle the dimension 
reductions. 

The CNN architecture was inspired by the popular VGG-16 33, which with a simple architecture 
achieves remarkable results. The number of convolution layers was selected by considering the size 
of the reduced dimensions of the image and available GPU memory for training. At the end of the 
convolutional layer, the image is flattened to a 1-dimensional vector of size 136,192 elements. 
Compared to the raw flattened input (1200×405=492,000), this significantly reduces the number of 
parameters the network needs to learn. Finally, three fully connected dense layers of size 500, 100, 
and 1 are added. The 500,100 layers use the ReLU activation function 34, whereas the final layer has a 
sigmoid activation function to map results between 0 and 1 used in a binary classification. A 0.5 
weighted dropout layers is used to fight the overfitting 35. Figure 11 and Table 3 show an overview 
of the architecture of the CNN. 

The dataset was divided into training and validation with a ratio of 80:20. A five-fold cross-
validation scheme was used to maximize the model's familiarity with the data without risking 
overfitting. Model hyperparameters dictate how the learning is performed. These hyperparameters 
determine the learning process and must be carefully tuned to ensure a robust convolutional neural 
network. The batch size, which is the number of images loaded into the memory and processed 
simultaneously, was set to 5. This choice considered the size of the images, network’s dimensions, 

17 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.
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and the available GPU memory. The substantial size of both the network and the images justified 
the use of smaller batch sizes. 

Table 3. Convolutional neural network architecture. The network consists of a series of consecutive 
convolutional filters followed by a fully connected neural network.12 

Network 
type Layer name Activation 

function 
Kernel/Pool 
size 

Strides Number of 
filters/units Tensor shape 

C
on

vo
lu

tio
na

l 

Input - - - - 1200×410×1 
Convolution ReLU 3×3 1×1 32 1200×410×32 
Max-pooling - 2×2 1×1 - 600×205×32 
Convolution ReLU 3×3 1×1 64 600×205×64 
Max-pooling - 2×2 1×1 - 300×103×64 
Convolution ReLU 3×3 1×1 128 300×103×128 
Max-pooling - 2×2 1×1 - 150×52×128 
Convolution ReLU 3×3 1×1 256 150×52×256 
Max-pooling - 2×2 1×1 - 75×26×256 
Convolution ReLU 3×3 1×1 512 75×26×512 
Max-pooling - 2×2 1×1 - 38×13×512 
Convolution ReLU 3×3 1×1 1024 38×13×1024 
Max-pooling - 2×2 1×1 - 19×7×1024 

Fu
lly

 c
on

ne
ct

ed

Flatten - - - - 136192 
Dropout - - - - 136192 
Dense ReLU - - 500 500 
Dropout - - - - 500 
Dense ReLU - - 100 100 
Dense Sigmoid - - 1 1 

18 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.
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Figure 11.  An example of convolution applied with a 3×3 filter and a stride of 1×1. 12 

The loss function, which measures the model’s accuracy in predicting the training data, was selected 
as binary cross-entropy. The optimizer, responsible for guiding the model towards minimizing the 
loss function, was set to the Adaptive Moment Estimation (Adam) algorithm.36 The learning rate, 
which defines the optimization step-size during the model training, was set to an initial value 10-4 

and gradually decreased to 10-5 over 25 training epochs using a second-degree polynomial function. 
The learning rate and the number of epochs were determined through trial and error. It was 
observed that using a constant learning rate resulted in a highly variable validation loss, which may 
be attributed to oscillation around the problem’s global minimum. 

Finally, in the case of tapes, the combination of scrim and backing CNNs is necessary to capture the 
most features on each side. For this, two identical CNN models were independently trained on the 
scrim and backing sides of the image tapes, resulting in two separate predictions for each of tape 
pairs. To combine the outcomes from both CNNs, a range of supervised learning techniques was 
assessed, including Gradient Boosting Classifier, K-nearest Neighbors, Decision Tree, Support 
Vector Machine, Logistic Regression, Random Forest, and AdaBoost. The decision tree algorithm 

19 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.
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was ultimately chosen, considering the separation of distribution of fit membership probabilities 
assigned to true fits and true non-fits, as well as its performance on various statistical metrics.12 

Textile images preprocessing and convolutional neural network 
The image preprocessing and CNN of textiles followed similar strategies described above for tapes 
with some modifications.  The first step is determining a way to represent the images in a 1-
dimensional vector while reducing the “ the curse of dimensionality” and preventing to destroy the 
spatial context of local features inside the image during the flattening of the array. To address this, 
the images undergo preprocessing to reduce the size and focus on the edge where the fit features 
are. The ForensicFit package, developed by us, provides the means to crop the image to only include 
the edge of the textiles. The dpi resolution is set to the minimum dpi (600 dpi,600 dpi) of all the raw 
images, this keeps pixel to inches ratio consistent through all images. 

Now, the size of the output edge image will be (610 pixels, 2600 pixels). The x-dimension (length of 
the textile) is achieved with relative cropping from the edge. The y-dimension (width of the textile) is 
more complicated as textiles originating from different sources will have massive differences in sizes, 
and therefore may not have the same size in the y-dimension. The width values of the textiles used 
in this study range from 2200-2600 pixels. At this same point in the tape preprocessing, the tape 
images were resized to the y dimension. This was done as the tape images were very similar in 
morphology, therefore the distortions introduced by the resizing did not cause a significant problem. 
However, textiles' morphology can be quite different from image to image, therefore there is a need 
to maintain the aspect ratio.  The algorithm needs to have a consistent input size; therefore, the 
images are cropped near the edge in the y-dimension, then a padding of zeros was added equally on 
both sides in the y-dimension if the size of the crop is less than the maximum preset size 2600 
pixels. The output edge image is then resized to be as small as possible and still retain the fine details 
of the textile. In this case, the edge images are reduced by half leading to an edge image with a size 
of (305 pixels, 1300 pixels) and a resolution of 600dpi. See Figure 12 for the output of the 
reduction. 

Figure 12. Example input of a textile image. This image shows one side of the textile. One of the edges has been cut 
in a triangle shape, representing a non-comparison edge. The preprocessing reduced the original image to the two edges, 
and the non-comparison edge will not be used. 

The textiles model uses a convolutional neural network (CNN) followed by a fully connected neural 
network as implemented in TensorFlow to process the database of images. The CNN has two main 
purposes. Convolutional layers act as a feature extractor and dimensionality reduction technique for 
the textile pairs, and the fully connected layers make the decision whether the textile pairs are a fit or 
non-fit. A concatenated input of the textiles along the x-direction was selected to give the input pair 
a size of (1300, 610). An example of the input following preprocessing is shown in Figure 13. In the 

20 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.
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figure, it is of note one of the textiles images is flipped from the original stated and concatenated to 
the left of the other. This is done so the network can learn on the cross-correlations between the 
edges of the textiles image. The network should also be able to recognize the symmetry of the 
inputs. It should not matter which textiles are flipped and concatenated to the other as they are the 
same fit. This symmetry is taken into account by randomly selecting the textiles to be flipped. 

Figure 13. Example image inputs. Two textile edges. Each image has a size of 1600 × 610 pixels. 

The textile CNN network is built from a series of convolution layers, where filters with small 
receptive field of 3×3 pixel window (smallest size capable of capturing the notion of left/right, 
up/down, and center) and a strides of 1 was used. The convolutional layers used ReLU activation 
functions and were followed by 2×2 pixel window Max-pooling layers to handle the dimension 
reductions. At the end of the convolutional layer, the image is flattened to a 1-dimensional vector of 
size 215,040 elements. Compared to the raw flattened input (1300×610=793,000), this reduces the 
number of parameters the network needs to learn. Finally, three fully connected dense layers of size 
500, 100, and 1 are added. The 500,100 layers use the ReLU activation function , whereas the final 
layer has a sigmoid activation function to map results between 0 and 1 to be used in binary 
classification. A 0.5 weighted dropout layer is used to fight the overfitting. Training and validation is 
performed as described for tapes above. 

Algorithms for extracting and interpreting edge feature data for physical fits 
A data analysis algorithm using mutual information and a decision tree has been developed to do a 
physical fit evaluation based on data received from the physical fit examinations performed by 
examiners with the reasoning of their decisions. For each material, the pairs are examined by a 
trained analyst using a standardized documentation spreadsheet to record the occurrence of pre-
defined comparison features and document the overall conclusions regarding each comparison pair. 

21 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 
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All comparisons are performed blindly, meaning the analysts is unaware during the comparison of 
the ground truth of the sample pair. 

Reliability of partial comparison items: establishing criteria for minimal sample size for fit
comparisons using mutual information theory 
To evaluate the value and performance rates of partial comparisons when a full edge sample is not 
available for comparison, the bin documentation data of all the available tape and textile samples in 
the reporting template are extracted to assess the minimum width needed for reliable physical fit 
examinations. Following this, partial widths simulating the recovery of only a portion of the edge are 
defined based on the number of bin areas. Next, a randomly selected starting point among the edge 
is chosen for a given sample pair, and the corresponding number of consecutive bins is recorded. 
From there, the ESS of the partial width is calculated, and an overall conclusion is assigned. The 
criteria for performance rates include a decision of non-fit if the ESS of the partial width is less than 
40, inconclusive if the ESS is 40–60, or a fit if the ESS is 60 or higher. Finally, the recorded outcome 
of the partial width comparison is evaluated versus the known ground truth (i.e., known true fit, 
known true non-fit).9 

This process is repeated for all potential lengths across all samples in the dataset. Five iterations of 
random selections of widths and starting points are performed to evaluate the variability in 
performance across the datasets. Following the calculation of the performance rates for each partial 
width across all five iterations of the model, beta regression is applied to the performance rates. 

Mutual information (MI) is used to analyze the data from the analyst’s reporting templates. The 
numerical code of the template indicates the analyst’s decision for each bin (0, 0.5, or 1) regarding 
whether the two samples fit together. The other columns describe the major features for comparison 
used by the analysts and the analyst’s opinion regarding the influence of that feature on the bin 
decision, as illustrated in Figures 4, 8, and 9, for tapes, textiles, and plastics templates, respectively. 
To determine the importance of each feature in the examiner's decision-making process, all 
comparison tables are concatenated into a single table and mapped by text values to numbers using a 
lookup table. The mutual information of each feature is then calculated. Figure 14 provides a 
schematic of the process followed. To assess and calculate the mutual information, the 
"mutual_info_classif" function from the scikit-learn Python package is used.37 
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Figure 14. Process of data manipulation for the calculation of mutual information. 

Computational decisions on fit comparisons using decision tree algorithms 
Decision trees are used here as supervised machine-learning algorithms to break down a complex 
decision-making process into smaller, more manageable steps. This is done by recursively 
partitioning the feature space into a set of rectangles and assigning a constant (e.g., fit or non-fit) to 
each. A single tree can fully describe the feature space partitioning. Creating the decision tree is 
equivalent to finding the optimum partitioning for an n-dimensional feature space. 

Finding the optimal partitioning of the feature space is shown to be a nondeterministic polynomial-
time complete (NP-complete), a type of computational problem that no efficient solution algorithm 
has been found to solve38 , and so scientists use different approaches to find locally optimal 
partitioning. The methods to quantify the quality of each split include misclassification rate, entropy, 
and Gini index. This study uses the DecisionTreeClassifier function implemented in the Scikit learn 
package using the analyst’s reporting templates as input. Entropy is used as the criterion for growing 
the decision tree. 80% of the data is used for the training stage, but the final performance metrics are 
calculated using the entirety of the data. 

Task 3 (Objective 2) — Develop an extensive database on trace physical fractures of duct 
tape, textiles, and plastics, and test the method proposed under Objective 1. 

The data generated from this study will serve as an essential body of knowledge for interpreting 
fracture fit evidence. We have created the most extensive available collection set on trace physical 
fractures to serve as the basis for the validation of decision criteria and statistical methods for 
quantitative assessment of the evidence. We collected nearly 9,000 items to generate 4,733 
independent physical comparison pairs (Table 4). Since the “ground truth” of the source of each 
sample is known, the datasets are used to generate training and testing sets (known true fits and known 
true non-fits). The proposed dataset reflects the three most common types of materials commonly 
fractured or separated from their original source. Finally, the proposed dataset is structured such that 
the most common factors believed to influence fracture appearance (for each type of material) can be 
studied (Figure 15). The different sample sizes for the dataset have been defined such that 
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performance studies can detect the effects of the different factors (and their two-way interactions) on 
the ESS scores and respective performance rates. 

Table 4. Sample information for the development and validation of the database of fracture fits. 
Material Dataset size Composition Sources 

Duct tapes 3321 comparison 
pairs, each 
composed of 2 
fractured objects 
(obtained from 
>6000 samples) 

3 Tape grades (high, medium, 
and low quality); 2 separation 
methods (hand-torn and cut); 
post-fracture stretching. 

Duct tape rolls were 
purchased at retailer 
stores and online. 

Textiles 967 comparison 
pairs (obtained from 
~1200 samples) 

2 patterns (unicolor and 
multicolored); 2 separation 
methods (torn and stabbed); 2 
fabric constructions (knit and 
weave), 3 fiber compositions 
(100% cotton, polyester, and 
mixed) 

Fabrics were collected 
from donated clothing 
items. 

Plastics 445 comparison 
pairs (obtained from 
1337 samples) 

Several automotive plastic types 
(lights, mirror housing, and 
bumper). 

Automotive parts 
collected at junk yards. 
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Figure 15. Left: Breakdown of subsets for the physical fits dataset. The tape set consists of subsets of samples originating from each of three grades of tape, low 
quality (LQ), medium quality (MQ), or high quality (HQ). Edges are scissor-cut (SC), hand-torn (HT), or hand-torn with additional stretching (HT-S). Mid: 
The textiles set distribution by composition (polyester, cotton, mixed), construction (knit, weave), design (unicolor, multicolor), and separation method (hand-torn ror 
stabbed). In the textile study, the intra-analyst set uses textile samples from the same set as the inter-analyst study. In the suitability set, two analysts independently 
analyze 37 comparisons (74 comparisons by the two analysts). Right: distribution of vehicle plastics by color and material type. 
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Two main types of data are generated in the study, 1) metadata in the standardized reporting 
templates containing qualitative descriptions and numeral data, and 2) images of the samples scanned 
and curated as explained in the previous task 2 section. The samples were prepared by non-
participating students, maintaining the examiners blind to the origin of the samples during the 
examination and data analysis. A random number generator was then used to create new sample ID 
numbers to minimize bias and the ground truth of training and analysis dataset was maintained under 
the custody of the PI. Specific naming convention codes were generated to label data and samples 
with unique and traceable identifiers. 

Duct tape dataset sample preparation 
The tape rolls used to create the subsets for this study were of different grades (Figure 15). All 

the within-set pairwise comparisons were prepared using pieces from the same roll by either tearing 
the tape by hand or cutting it with a pair of scissors. To simulate complex samples, a subset was also 
stretched by removing three times the tape from the acetate and stretching it in the width and length 
directions. The fractured pieces are approximately four inches long and placed onto transparent 
acetate film to facilitate manipulation of the sample under the microscope without altering the edges. 

The participating examiners were given a standard reporting template to fill out with the 
comparison pairs pre-listed (Microsoft Excel spreadsheet) and asked to examine the assigned pairs, 
first documenting observation for the questioned (set arbitrarily as left side sample in the list), followed 
by the known sample, and then placed them side by side. The low and mid-quality tape sets had semi-
transparent adhesive, allowing the scrim to be seen through the acetate and the adhesive. Observations 
were made using transmitted and/or reflected light sources. The thickness of the high-quality tape’s 
adhesive prevented the observation of scrim features. Thus, during the comparison of high-quality 
tape, the adhesive was removed in a thin strip from each edge using liquid nitrogen and hexane to 
prevent distortion. Observations and annotations were made before and after removing the adhesive. 

Textiles dataset sample preparation 
The textile physical fit study originally consisted of sampling and analysis of 600 total 100% cotton 

comparison pairs split evenly between plain weave, pattern weave, and plain knit design and 
construction types. However, due to some stretching and suitability issues observed in some fabric 
configurations, the set was increased to 967 comparison pairs to account for other factors (see Figure 
15). The textiles used for this study were collected via anonymous donations, including clothing with 
some normal wear. More than 100 articles of clothing were donated for this study. Donated garments 
were separated by composition, construction, and pattern. 

Comparison pairs were then generated by dressing selected garments onto a foam mannequin. 
Hand-torn samples were collected by first creating a small 0.25-inch incision to facilitate the tearing 
process. The garment was then torn by hand to produce an approximate 3 inches fracture. Stabbed 
pairs were collected using a brand-new 8 inches chef’s knife. A guard was placed on the knife’s blade 
at 2.5 inches from the tip of the knife to help control penetration depth, and thus, fracture length. The 
garments were stabbed at a height of 18 inches from the point of contact using a controlled motion 
using the elbow only. A summary of the main textiles used in the study is presented in Table 5. 
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Table 5. Table of fabrics used in this study, including their composition and construction, separated by set. The 
number in parenthesis in the description column represents the respective textile ID number.8 

27 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 
 

      
       

            
           

            
                

 
           

              
              

              
               

               
         

               
             

              
            

          
               

                
  

            
             

            
           

          
              

             
            
             

             
 

 
            

          
 

 
  
 
 
 

Plastics dataset 
Plastic fragments were collected from shattered headlights, taillights, and bumpers from various 

vehicles from the WVU Crime Scene Complex and local junkyards. The original light assemblies were 
documented with images and then disassembled to the extent possible to separate the different 
observable polymer types (i.e., clear automotive lens cover, black housing, silver accents, and colored 
sections). Figure 16 shows an example of one of the headlights in its original form, the different 
components removed, and some fit pairs prepared for the dataset. 

Following deconstruction, the different components are broken further into smaller fragments. 
Images of each intact polymer are captured before fracturing using a Nikon 7200 DSLR camera with 
an AF-S Nikkor 18-140 mm lens. After imaging, one side of each sample is covered in painter’s tape 
to ensure that most fragments stay together after fracturing. The polymers are fractured by placing 
each piece within a square concrete housing and dropping a 16 kg kettlebell directly onto the polymer 
sample from a consistent height of four feet. A cardboard concrete forming tube is used to guide the 
falling weight. After fracturing, all fragments are numbered with consecutive numbers, and 
photographed, then stored in a sealed plastic evidence bag and into a plastic box to preserve the piece. 

Since consecutive numbers can induce some bias in the analyst performing examination, another 
analyst, not participating in the breaking renamed the items with unique identifiers that are selected in 
a random code. The ID includes differentiation between headlight and taillight, the number of the 
original polymer sample, the fragment number, and a randomized two-letter code. For example, H2.8-
TX represents Headlight 2, Fragment 8, and TX is used as a random ID for that specific fragment. 
Also, each label placed on the piece will have an arrow pointing at the north orientation of the piece 
relative to the original assembly. 

True fit comparison pairs are created from pieces known to have been joined together. The 
individuals preparing the samples then compared the fragments to identify fragments that were not 
joined together but have similar edge characteristics to create convincing non-fitting comparison pairs 
and a second examiner (not involved in the blind examination) verifies the quality of non-fits 
selections. Once the true fitting and true non-fitting pairs were curated, north-east-south-west 
(NESW) direction codes were added to the end of each sample name in the digital templated to assist 
examiners with the intended comparison directions for each pair. For example, in the bottom image 
of Figure 16, the right-side sample edge will be labeled with an “W” in the digital templates and files 
as “H2.8-TX-W” representing the comparison of the west edge of that particular fragment. Finally, 
each pair was photographed together in the orientation that was intended to be analyzed by the 
examiners. The images were stored in JPEG format without compression. 

Over 1,300 fragments were broken, reassembled, and stored in the laboratory. From this set, 445 
comparison pairs, including know true fit and known non-fits were created and analyzed (see Figure 
15), and the remaining pieces are kept in the collection for future studies. 
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Figure 16. Images of an original headlight and the separated components before fracture. The initial assembly is 
shown in the top left image. The lamp is taken apart to separate the different types of polymers and remove non-polymer 
parts (metal/glass). The bottom four images are examples of reassembled and relabeled true-fit pairs for the clear and 
orange portions of the headlight, and a zoomed image of the edges, respectively. 
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Task 4 (Objective 2) — Validation of quantitative methods for assessing the probative value 
of fracture fits. 

Several methods are used to evaluate the probative value of a fracture fit using the large datasets 
described in task 3. The first method considers that fracture fits are reported using categorical 
conclusions, such as fit, inconclusive, or non-fit using the standardized and systematic methods 
developed in this research. When examining a fracture fit between two objects from which the ground 
truth is known (but maintained blind to the analyst), six main outcomes are possible: a) true positive, 
b) true negative, c) false negative, d) false positive, e) inconclusive when the objects originate from the 
same source, and f) inconclusive when the objects originate from different sources. By estimating the 
rate of these six possible outcomes using a dataset of independent pairs of objects that simulate 
casework samples, we can estimate the overall performance rates of fracture fit decisions, such as 
sensitivity, selectivity, and accuracy. These are important indicators of the reliability of the method. 

To provide measures of the probative value of fracture fits on continuous scales, we leverage the 
similarity scores developed during Task 1 (ESS and FPS with the systematic manual method) or Task 
2 (computer-based method). Empirical probability density functions of the level of similarity in mated 
and non-mated pairs of objects can provide valuable insights into the capabilities and limitations of 
the comparison methods through boxplots, Kernel density functions, Receiver Operating 
Characteristics (ROC), statistical regression models, and score likelihood ratios (SLR). These methods 
can be used to optimize the comparison algorithms. 

A critical aspect of the study was first to identify the most distinctive features in a physical fit that, 
then develop standardized terminology and a systematic method for documenting those features 
during examination. Second, study the main factors that can influence the quality of a fit and the 
quantitative metrics. Finally, develop methods to assess the probative value of the evidence and assess 
intra and inter-examiner variations. 

Task 5 (Objective 3) — Design interlaboratory studies for the evaluation of error rates of the 
proposed comparison approach among practitioners 

After assessing the methods’ accuracies with the large datasets, the overall utility of the methods 
was tested via inter-laboratory tests. The utility is defined as the “base” consistency rates among 
examiners using the proposed methodologies. The inter-lab collaborative exercises are anticipated to 
assist with the standardization of the methods of analysis and interpretation, educate the end-users on 
the novel protocols, improve the procedures by incorporating the participants’ feedback, and facilitate 
the future adoption of methodologies. In this study, three interlaboratory exercises are completed, two 
for duct tape examinations and one for textiles. A manuscript describing the findings of the tape 
interlaboratory has been published a separate manuscript for the textiles is submitted and is under the 
journal’s review. 

Duct tape interlaboratory studies 
Sample preparation and design of studies. The tape samples utilized in these exercises originate 
from medium-quality grade duct tape. Each sample consists of a hand-torn, 6-8 cm long strip of the 
roll. Samples are placed on clear acetate and labeled with unique identification numbers that are 
traceable to the coordination body but maintain the ground truth unavailable to the participants.3 
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Pre-distribution consensus results are reported by four independent analysts using a blind process, 
using the protocols described in task 1. Twenty-one (21) pairs resulting in inter-participant ESS relative 
standard deviations lower than 10% ESS are selected from the sample set. Table 6 shows that these 
pairs are rearranged into 3 kits of 7 comparison pairs each, with fracture edge morphology (straight, 
wavy, or puzzle-like) and ESS as close as possible within each kit. Classification of the seven optimized 
pairs includes three fits of high confidence (ESS greater than 80%, F+), one fit of lower confidence 
(ESS below 80%, F-), and three non-fits of ESS lower than 40% (NF+). 

Table 6. Description of the seven tape pairs selected for each of the three interlaboratory kits, and respective images, 
ground truth, and consensus values obtained by the pre-distribution examination panel.3 

The tests are designed as a Round-Robin where each participant independently receives, processes, 
and returns the kit and documentation to the coordination body. Study kits are distributed so that 
each kit returns to the coordination body before re-distribution to the next participant. Since only 3 
kits can be shipped at a time, and each laboratory is given 3-4 weeks to complete the exercise, each 
study took nearly one year from design to collection of data. The results include 252 examinations 
from 38 participants (from 20 and 18 participants in the first and second interlaboratory study, 
respectively). Only five individuals participated in both studies, however, the experiments are designed 
to ensure that they receive different kits on each exercise to prevent bias. Participants received training 
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material containing examples of the feature descriptions and an explanation of the ESS method to 
familiarize themselves with the protocols. 

Textile interlaboratory study 
Sample preparation and experimental design 
The inter-laboratory study is distributed to 15 participants from ten U.S. laboratories. Each participant 
is assigned a unique identification code, and the study is conducted anonymously and following a blind 
approach, meaning participants don’t have access to the ground truth and are instructed to complete 
the study independently of any other analyst. 

Prior to distribution, a consensus of results is evaluated by a panel of five independent student analysts. 
The student analysts examine the images of each comparison pair and document their conclusions 
using the same techniques the study participants will use. The study consists of three pairs, one true 
non-fit, and two true fits, with one true fit exhibiting more straightforward features that should lead 
to a high-confidence fit conclusion, while the other has more challenging features that it is anticipated 
to assign less confidence in the fit conclusion. The inter-analyst average scores for the two true-fitting 
comparisons are 93 ± 4.5 % and 89 ± 2.2%, respectively. The average score for the true non-fitting 
comparison is 27% ± 14%. A summary for each of the three pairs included in this study can be seen 
in Table 7. 7 

To minimize the risk of edge distortions while passing the fabrics across participants, the exercise 
consists of digital images of the textile pairs instead of the items themselves. Also, because some 
laboratories verify physical fits through images of the samples, this study is designed to simulate that 
verification process. One advantage of this design, as compared to the duct tape one, is that the digital 
version allows faster turn-around times. Each pair is scanned using an Epson Expression 12000XL 
scanner and four images are created for each pair. The first two images are individual images of each 
sample comprising the pair. The third image consists of the two samples aligned together as they 
would be for comparison purposes, while a fourth image was generated by annotating the third image 
with ten comparison bins, ensuring the participants consistently applied the ESS method to this study.7 

The ILS instructions provide case scenarios for each of the three comparison pairs to provide 
casework-like context, along with the reporting template with annotated step-by-step instructions. 
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Table 7. Summary of textile pairs selected for the pilot interlaboratory study, including ground truth and pre-study 
consensus scores for each pair. 11 

Pair ID Ground Truth 
Consensus 
score (%) 

ESS Example Image of the 
Comparison Pair 

1 Fit (F+) 93 ± 4.5 

2 Fit (F-) 89 ± 4.2 

3 Non-fit (NF+) 27 ± 14 

1.4.2. Data Analysis 

Data analysis in this project required using metadata (descriptive nominal), and numerical data (ESS, 
FPV, FPS metrics, probability outputs) as well as digital images. To assess performance, false-positive 
rates, false-negative rates, sensitivity, specificity, and accuracy are reported for each duct tape, textile, 
or plastic dataset. 

The data are also analyzed using box plots, a logistic regression model, and score likelihood ratios 
from the ESS and FPS metrics. The plots can aid in visualizing the spread of the ESS metrics assigned 
to true-positives and true-negatives in the dataset, as well as any potential overlaps between ground 
truth sets. Histograms, kernel density distribution plots, ROC curves, and Tippett plots provide insight 
of the discrimination power and accuracy of the method. A logistic regression model is used to study 
the effects of certain factors on the ESS values assigned to physical fits. Logistic regression models 
are used to assign a value between 0 and 1 (the dependent variable) using different predictors. In this 
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case, the dependent variable is the value of the ESS, and the predictors are factors that are thought to 
influence the quality of a physical fit. For example, in the case of textile the factors of interest are the 
separation method (hand-torn or stabbed), the construction of the textile (knit or weave), the 
composition of the textile (cotton, polyester, mixed), and the design of the textile (unicolor or 
multicolor). Variable selection determines the level of interactions between the predictors. 

Several computational algorithms are used throughout the study. Convolutional neural networks are 
used to evaluate the digital images of known-matted and known-non-matter pairs as explained in task 
2 and to create the database. Mutual information algorithms are used to extract bib-by-bin data to 
evaluate level of importance of each fracture feature and determine the effect of comparing two 
samples, when one of them has only a portion of the item left. Lastly, this study uses the 
DecisionTreeClassifier function implemented in the Scikit learn package to provide a computer-based 
model to classify an image as fit or non-fit based on training from the human-based data. Entropy is 
used as the criterion for growing the decision tree and quantify the quality of each split. 

Performance rates and statistical analysis are performed in Microsoft Excel (Version 19.08), JMP Pro 
16 (v.2021, SAS Institute Inc., NC), and mathematical and statistical algorithms created in open access 
R (version 4.2.2, R studio version 2022.07.2+576). Computational algorithms used open-source 
Python packages. 

To maintain traceability of the data, files are named with pre-determined nomenclature. An inventory 
master list is created for this databaset, containing the ID number and the respective metadata and 
descriptors associated with each sample. For the interlaboratory study, the ID of the participants 
remains anonymous. Each data file collected is stored in a centralized computer following WVU 
technical support protocols to ensure data security. All the collected data is evaluated separately by at 
least two independent examiners to assure the integrity and traceability of the data before archiving. 
The required datasets and associated documentation are submitted to the funding agency at the end 
of the project for archiving and availability to any government laboratory that requests it; however, 
the rights for publication of results derived from the data are retained by WVU investigators. 

1.5.Expected applicability of the research 

Fracture fits are considered the highest degree of association between two trace materials. Still, an 
objective and statistical assessment of the weight of the evidence is not yet used in current practice. 
This research has generated, for the first time, a large dataset of fractured duct tapes, textiles, and 
plastics to provide: 
1) Systematic methods of analysis, 
2) Quantifiable methods for the evaluation of the quality of a fracture match, 
3) Assessment of the accuracy and reliability of the fracture fit comparisons and conclusions, 
4) Decision criteria thresholds for human-based and computational-based approaches to assess the 
evidence, 
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5) Formal assessment of inter-examiner error rates that can serve as a basis for optimal content on 
training, proficiency testing, and 
6) A model for an effective and traceable peer-review process. 

In particular, our study is designed to address the research needs identified by NIST- OSAC 1 and six 
of the top ten operational requirements specified by the NIJ-TWG on pattern and trace evidence2. 
Moreover, the strategic multi-disciplinary team of researchers and practitioners is critical for 
transformative and adoptable end-products. Relevant population datasets are used to develop user-
friendly automated interfaces to estimate the significance of a given fracture fit and to substantiate the 
expert conclusions. These computational tools will be available to forensic practitioners and the legal 
community. The methods developed in this research can further serve as models that can be 
generalized to other disciplines, expanding impact. As a result, the research offers the criminal justice 
a valuable body of knowledge to integrate trace evidence information for a broader contribution to 
the criminal justice system and a more objective assessment of the evidential value in the U.S. courts. 

Moreover, the interdisciplinary nature of this study has provided advanced STEM technical training 
and education to undergraduates, graduate students, and post-doctoral fellows, preparing a future 
generation of forensic scientists with more robust skills to enhance forensic science practice. 

The project is at the stages of method development and validation. Nonetheless, the partnership 
between the diverse academic team, statisticians, and practitioners has been crucial in disseminating 
the primary outcomes of this project and envisioning future adoption in the field. In particular, we 
collaborate with forensic laboratories that provide physical fit examination services. Also, the 
interlaboratory studies help engage the end-users in assessing the utility of the proposed approach (51 
practitioners from 33 US forensic laboratories). 

One major advantage of this approach is that the method adoption does not require much investment, 
other than a microscope (widely available at crime labs), the custom-made Microsoft reporting 
templates, and the personnel time required to train the practitioners and incorporate the new methods 
into their quality management system. 

This research narrows the current knowledge gap in forensic fit examination and brings several 
benefits (see Figure 17) to the criminal justice system: 

1) Provides simple protocols that can be easily adopted at laboratories, 
2) Increases the current capacity to demonstrate the thought process and judgment criteria in a 
physical fit examination to complement and modernize current practice, 
3) Access to systematic approaches to aid in the standardization of examination and interpretation 
criteria for physical fits and increase the consensus among laboratories protocols and practitioners’ 
opinions when conducting physical fit examinations, 
4) Improves objectivity with quantifiable data-driven conclusions and probabilistic interpretation 
of the probative value of the evidence, 
5) Increases transparency in the documentation and peer review process, facilitating more 
independent, objective and blind verification processes, and assisting with training protocols to 
compare directly the decision criteria between trainers and trainees. This also helps in the 
incorporation of more stringent quality controls and monitoring of potential bias in the process, 
6) Assists practitioners in supporting and informing opinions with protocols and metrics that built 
the scientific validity in this field. 
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Figure 17. Diagram denoting the main benefits of the physical fit methodologies developed in this research 
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II OUTCOMES 

2.1. Activities/accomplishments 

One of the main goals of this project is to contribute to the preparation of a specialized future 
workforce in STEM. This project provides unique opportunities for students and faculty to network 
across several disciplines, including forensic science, physics, mathematics, and statistics. Our research 
team comprises several researchers; Dr. Trejos and Dr. Romero serve as the PIs, overseeing the 
project and mentoring graduate students and undergraduates. Also, Dr. Cedric Neumann collaborates 
as consulting statistician (sub-award). During this project, 20 progress meetings are completed to 
discuss research results and planning. Also, biweekly research group meetings have been conducted 
to discuss significant findings and project management. The graduate students' essential milestones in 
their program directly impact the advance of this research. For example, Zachary Andrews defended 
his master’s thesis in the summer of 2022, and was admitted to the WVU doctoral program in Forensic 
Science in Fall of 2022. Meghan Prusinowski graduated with a Ph.D. in Forensic Science in Spring 
2023 and immediately after joined the forensic science workforce. Also, we hired a postdoc who was 
a doctoral student in this project from the Physics Department, who defended his dissertation in 
Spring 2022 and completed his postdoctoral experience in May 2023, helping him to a smooth 
transition to join academia. 

The research team progressed on each of the main five tasks and 77 activities proposed in this award, 
with the following major accomplishments: 

1. Novel methods for comparing fracture fits using human-based and automated algorithm 
approaches. Comparison methods for the forensic fit examination of duct tapes, textiles, and 
polymers. The methods include identifying and reporting relevant and distinctive features and 
an approach to document and quantify the quality of the fit. 

2. The creation of the ForensicFit database and access to the package and algorithms. 
3. A collection database that consists of 3321 duct tape comparison pairs (various quality grades), 

967 textile fit comparisons (various fabrics compositions, textures, and constructions), and 
455 comparison pairs from vehicle plastics (headlights, taillights, and bumpers). To simulate 
samples typically seen in casework, the duct tape edges are created by scissor cut or hand-torn, 
and further stretched, whereas the textiles are stabbed or hand-torn, and the polymers are 
fractured by impact to simulate impact force during automotive crashes. 

4. Analysis of nearly 5,000 tapes, textiles, and polymers, and a physical collection of around 9,000 
samples and digital images. For each set, the results are documented, including data analysis 
and interpretation. 

5. Validation of a quantitative method for assessing the probative value of duct tape fits, which 
serve as a basis for other materials in this study. 

6. A logistic regression model is developed to evaluate the effect of various factors on score 
metrics for predicting a fit or non-fit for duct tapes and textiles. 

7. Design of interlaboratory studies for duct tapes, instructional videos, and training sessions to 
recruit forensic practitioners. Through the collaboration of 38 forensic practitioners from 23 
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laboratories, the results from 252 examinations are compared across participants and to a 
consensus ESS established prior to administering the studies by an independent panel. 

8. A workshop for 30 practitioners on physical fit examinations at the MAFS/ASTEE 2022 
meeting. This helps to disseminate the methods developed within future end-users, receive 
valuable feedback for improvements, and recruit volunteers for interlaboratory exercises. 

9. Design of an interlaboratory study for textile fit examination, instructional videos, and training 
sessions to recruit forensic practitioners. The inter-laboratory study is distributed to 15 
participants across ten laboratories. The results from 45 examinations are compared across 
participants and to a consensus ESS established prior to administering the studies by an 
independent panel. 

10. A virtual session to discuss the results of the duct tape and textile interlaboratory studies, with 
42 participants from forensic agencies, research centers, and academia. 

11. Graduate students are trained in statistical packages (R) and programming language (Python), 
and undergraduate and graduate students in data curation and archiving, sample preparation, 
and examination of duct tapes, textiles, and polymers. 

12. The research findings are disseminated through 1) publishing four manuscripts and 4 more 
are under journal revisions, 2) presenting the findings at 12 scientific meetings, nationally and 
internationally, 3) leading one workshop and one informative session with practitioners to 
familiarize them with the new methods and scope. 

2.2. Results and findings 
2.2.1. Executive summary of the main findings of the research 

This project aimed to develop an effective and practical approach that provides an empirically 
demonstrable basis to assess the significance of trace evidence fracture fits. We have accomplished 
this goal by: 

1) Developing a systematic method for the comparison of fracture fits of common trace materials 
such as duct tapes, textiles, and plastics, using both human-based protocols and automated 
computational algorithms. 

2) Developing a relevant extensive database of nearly 5,000 comparison pairs to assess the weight 
of a fracture fit using similarity metrics, probabilistic estimates, and score likelihood ratios. 

3) Evaluating the utility and reliability of the proposed approach through inter-laboratory studies 
that can establish consistency base rates. The strategic partnership of experienced forensic 
researchers, computational material science physicists, statisticians, and practitioners has been 
crucial for planning the adoption of the developed approaches within crime laboratories. 

Some of the major findings of this study are: 
1) Not every physical fit determination holds the same probative value. There is a wide arrange 

of factors that can influence the quality of a fit; therefore, our study demonstrates that 
quantifying the quality of a fit can assist forensic practitioners in informing and supporting 
their decisions. The study also raises awareness of the importance of assessing the suitability 
of certain materials for physical fit examinations and conducting a thorough assessment of a 
fractured edge to substantiate a physical fit opinion. 
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2) The fracture edge features that are relevant and more individualizing are particular to each 
material composition, construction, and separation method. The results of this study reveal 
that the separation of textiles, duct tapes, and plastics impart different features to the fractured 
edges, and that the influence of various factors on the quality of a fit and error rates vary by 
material type. Thus, standardized material-specific terminology and criteria are crucial to 
harmonize and optimize protocols of examination and interpretation. 

3) There is a risk of introducing bias and errors when the examination of physical fits is 
conducted merely based on the judgment of the examiner, particularly in the absence of 
consensus-based criteria. To minimize those risks, qualitative and quantitative descriptors of 
the quality of a fit or non-fit can be standardized and documented to demonstrate the basis 
for conclusions. 

4) The methods developed in this study have several benefits: 1) provide a systematic method to 
utilize qualitative descriptors and quantitative metrics to inform and substantiate the examiner 
opinion, 2) offer a practical mechanism to document the examiner’s thought process, which 
adds transparency and minimize risks of bias, it also allows for a means to improve peer-review 
and verification processes, 3) the metrics provide criteria to assess the probative value of a fit 
and visualization methods to demonstrate a decision further, 4) provide new avenues to 
evaluate the scientific reliability of fit examinations and identify potential sources of error. 

5) This study demonstrates the feasibility of computational algorithms to build physical-fit 
databases and automated comparisons using deep neural networks, which can be used as a 
model for other materials. Although the algorithm rates are not as good as the human-based 
rates, it shows that CNN are a feasible approach to assist practitioners and to understand the 
most critical features identified by the CNN and supplement decision criteria independently 
documented by the examiner. 

6) Overall, performance rates evaluated in this study through the blind examination of extensive 
datasets of duct tapes, textiles, and hard polymers representing casework-like items 
demonstrate that the accuracy of physical fit examinations is high with a very low incidence of 
false positives. These error rates, however, depend on various factors, including the type of 
material and conditions of the specimens: 

a. Duct tapes: 1) The accuracy of physical fit examinations is generally high (over 98%) 
except for higher quality grade hand-torn tapes (~84%). 2) No false positives were 
reported for any of the sets examined (>3,320 pairs examined). Overall, this research 
demonstrates that the occurrence of observing a physical fit on two duct tape pieces 
that were not joined together is extremely rare, as no false positives are observed in 
the various populations evaluated. 3) When evaluating the statistical effect of the 
experimental factors of interest, different variables have varying impacts on the quality 
of a fit and edge similarity score. For non-fits, the influence of both the separation 
method and the quality of tape on the ESS values is negligible, and the ESS trend 
towards low values regardless. For true fit pairs, however, scissor-cut tapes tend to 
result in higher scores in comparison to hand-torn pairs. Regarding tape quality, in true 
fit pairs, medium-quality tapes tend to receive higher scores overall, followed by low-
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quality, and then high-quality grades. As such, it is critical for examiners to consider 
the type of tape during physical examinations. 

b. Textiles: 1) The accuracy of physical fit examinations is generally high (88 to 100%) 
but generally lower than duct tape, as more variables can cause distortions on fractured 
textiles. 2) False positive rates are low, but not zero; the observed false positive rate 
(2% false positives, 10 of 477 total true non-fit pairs) raises a flag and demonstrates 
the importance of assessing the quality of a physical fit during an examination to 
minimize risks. 3) A suitability assessment was deemed necessary prior to physical fit 
examinations of textiles as some fabrics’ composition and construction are more prone 
to distortion. For example, highly deformable fabrics, such as polyesters, show poor 
unacceptable accuracy (61%). 4) While analysts must consider the composition of the 
fabric when conducting physical fit comparisons, once suitability is established, a 
logistic regression model shows that varying factors, such as separation method and 
construction of the fabric, do not have a substantial effect on the ESS used as an 
indicator of the quality of a physical fit. 

c. Hard plastics: 1) The accuracy of physical fit examinations is generally acceptable (85 
to 90%) but relatively lower than duct tape and textiles, as more variables cause 
distortions on fractured plastics and some lack of distinctive features can lead to higher 
rates of false negatives. 2) The method demonstrates that most true non-fit polymers 
receive low ESS (0-10%) and low FPS (less than -5). True fit pairs generally receive 
high ESS (90-100%) and high FPS (greater than +15). Therefore, ESS and FPS metrics 
are reliable quantitative metrics to inform and support the practitioner's opinion. 3) 
Misidentification rates for the comparison set are low, with only one false positive 
reported (1%). This raises a warning on inspecting the suitability of certain plastic 
materials for physical fit examinations. 

d. Sample size and suitability: As it’s not unusual for analysts to receive items that are 
partially damaged or with missing portions, this study answers the question of how 
small a partial sample can be before it becomes unreliable for physical fit examinations. 
The results of the models indicate that acceptable accuracies for correctly identifying 
true fits and non-fits occur when at least 35% of a sample length is present. However, 
lower accuracies are observed for samples prone to stretching or distortion. 

e. Quantitative metrics of the quality of a fit: The ESS and FPS metrics demonstrate 
good performance to assess the quality of a fit and they are very versatile in the sense 
that they can be used in different ways to assess a fit examination. For example, the 
metrics are easy to interpret and can be used as a simple criterion based on 
experimental thresholds of the scores. They also provide a basis to evaluate the 
scientific validity of the field through performance rates. Additionally, the FPS also 
provides an additional means to express the weight each feature had in the examiner 
decision process, and it is recommended to extend the evaluation of this metric to 
other materials. Another way of assessing that feature importance is also demonstrated 
with computational algorithms. Lastly, the ESS, FPS, and CNN outputs allows a 
probabilistic interpretation of the evidence. 
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7) Interlaboratory studies reveal that inter-examiner agreement rates above 95% are attained 
when using the proposed examination, documentation, and interpretation methods. Overall, 
the studies demonstrate that the proposed ESS method provides support to participant 
conclusions, demonstrates scientific reliability with low error rates and high accuracies, and 
offers analysts systematic and transparent documentation criteria. 

8) In summary, the lessons learned in the studies serve as important benchmarks to provide 
criteria that assist with standardization and transparency of the examination and interpretation, 
and a mechanism to demonstrate the thought process during training, examination, technical 
review, or verification of physical fits. These findings are anticipated to offer a path forward 
to the forensic examination of physical fits and facilitate incorporation into current guidelines. 
The proposed method aligns with ongoing standard guides being developed in the field for 
the examination of physical fits and can be adapted to current workflows easily. 

The focus of this research is to improve objectivity, consensus, and scientific validity in the 
discipline. This is achieved through various stages of the investigation, and a brief discussion of the 
primary results is provided below. However, additional information can be found in the cited 
publications derived from this award effort (see section 3.1 of this report) 

2.2.2. Duct tapes physical fit method: evolution through the validation process 

Duct tape was the first material of choice for this study as it is one of the primary items submitted for 
fit examinations.5.16 The versatility of duct tape makes it a piece of evidence that can be used in many 
circumstances, such as gaging or restraining a victim, building an improvised explosive device, and 
smuggling drugs, to mention a few. Thus, its potential value in forensic science is remarkable, as it can 
provide leads during an investigation and high probative value to link the fractured object to another 
item found at the scene and to an individual of interest. However, as we have described in this report 
the scientific foundations of physical fit examinations do not necessarily align with the impact that 
this evidence can have in decision-making by the trier of fact. Thus, to minimize potential misleading 
of evidence, our endeavor is to further understand the error rates in this discipline not without first 
providing standardized means to conduct the examination and present the findings. 

Some literature on duct tape fits provides an important foundation for this research 39-44 , as well as a 
preliminary method developed by our group that serves as an important basis6 More recently, some 
contemporaneous publications agree with our findings and provide additional validity to the 
experimental approaches that are used here.45-46 In this research, the proposed method for 
examination, documentation, and interpretation has evolved through the feedback provided by 
analysts and an inter-disciplinary team of researchers. Four major milestones assist with the 
improvement of the overall strategy for approaching duct tape physical fit examinations. 

Milestone 1¾Method development and optimization of standardized criteria 
First, the main novel aspect of the proposed method is the development of standardized terminology 
and the identification of relevant features. This is not a trivial task, as it is the central aspect of creating 
sound criteria for what constitutes an individualizing feature. This is achieved through the analysis of 
the occurrence of various edge features in known true fits and non-fits sets. Second, we develop 
quantitative metrics to assess the quality of a fit and serve as a more objective means to interpret the 
evidence and communicate that to the end-users in a transparent manner. A focus through our 
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experimental designs is to assure we could assess potential bias and error rates with an appropriate 
sample size to make valid statistical inferences of factors that influence the quality of a fit. 

Here, one of the main discoveries is that duct tape tends to fracture in four main patterns that we 
defined as angled, straight, wavy, and puzzle-like, as illustrated in Figure 18. Also, the occurrence of 
these patterns is dependent on the separation method and quality grade of the tape. Figure 19 and 
Figure 20, illustrate these findings. For example, for hand-torn sets, the lower scrim count in the 
low- and medium-quality tapes can cause irregularity and more puzzle-like edges when the tape is 
torn, while the high scrim reinforcement in high-quality hand-torn (HQ-HT) set results in very 
straight edges and puzzle-like patterns with less prominent protrusions/cavities. Interestingly, none 
of the low-quality hand-torn (LQ-HT) tapes demonstrate straight or angled edges, while low-quality 
scissor-cut predominantly produce straight or angled edges, with only one instance of wavy or 
puzzle-like edges. The medium-quality hand-torn (MQ-HT) tape has a wider variety of all four edge 
separation patterns, although wavy patterns are the most predominant type. The additional 
stretching of medium and high-quality hand-torn sets further reduces the relative occurrence of 
angled and straight edges (Figure 20).4,7 

Scissor-cut edges consist of straight, angled, and wavy patterns, regardless of the tape grade. In very 
few cases, scissor-cut tapes produce puzzle-like patterns caused by a slight change of directionality 
on the cut, particularly with thicker adhesives (Figure 19). 
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Figure 18. Examples of angled, wavy, and puzzle-like patterns observed in duct tape separations. 
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 Figure 19. Examples of edge morphology for each sample set. Straight and angled edges were not observed in the LQ-HT set. 

Stretched sets shared the same edges as the non-stretched edges, so no additional examples are demonstrated here. 4 
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Figure 20. Edge pattern occurrence trends for true-fit pairs for all compared sets. Overall, puzzle-like edges are more 
common in hand-torn sets, while straight or angled edges are more commonly observed in scissor-cut sets. 4 

Also, after separating hundreds of duct tape pieces, and evaluating the features that are indicative of a 
fit or non-fit, we define eight main features for the examination of duct tape as follows (see table 8): 

1. Alignment of severed dimples: these are severed dimples on tape backings that align from 
one edge to the other in shape, size and location across the fracture. This feature is only 
applicable on the backing side. When it is present and aligns across the separated edges, it can 
provide support to a fit decision because these manufactured-imparted marks have some 
inherent variability across a single roll and when split through the fracture, those patterns are 
very unlikely to align by chance. Likewise, when there is a major misalignment of the severed 
dimples, the feature provides support to the non-fit decision. 
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2. Calendaring striations across the edge: calendaring striations are small scratches or marks 
left during the manufacturing process on the backing side. When these marks align across 
fracture edges in their relative position, shape, and depth, they can provide support for a fit. 
Otherwise, when they show misalignment, they support a non-fit. 

3. Alignment of warp scrim: warp fibers are an inherent component of duct tape, and they are 
known to be present and constructed in a reproducible manner across a tape roll. Therefore, 
when these fibers transverse the fracture and align to the corresponding fiber on the other 
side, they support a fit decision, and vice versa in a non-fit situation. 

4. Correspondence of protruding warp yarns and the respective pattern gaps in the other
edge: when the separation of the tape lifts warp fibers away from one of the edges, leaving 
an indentation on the adhesive of their original location, the correspondence of the warp fibers 
that extend past the edge of one tape piece and the gap of the missing scrim on the opposite 
side becomes evident. This feature, when present can support a fit decision. 

5. Weft scrim at or near the edge consistent with the overall weft pattern: another 
important component in the scrim construction is the yarn that runs across the width of the 
tape. Because, the separation and construction patterns are reproducible within a single roll, 
and variable between different roll sources, this feature can be valuable in the examination. 
When the weft yarns on each edge are consistent with the rest of the weft fibers on the 
opposing edge, they support a fit decision; otherwise, they support a non-fit. 

6. Continuation of scrim weave pattern: this feature refers to the consistency, or 
inconsistency, of the construction pattern of the weave and warp yarns in the separated edge 
as compared to the expected sequence of the pattern observed in the rest of the tape pieces. 
And the continuation, or lack of, can aid in the fit or non-fit determination. 

7. Distortion explained by stretching directionality: stretching inevitably occurs to some 
extent during a tape separation and this can hide both non-fitting and fitting features. When 
the alteration to the backing and adhesive morphology coincides with the direction of the 
tearing, the distortion can be explained although it would not provide a strong support of a 
fit. Otherwise, when the distortion is not explained by stretching directionality, the feature can 
lead to a non-fit decision or an inconclusive result. 

8. Missing material: gaps left on the edge alignment by missing material can provide support 
for non-fit decisions. 
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Table 8. Table of features extracted from the documentation for tapes and the respective response options for 
observation of the features at the macroscopic and microscopic level.7 

With these bases, a systematic documentation template is created to document the observed features 
during macroscopic and microscopic stages of the examination, report a score per bin that provides 
visualization at-a-glance of fit, non-fit and inconclusive areas, and estimate the ESS. A workflow and 
defined criteria are proposed, proving a path forward to address standardization and consensus 
within the discipline (see Figure 21). 4 
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Figure 21. Proposed examination scheme for physical fit comparisons. If the samples are not suitable for physical fit 
examination, then other chemical examinations are necessary. If the sample edges demonstrate obvious differences in the 
comparison features at any stage, the outcome is “no physical fit”. Beyond the microscopic comparison (Step 3 of ESS), 
the outcome is “no physical fit (non-fit)”, “inconclusive”, or “physical fit” with a description of its value. The quantitative 
ESS score and SLR can then be used to estimate the probative value of the outcome. 4 
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To illustrate the use of the proposed approach, a kidnapping/homicide mock case is described here. 
In this case, the mock scene includes a victim who is bound and gagged with duct tape, and the 
evidence is collected to simulate a high level of difficulty for the tape examiners. For example, some 
items are stretched during the restraining to the victim and placed on full acetate sheets, while others 
are crumpled up in plastic bags, as shown in Figure 22. A known tape roll is submitted for 
comparison. Upon examination, the analyst determines the tape was hand-torn and of medium quality 
grade, therefore the ESS scores from comparing various recovered items (questioned items) with the 
known tape are calculated, and the score likelihood ratios estimated from the MQ-HT dataset (see 
Figure 23), using a shinny app developed by our group. Figure 23 shows the use of ESS data from 
the MQHT datasets to create kernel distributions to build the log score likelihood ratios (SLR) shown 
on the right side. Thus, when the analysts complete examination, they have two metrics to support 
and inform their opinion: ESS scores and SLRs. 

Fig 22. Images taken of the tape samples collected from the mock crime scene. Image A, shows a tape placed on the 
mannequin. Image B, shows a tape sample that was received crumpled, and image C shows a false negative example of 
a distorted tape (right) compared to the  known source (left). Adapted  from Prusinowski et a.l. 6 

Fig 23. Left: Score distributions of the true positives (TP, blue) and true negatives (TN, green) of the medium 
quality tape hand-torn set for both participating analysts. Right: Logarithmic score likelihood distribution for both 
analysts in the medium quality tape hand-torn set. 
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Three analysts independently examine the tape pairs. The criteria they used for ESS are 0-40% fit 
support, 40-60% inconclusive, and 60-80% weak-moderate support of fit, 80-100% moderate-strong 
support of fit. The SLRs provide an easier scale to express the opinion as it is not tightly binned as 
the ESS, but they complement each other. All of the non-fitting tapes are correctly identified in this 
case, with ESS ranging from 0-30%, and SLR ranging from 0.0001 to 0.01, thus no false positives 
were reported. Of the nine total true fits, two examiners correctly identify six, and the third examiner 
identify five. The range of scores between the examiners and the score likelihood ratio values are 
calculated as seen in Error! Reference source not found..6 The tapes with high ESS receive 
correspondingly high SLR values, indicating stronger support for the conclusion of a fit. The tapes 
that receive lower scores indicate support for the conclusion of a non-fit, rendering three false 
negatives and one inconclusive. This case illustrates that regardless of the extreme stretching in the 
samples, there are 6 out of the 9 true fits that render high ESS scores and strong support via SLR. 

Table 9. Range ESS and score likelihood value (n=3) and interpretation for each known match for the casework set 
(nine questioned items). Adapted  from Prusinowski et a.l. 6 

Milestone 2¾Method validation through large databases and evaluation of factors that affect
performance rates 

As described in the “research design, methods and data analysis” section, the duct tape forensic 
examination method is validated through a large database of over 3,000 comparison pairs of various 
qualities and separation methods. This validation provides answers to the following research 
questions: 

1) Do all physical fits hold the same probative value? Can quantitative metrics demonstrate the 
quality of a fit and be used for the probabilistic interpretation of the evidence? 

2) What are the performance rates of physical fit examinations? 
3) Which factors influence the occurrence of these features and the quality of a physical fit? 
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4) Can standardized protocols be developed for the examination, documentation, and 
interpretation of physical fits through the assessment of the method via large datasets and 
interlaboratory studies? 

The answer to the first question is “no”, not all physical fits hold the same probative value, as we will 
demonstrate in the next paragraphs. Indeed, the use of quantitative metrics ESS and SLRs are key to 
demonstrating this point. 

Let’s first look at the analysis of method performance and distributions of edge similarity scores on 
true-fit and true-non-fit populations from an exploratory perspective. For the ESS score (and 
respective SLR) to help in assessing the quality of a fit, there should be a minimal overlap of the 
observed scores in true fit and non-fit datasets, and the value of that score should serve as a scaled 
range of the probative value, rather than a binary decision. In other words, ideally, if the metrics are 
informative of the quality of the fit, we would expect low similarity scores for non-fits, and high scores 
for fits, with the larger the ESS or SLR, the stronger the support for the fit. 

One simple way of visualizing the distribution of the scores in true fits and true non-fit datasets, is 
through distribution graphs such as histograms or boxplots. Figure 24 displays the experimental ESS 
for each set of tapes based on the ground truth. For most of the sets, there is an observable separation 
between the ESS obtained for true fit pairs and the non-fit pairs (i.e., minimal overlap, high 
discrimination power). The score distributions for all the sets for true non-fit pairs are generally 
consistent at a score of 30 or below, and the majority fall below 10. Conversely, the score distributions 
for the true fit pairs are different for some of the sets but are predominantly higher than 80.4,6 

Some trends are helpful to understand the different behavior in some subsets. For example, for hand-
torn sets (HT), a broader variability of scores and a shift to slightly lower rates in the distribution of 
true fitting pairs is observed in the HQ-HT and LQ-HT, resulting from the edge morphology and 
predominant features observed on those sets. 4 The distribution of scores for stretched true fits in the 
LQ-HT-S is also consistent with the LQ-HT set. The scissor-cut sets for both low- and high-quality 
tape have distributions more similar to the medium-quality scissor-cut set, with most fitting pairs 
having ESS of 90 or higher. These are quite interesting results, as the popular belief that a scissor-cut 
holds a less probative value than a hand-torn fracture is demystified here. 

The distributions of scores for the true fitting pairs in both HQ-HT and HQHT-S are much wider 
than in any other set. This is explainable when looking back at the most prevalent fracture patterns of 
HQ-HT. As illustrated before, HQ-HT tends to fracture in straight edges; thus, is prone to contribute 
fewer features for comparison. The distortion of the samples caused by removing the thick adhesive 
and the additional stretching compounds the issue with this type of tape, indicating that the high-
quality tape used in this study is not necessarily the most suitable for physical fit comparisons. While 
true non-fits are relatively straightforward to rule out (seen in the 100% true negative rate for both 
HQ-HT sets), the reduced specificity and wider distribution of scores for true fit pairs for the HQ-
HT, generally reduced the quality of fits, and therefore additional chemical analysis may be warranted 
even if a fit is observed. 4 
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Figure 24. Boxplots showing the ESS distribution of each tape set, with true non-fits (TNF) shown on the top boxplot 
of each set and true-fits (TF) shown on the bottom boxplot of each set. Generally, there is a separation between the ESS 
distributions of the true fit and true non-fitting pairs, with higher scores for fits and lower scores for non-fits. 4 

When using the ESS criteria to form opinions, the method demonstrates good performance, with 
accuracies for all sets at approximately 98% or higher, except for the HQ-HT sets (80-85%). As seen 
in Table 10, the tape subsets in this study did not result in any false positive results. This is a critical 
finding as it provides scientific support to the general belief that tape separated items exhibit physical 
features that realign in a manner that is not expected to be replicated by chance. As anticipated from 
the boxplot ESS distributions, HQ-HT and HQ-HT-S are more prone to distortion or possess fewer 
distinctive features upon separation and tend to result in more false negative or inconclusive results. 
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Table 10. Summary of the method’s performance rates for the duct tapes. For the low quality (LQ), medium quality (MQ), and high quality (HQ), the subsets are 
labeled as scissor cut (SC), hand-torn (HT), and hand-torn stretched (HT-S). Two analysts independently evaluated the MQ-HT set7. There are no false positives 
reported for any set. Inconclusive results are not included in the false positive and negative rates but are incorporated in the overall accuracy estimation. 4 

Performance 
rate (%) 

LQ-SC 
(n=250 
pairs) 

LQ-HT 
(n=200 
pairs) 

LQ-
HT-S 
(n=200
pairs) 

MQ-SC 
(n=500 
pairs) 

MQ-HT 
(Analyst A) 
(n=508 pairs) 

MQ-HT 
(Analyst B) 
(n=508 pairs) 

MQ-HT-S 
(n=508 
pairs) 

HQ-SC 
(n=250 
pairs) 

HQ-HT 
(n=199 
pairs) 

HQ-
HT-S 
(n=198
pairs) 

False positive 
rate (FP) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

False negative
rate (FN) 1.5 0.0 0.0 1.0 1.0 2.0 1.0 0.0 21.4 31.6 

True negative rate 
(Specificity) 97.5 99.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

True positive rate
(Sensitivity) 98.5 100.0 99.0 99.0 98.0 98.0 99.0 100.0 69.4 57.2 

Accuracy 98.0 99.5 99.5 99.8 99.6 99.6 99.8 100.0 84.9 79.8 
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To further evaluate factors that can affect the ESS scores and quality of a fit, we use a logistic 
regression generalized linear mixed effect model. This model is only meant to interpret the effect of 
the different factors through the interpretation of the regression coefficients, and not for predictive 
purposes. The coefficients of our model are estimated by considering the log-odds transform of the 
ESS for each comparison as the dependent variable, and encodings of the different levels of the 
different factors of interest (ground truth, quality, separation method, edge pattern) as fixed effects 
independent variables. Our model includes random effects to account for the replicated determination 
of ESS on the same samples. Additional details of this model can be found in Prusinowski et al. 4 

The results show that the effect of separation and the quality of the tape have varying effects 
depending on the ground truth. For example, 

1) For non-fits, the ESS trend towards low values, and the influence of the separation method 
and quality of tape on the ESS values is negligible 

2) For true fit pairs, scissor-cut tapes tend to result in higher scores in comparison to hand-
torn pairs. 

3) Regarding tape quality, in true fit pairs, medium-quality tapes tend to receive higher scores 
overall, followed by low-quality, and then high-quality. 

The observed effect seen in the counterfactual plot shown in Figure 25 coincides with the exploratory 
data analysis from the different tape sets. Counterfactual plots explore the effect of each experimental 
factor on the log odds of the ESS (and, therefore, on the similarity scores). Counterfactual plots show 
the distributions of the expected values of the dependent variable under all combinations of levels of 
the different factors of a model, accounting for the uncertainty in the values of the model’s 
parameters.4 

Figure 25A shows the counterfactual plot for the grade of tape. The left side of the counterfactual 
plot shows the distributions of the expected values of the log-odds ESS resulting from the model, 
while the right side of the plot shows kernel density estimated distributions of the empirical ESS data 
from the analyzed tape pairs. The empirical results indicate that there are statistically different effects 
for the different levels of the grade factor, as the distributions for the coefficient values for the 
different grades of tape are very well separated around log odds “0”. Nonetheless, the effect of tape 
grade factor is not particularly pronounced when accounting for the other factors and analyst 
variability. 

When considering the separation method, Figure 25B confirms that cut tapes result in better 
separated ESS distributions than torn tape. These results indicate that despite the cleaner edges, 
scissor-cut edges still retain sufficient features for reliable comparisons, particularly when these 
observations are made at the microscopic bin sub-unit.4 

54 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 
 

 
             
              
              

              
            

               
  

 

Figure 25. Counterfactual plot showing the distributions of the expected ESS values for duct tape data. The 
counterfactual plot shows both the expected ESS values resulting from the model, as well as the experimental data. 
Figure 25A (top) shows the distributions marginalized for grade of tape. Medium-quality tape generally results in 
higher ESS than when other types of tape when samples truly originated from the same tape. Figure 25B (bottom) 
shows the distributions marginalized for separation method. Scissor-cut tapes generally contribute to higher ESS than 
torn tapes when samples truly originated from the same tape. Both grade and separation method do not seem to provide 
substantial differences in expected ESS values for true non-fit pairs. 4 
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Milestone 3¾Practitioners’ contributions: testing and fine-tuning through interlaboratory 
exercises. 

The practitioner’s feedback is one of the most critical stages in the assessment of a new method. Here, 
we conduct two interlaboratory studies to evaluate the performance of the method. A total of 266 
pairs are examined by thirty-eight (38) participants across 23 laboratories. Each participant receives a 
kit with seven questioned-known tape pairs to conduct the physical examination and fit assessment. 
The participants' responses are compared to a consensus pre-distribution panel and to the mean of 
the participant’s values via the Dunnett’s test and z-score statistics, respectively. The results are very 
encouraging, with overall accuracies ranging from 90-100% and most ESS scores falling within 95% 
confidence intervals. This is very remarkable considering the participants are asked to use a new 
method with just a brief instruction session to familiarize themselves with the features terminology, 
examination method, interpretation criteria, and reporting protocols. We can deduct then, that the 
method is simple to understand and to apply by practitioners and that inter-examiner variability could 
be improved as further training is incorporated in technology transfer strategies. Indeed, the inter-
participant agreement and accuracy improves from the first to the second study based on the depth 
of training provided. For example, the first test offers written instructions and an optional virtual 
session, while the second test requires attendance to a one-on-one virtual training session. A recording 
is also made available for review as needed. 

Several improvements are made to the overall method based on practitioners’ feedback. For instance, 
the process is split into three main defined steps, in the first step the analyst reviews the question 
sample first before seeing the known, which is an additional effort to minimize bias. The second step 
and third steps include additional auto-populated cell options to annotate the importance of each of 
the relevant features. Also, an inconclusive bin-score option is added to the template. Finally, the 
template incorporates a color-code that assists the user to visualize at a glance the fit quality by bin 
location. 

Figure 26 shows an example of the display of the participants' responses for the second exercise using 
z-scores. Here, the z-scores are bracketed into three regions, z-scores below 2 are considered 
satisfactory meaning they agree with the study-mean within that interval, while z-scores between 2 and 
3 are considered cautionary, and above 3 the results are insufficient. In this study, most responses 
were deemed satisfactory, with only 5 responses being cautionary and one insufficient for one 
participant for one of the samples only. Interestingly, this sample was the more complex fit, that was 
intended to be a lower confidence fit (i.e., 74±5 ESS by the consensus panel).3 
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Figure 26. Z-scores of the reported ESS values for ILS 2 for each participant. The participant IDs are independent of the IDs used in ILS 1. The z-values have 
been color-coded for visualization. Green bars are considered satisfactory, yellow bars are considered cautionary, and red bars are considered insufficient (too far 
outside the confidence interval). Ground truth of the samples is as follows: Sample I (F+), Sample II (F-), Sample III (F+), Sample IV(NF+), Sample V 
(NF+), Sample VI (F+), and Sample VII (NF+). 3 
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To visualize the utility of the template documentation, Figure 27 illustrates the color-coded bins for 
the full width of the compared edges for the more complex fit items by seven participants. It becomes 
evident, that most of the variability observed in the lower end is caused by edges distortion where 
various inconclusive bins were reported due to stretching. More extensive discussion of results can be 
found in the publication by Prusinowski et al. 3 

Figure 27. Example of application of documentation template to a duct tape physical fit examination for the pair F-
of Kit 1. The participants in this example have slightly different reported ESS, but the overall conclusion of fit is 
consistent, and most of the participants report the area of distortion consistently. 3 

Milestone 4¾Complementing human-based approaches with computational algorithms 

Often machine learning is referred as computer systems that learn and adapt by using algorithms and 
statistical models to analyze and draw inferences from patterns in data. Here we loop the process and 
use machine learning results to “learn from the machine”, as the results also provide a further 
understanding of the decision process in human-based fit comparisons. 

ForensicFIT database and CNN approach 
The study provides a computational platform for physical fit predictions that can assist analysts in 
their evaluations. We report the development of an open-source python package, ForensicFit32, 
designed to pre-process images obtained for forensic physical fit examination. The package provides 
pre-processed data for machine learning to train two independent convolutional neural networks — 

58 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 
 

               
          

             
          

  
 

   
 

               
  

       
           

 
        

                
 

             
              

  
           
         

 
 

              
              

  
 
 

            
 

    
             

             
            

                 
             

                
              

              
              

              
          

                
                

            
                  

            
 

one on the backing side, and the other on the scrim side. Statistical analysis is performed on the 
resulting probabilities from the network outputs and the performance on known true-fits and non-
fits sets is compared to the quantitative assessment of duct tapes using human-based approaches. High 
agreement is observed between both methods and therefore demonstrates the potential of machine 
learning models to provide statistical support to the analyst conclusions. 

The main findings derived from this CNN study can be summarized as follows: 

1) CNN have shown to be an effective mean to compare separated tape edges of various grade 
qualities and fracture methods using an automated imaging processing platform (ForensicFit), 
2) The distribution of human-estimated metrics (ESS) and computer-based CNN-membership 
probabilities for ground truth fits and non-fits populations shows a minimal overlap between these 
groups 
3) Human-estimated ESS and CNN-membership probabilities yield low rates of misleading evidence 
and provide a means to employ these metrics for statistic assessment of the probative value of the 
evidence 
3) The boxplots and kernel distributions illustrate that the occurrence of error rates, mostly false 
negatives, is influenced by the method of separation and quality of the tape and that those effects are 
similarly captured by analyst-examination and by the computer-based feature recognition, 
4) The Layer-wise Relevance Propagation (LRP) analysis can be used to understand the most critical 
features identified by the CNN and supplement decision criteria independently documented by the 
examiner. 

Therefore, the results demonstrate the feasibility of using CNN to assist analysts to enhance objectivity 
in their fit examinations. Larger datasets are necessary to strengthen the capabilities and accuracy of 
the computational models. 47-49 

Algorithms for extracting and interpreting edge feature data for fit examinations using mutual
information and decision trees. 

This study uses mutual information and decision tree algorithms to support the analyst’s decisions in 
physical fit examinations of duct tapes and textiles. The first question we are interested in answering 
comes from a request we received from practitioners during a feedback session. They often receive 
questioned items that have just a partial edge so in these cases, the whole fractured edge on the known 
item cannot be compared in its totality to the partial questioned item. For instance, only a small portion 
of a torn fabric or a partial tape piece with missing material is submitted for comparison. In these 
cases, the analyst must decide how small the questioned item could be before it is no longer suitable 
for a physical fit. Making those decisions without data-driven criteria is not optimal. Therefore, this 
research addresses this concern utilizing the data generated in the population set studies. First, the 
study evaluates the error rates associated with complex case situations that simulate the recovery of 
partial samples. Experimental thresholds of minimum sample size are estimated as a function of 
relative missing portions of the textile or tape’s width on the comparison edges. Since analyst records 
the bin-by-bin data, we can use that information to randomly remove consecutive regions of the edge 
comparison to simulate partial edges as illustrated in Figure 28. In this example, two partial samples 
of 10 bins each is shown resulting in ESS of 20 and 80, as compared to the ESS of 43 when the 
complete 30 bins are available. This shows potential risks of misidentifications when partial samples 
are evaluated. 
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Figure 28. Diagram depicting the random selection and calculation of performance of the ESS method applied to a 
partial sample width. Selection of two different starting points on the sample pair edge results in significantly different 
outcomes. The bins contain the overall bin code, colored green (fit, 1), yellow (inconclusive, 0.5), or red (non-fit, 0). The 
ESS for full width is 43, while the ESS of two randomly selected edge portions (33% each) lead to different ESS 
outcomes (20 and 80, respectively). 9 

Only data collected using the latest template versions is utilized in this study to ensure consistency and 
minimize variability. The duct tape dataset includes 1098 pairs originating from low and high-quality 
rolls. The samples are either hand-torn or scissor-cut, and several sets undergo stretching. The textile 
dataset consists of 600 samples taken from clothing items made of 100% cotton and fractured by 
stabbing the item or tearing it by hand. In the comparison templates for each material, the analysts 
document comparison features for each edge comparison bin and quantitative values (0, 0.5, and 1) 
that denote each bin decision (non-fit, inconclusive, fit). The partial edge analysis of duct tapes 
demonstrates that accurate physical fit comparisons are feasible with at least 35% of the edge width, 
while textiles are feasible with at least 40% of the edge. However, the uncertainty increases with smaller 
sample size available for comparison (see figure 29). When considering the high-quality tape samples, 
the general observations made during the analysis of the full-width samples persist on the partial edges. 
The scissor-cut samples demonstrated high accuracies, with significantly less variability in reported 
ESS compared to the hand-torn samples from the same roll. For textiles, the hand-torn accuracy 
suffers more than the stabbed items when decreasing the percent of sample available. These results 
reveal that, regardless of material, accuracy for partial width comparisons suffers for more complex 
or distorted samples, such as high-quality hand-torn tapes, where partial sample examinations are not 
recommended. 
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Figure 29. A) Accuracy of the ESS method as applied to partial widths of the low-quality tape subsets. B) Accuracy 
of the ESS method as applied to partial widths of the high-quality tape subsets. C) Accuracy of the ESS method as 
applied to partial widths of the textile samples. HT represents hand-torn samples, while SB represents stabbed samples. 
The x-axis represents the percent of comparison bins and the y-axis the observed accuracy with the respective uncertainty 
intervals. Adapted from rom  9 

The second aspect we address here is what features hold more weight in the analyst’s bin decisions. 
Here, a machine learning algorithm extracts and assesses the importance of edge feature information 
from analysts’ reporting templates. Then, a decision tree model is presented to support and add 
objectivity to the analysts' conclusions. 

The extraction and analysis of feature information show that certain features hold different weights in 
the decision depending on the separation methods and tape’s qualities. For example, the alignment of 
severed dimples is one of the most influential features of scissor-cut backings, but not other separation 
methods (Figure 30). Similarly, the importance of a feature such as a scrim weave pattern is superior 
to high-quality tapes than other grades. While the importance of the features observed in textiles is 
not as divergent as in tapes, there are still noticeable trends, such as that the print/design and 
construction alignment hold more value for stabbed samples, while the yarn alignment is more 
informative in hand-torn samples (Figure 31).9 This information provides, for the first time, a more 
tangible understanding of the relative importance that these features have in a fit or non-fit 
determination. 
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Figure 30. Barplots representing the mutual information of the tape features by separation method (top) and by sample 
subset (bottom). The larger the bar, the more value the feature has for comparisons. 7 
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Figure 31. Barplots represent the mutual information of the textile features by separation method. The larger the bar, 
the more value the feature has for comparisons. 7 

This importance feature information is then used to train decision tree models, which provide 
comparable performance to the human analysis, and demonstrate the value of incorporating 
objective computational models to support the analyst’s conclusions. Figure 32 illustrates this 
process of comparing human-based results to those of the decision tree to support the examiners 
opinion. 

Figures 33 and 34, show the level of agreement between the computational decision and the 
human approach. 9 These results indicate that: 

1) The decision tree model shows significant potential as a tool to help in the decision-making 
process for physical fit comparisons. 

2) While caution is needed regarding the chance of false identifications, if used in tandem with 
human-based analysis, the tool could help identify samples where a further examination is 
recommended if the model outcome disagrees with the analyst. 

3) It also provides additional information that adds transparency and support to the conclusion. 
For instance, confidence and objectivity can be demonstrated if the algorithm agrees with 
the analyst’s decision. 

4) Notably, the algorithm removes the judgment from the decision process and minimizes the 
risk of bias from the prior information from the analyst’s observations. 
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Figure 32. Diagram demonstrating how the process of human analysis of a pair of tapes would be performed and compared to the results of the decision tree model. 
9 
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Figure 33. Performance of the decision tree against the human analysis for each duct tape sample set. The performance rates included are the true positive rate 
(TPR), true negative rate (TNR), false negative rate (FNR), false positive rate (FPR), inconclusive rates for both true non-fits (INR) and true fits (IPR), and the 
accuracy (ACC). 7,9 

Figure 34. Performance of the decision tree against the human analysis for each textile sample set. The performance rates included are the true positive rate (TPR), 
true negative rate (TNR), false negative rate (FNR), false positive rate (FPR), inconclusive rates for both true non-fits (INR) and true fits (IPR), and the accuracy 
(ACC). 9 
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2.2.3. Textiles physical fit method 

For textiles, we apply the main lessons learned from the physical fit examinations of duct tapes with 
modifications that are necessary to adapt to the inherent factors that influence the fabric's fractures. 
Like tape, four main milestones were critical to building knowledge in these materials. 

Milestone 1¾Method development and optimization of standardized criteria 
Much less literature is available about fabrics’ fracture fit examinations than tapes. 5, 50-53 Therefore, we 
compiled information from practitioners’ protocols and evaluated the occurrence of fracture features 
from pilot datasets analyzed by various analysts. These pilot datasets considered the main factors that 
can play a role in the features imparted, such as separation method (stabbed, torn), compositions 
(cotton, polyester, rayon, or mixed), color design (unicolor or multicolor), and construction (knit, 
weave). Although many other factors can be evaluated, we use these four to represent fabric types that 
are expected in casework. Then, after analysis of the data, we narrow them down to seven features 
that show to be most informative. These features are listed in Table 11, along with a description and 
the options provided in the reporting template drop-down auto-populated cells to document how that 
feature influences the bin-decision. 

Some of these features are intrinsic to the fabric itself and can show continuity across the fractured 
items when they were once a single object. This includes design alignment, construction alignment, 
and fiber fluorescence. 8 

1) Design alignment refers to the agreement and alignment of fabric patterns, also referred to 
as multicolor, across the comparison edge of two samples. An example of this feature is the 
alignment of the camouflage design shown in the table below. These can hold a high influence 
on the fit or non-fit decision. 

2) Construction alignment occurs when there is an agreement between two samples regarding 
the type and direction of the construction of the weave and weft yarns, in addition to the 
consistency of yarn or thread count in each comparison area. Two true fitting samples woven 
in a diagonal direction relative to the comparison edge and each possessing the same number 
of yarns in the comparison area would possess this feature. The alignment of these features 
typically increases an analyst’s confidence in the presence of a physical fit, as they indicate that 
the two samples could have once been joined together. 

3) The fluorescence of individual yarns in the fabric can also aid in identifying a physical fit. 
However, fluorescence is rarely the determining factor for fits or non-fits, as fibers originating 
from the same common clothing source will likely demonstrate similar fluorescence regardless 
of the location of the fracture. 8 

Other features are extrinsic to the fabric and caused by the separation event.8 These features 
include edge alignment, yarn alignment, extreme distortion, and secondary tearing. 

4) Edge alignment denotes the alignment of the overall edge morphology between two 
samples. The three common edge morphologies that are identified in this study are straight, 
wavy, and puzzle-like edges. The overall edge morphology must align between the two 
fragments for a physical fit to occur, and yarn count consistency is also part of this feature. 
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5) Yarn alignment refers to the alignment of loose yarns that have been pulled out of the 
fractured edge of a sample. This has been observed to be much more common in hand-torn 
samples, which are subject to vigorous pulling and tearing. Stabbed samples generally do not 
demonstrate the same degree of loose yarns. 

6) Extreme distortion is caused by stretching and missing material and can hinder other relevant 
features in the fractured edges. Hand-torn samples are also much more likely to exhibit 
extreme distortion. 

7) Secondary tearing describes a minor fracture, often perpendicular to the comparison edge, 
that is not the primary fracture of interest between two samples. This feature may cause a 
“non-fit” conclusion for a given bin, as the fracture will most likely only be present on one 
edge. 

Some features are more common than others. Construction alignment, for example, is applicable for 
all comparisons from the same clothing article, and statements about design alignment can be made 
for all cases involving multicolor fabric. On the other hand, secondary tearing is rare. This information 
is now available to provide a starting point towards the standardization of terminology, distinctive 
features, and defined criteria on how to use them on fit examinations. 

With these features, the reporting template is modified for textiles using a simplified two-step method, 
in which the first step corresponds to an overall assessment of the edges, and the second step conducts 
macro and microscopic examination of ten defined bins equally separated across the length of the 
fracture. 
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Table 11. Table of features extracted for textile comparisons, including a description of the feature, an image of the 
feature, and the response options available to select for each feature.11 

Feature Description Options Image 

I. Construction 
Alignment 

Consistency and construction 
alignment, including type 
(weave/knit) and direction, 
between two textile 
fragments. Consistency in the 
thread or yarn count between 
the two fragments is also 
considered. 

• Consistent 
• Inconclusive 
• Inconsistent 
• Cannot be assessed 

II. Gap 
Alignment 

Alignment of yarns from one 
fragment into corresponding 
gaps observed in another 
fragment along the 
comparison edge. 

• Consistent 
• Inconclusive 
• Inconsistent 
• Cannot be assessed 

III. Yarn 
Alignment 

Alignment of yarns that have 
been pulled out of the 
fracture edge between two 
textile fragments. 

• Present - Indicative of fit 
• Present - Indicative of 

non-fit 
• Inconclusive 
• Absent 

IV. Design 
Alignment 

Consistency and alignment of 
yarn color and pattern 
between two textile 
fragments. 

• Present - Indicative of fit 
• Present - Indicative of 

non-fit 
• Inconclusive 
• Absent 

V. Distortion 

Force applied during the 
fracture event causes 
distortion that can mask other 
features. 

• Present - Indicative of fit 
• Present - Indicative of 

non-fit 
• Inconclusive 
• Absent 

VI. Secondary 
Tearing 

A secondary, perpendicular 
tear that is not the primary 
fracture that is being 
compared. 

• Present - Indicative of fit 
• Present - Indicative of 

non-fit 
• Inconclusive 
• Absent 

VII. 
Fluorescence 

Fluorescence of individual 
yarns can aid in the 
identification of a physical fit. 

• Consistent 
• Inconclusive 
• Inconsistent 
• Cannot be assessed 
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Milestone 2—Creation of textiles dataset and validation 

The textile population dataset used in this study consists of 967 textile fit comparisons from the 
examination of 774 paired items by one analyst, and a subset of 193 of those items compared by a 
second independent analyst. These sets contain known true-fits and true-non-fits that allow the 
assessment of performance rates as explained in the tape section. Figure 15 illustrates the main subsets 
and respective studies. 

The main overall findings for textiles are: 
1) Not all the textiles’ fits hold the same value. 
2) Not all textiles are suitable for fit examinations. For instance, knit-polyester fabrics yield 

unacceptable accuracy and therefore fit examinations are not recommended for these types of 
textiles. 

3) The separation method and the construction and composition of fabrics do not have a 
significant effect in the observed ESS. However, the combination of some of these factors 
critically influence the suitability for examinations. 

4) Although accuracy of textile fit examinations is relatively high, the occurrence of false positives 
is possible in textiles, something not observed in duct tapes datasets. 

5) Given a physical fit's probative value, and the observed experimental error rates, we 
recommend reporting a fit only for ESS scores 80 or above for textile materials. For lower 
scores (80-40), we recommend reporting a non-fit and submitting the items for chemical and 
physical textile/fiber comparisons, if appropriate. Scores below 40 are reported as non fits, 
and therefore no further analysis are required. 

6) High agreement is observed between analysis in the database population sets and by 
interlaboratory exercises, indicating the ESS method and reporting criteria can be used 
effectively to create consensus-based results in textile fit examinations. 

One remarkable finding during the validation stage is that not all textiles are suitable for textile fit 
examinations. For instance, as some fabrics such as jersey knit polyester are more prone to produce 
an unreasonably large number of misclassifications. This is illustrated in the analysts’ performance of 
the initial preliminary textile set, where almost two-thirds of the total true-fitting pairs are misclassified 
as non-fits by the two analysts. As soon as the fabric was cut or torn, the edges curl, fibers are missing 
on the edges, and the construction stretches. The distortion was too overwhelming to arrive at valuable 
results. However, without knowing the ground truth of these samples, those distortions may not be 
obvious to the analyst. Moreover, regarding the overall fit or non-fit conclusion, the analysts disagree 
on almost one-third of the comparisons. 

Among the sample sets investigated in this study, only 100% polyester knit sets led to these suitability 
issues. However, there may be other fabric compositions and constructions not evaluated here that 
could as well be unsuitable for fit examinations. Thus, it is recommended to first assess the fabric 
distortion level. If the items are deemed unsuitable for a physical fit examination, the textiles must 
instead be considered for other chemical and physical comparisons. 

In addition to the method’s performance rates, the inter- and intra-analyst variation is investigated. 
For the inter-analysts, at least two analysts separately analyzed the same subsets. We also introduce a 
blind intra-analyst test, where the analyst was given the same subset, but randomly re-organized and 
relabeled. The analyst receives this duplicate set several months later with the assumption he was 
receiving a new subset to minimize potential bias. 
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Tables 12 to 17 summarize the performance results between different analysts (table 12), the same 
analyst (Table 13), the knit unicolor (Table 14) and multicolor (Table 15), and the weave unicolor 
(Table 16) and multicolor (Table 17). Each of these subsets includes error rates for stabbed and hand-
torn separations.  Accuracy ranged from 87 to 100% depending on the set. 

Table 12. Performance rates for the inter-analyst variability textile set 11 

Stabbed 
Subset 

Analyst 1 
Reported
Fit 

Analyst 1 
Reported
Non-Fit 

Analyst 1
Reported
Inconclusive 

Analyst 2 
Reported
Fit 

Analyst 2
Reported
Non-Fit 

Analyst 2
Reported
Inconclusive 

True Fit 
25 of 26 
(96% True 
Positive) 

1 of 26 
(4% False 
Negative) 

0 of 26 
(0% 
Inconclusive) 

23 of 26 
(88% True 
Positive) 

2 of 26 
(8% False 
Negative) 

1 of 26 
(4% 
Inconclusive) 

True Non-
Fit 

3 of 24 
(12% 
False 
Positive) 

21 of 24 
(88% True 
Negative) 

0 of 24 
(0% 
Inconclusive) 

2 of 24 
(8% False 
Positive) 

21 of 24 
(88% True 
Negative) 

1 of 24 
(4% 
Inconclusive) 

Accuracy 92% 88% 

Hand-torn 
Subset 

Analyst 1 
Reported
Fit 

Analyst 1 
Reported
Non-Fit 

Analyst 1
Reported
Inconclusive 

Analyst 2 
Reported
Fit 

Analyst 2
Reported
Non-Fit 

Analyst 2
Reported
Inconclusive 

True Fit 
25 of 26 
(96% True 
Positive) 

1 of 26 
(4% False 
Negative) 

0 of 26 
(0% 
Inconclusive) 

21 of 26 
(81% True 
Positive) 

3 of 26 
(11% False 
Negative) 

2 of 26 
(8% 
Inconclusive) 

True Non-
Fit 

0 of 24 
(0% False 
Positive) 

24 of 24 
(100% True 
Negative) 

0 of 24 
(0% 
Inconclusive) 

1 of 24 
(4% False 
Positive) 

23 of 24 
(96% True 
Negative) 

0 of 24 
(0% 
Inconclusive) 

Accuracy 98% 88% 
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Table 13. Performance rates for the intra-analyst variability textile set 11 

Stabbed 
Subset 

Replicate 1 
Reported
Fit 

Replicate 1 
Reported
Non-Fit 

Replicate 1
Reported
Inconclusive 

Replicate 2 
Reported
Fit 

Replicate 2
Reported
Non-Fit 

Replicate 2
Reported
Inconclusive 

True Fit 
20 of 23 
(87% True 
Positive) 

2 of 23 
(9% False 
Negative) 

1 of 23 
(4% 
Inconclusive) 

22 of 23 
(96% True 
Positive) 

1 of 23 
(4% False 
Negative) 

0 of 23 
(0% 
Inconclusive) 

True 
Non-Fit 

2 of 24 
(8% False 
Positive) 

21 of 24 
(88% True 
Negative) 

1 of 24 
(4% 
Inconclusive) 

1 of 24 
(4% False 
Positive) 

22 of 24 
(92% True 
Negative) 

1 of 24 
(4% 
Inconclusive) 

Accuracy 87% 94% 

Hand-
torn 
Subset 

Replicate 1 
Reported
Fit 

Replicate 1 
Reported
Non-Fit 

Replicate 1
Reported
Inconclusive 

Replicate 2 
Reported
Fit 

Replicate 2
Reported
Non-Fit 

Replicate 2
Reported
Inconclusive 

True Fit 
19 of 23 
(82% True 
Positive) 

2 of 23 
(9% False 
Negative) 

2 of 23 
(9% 
Inconclusive) 

23 of 23 
(100% True 
Positive) 

0 of 23 
(0% False 
Negative) 

0 of 23 
(0% 
Inconclusive) 

True 
Non-Fit 

0 of 24 
(0% False 
Positive) 

24 of 24 
(100% True 
Negative) 

0 of 23 
(0% 
Inconclusive) 

2 of 23 
(9% False 
Positive) 

21 of 23 
(91% True 
Negative) 

0 of 23 
(0% 
Inconclusive) 

Accuracy 89% 96% 

Table 14. Performance rates for the unicolor knit textile set 11 

Unicolor Knit Stabbed 
Textile Set Reported Fit Reported Non-Fit Reported

Inconclusive 

True Fit 30 of 30 
(100% True Positive) 

0 of 30 
(0% False Negative) 

0 of 30 
(0% Inconclusive) 

True Non-Fit 0 of 31 
(0% False Positive) 

31 of 31 
(100% True Negative) 

0 of 31 
(0% Inconclusive) 

Accuracy 100% 

Unicolor Knit Hand-
torn Textile Set Reported Fit Reported Non-Fit Reported

Inconclusive 

True Fit 29 of 30 
(97% True Positive) 

0 of 30 
(0% False Negative) 

1 of 30 
(3% Inconclusive) 

True Non-Fit 0 of 29 
(0% False Positive) 

29 of 29 
(100% True Negative) 

0 of 29 
(0% Inconclusive) 

Accuracy 98% 
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Table 15. Performance rates for the multicolor knit textile set 11 

Multicolor Knit Stabbed 
Textile Set Reported Fit Reported Non-Fit Reported Inconclusive 

True Fit 20 of 20 
(100% True Positive) 

0 of 20 
(0% False Negative) 

0 of 20 
(0% Inconclusive) 

True Non-Fit 0 of 20 
(0% False Positive) 

20 of 20 
(100% True Negative) 

0 of 20 
(0% Inconclusive) 

Accuracy 100% 

Multicolor Knit Hand-
torn Textile Set Reported Fit Reported Non-Fit Reported Inconclusive 

True Fit 19 of 20 
(95% True Positive) 

1 of 20 
(5% False Negative) 

0 of 20 
(0% Inconclusive) 

True Non-Fit 0 of 20 
(0% False Positive) 

20 of 20 
(100% True Negative) 

0 of 20 
(0% Inconclusive) 

Accuracy 98% 

Table 16. Performance rates for the unicolor weave textile set 11 

Unicolor Weave Stabbed 
Textile Set Reported Fit Reported Non-Fit Reported Inconclusive 

True Fit 50 of 51 
(98% True Positive) 

1 of 51 
(2% False Negative) 

0 of 51 
(0% Inconclusive) 

True Non-Fit 0 of 49 
(0% False Positive) 

49 of 49 
(0% True Negative) 

0 of 49 
(0% Inconclusive) 

Accuracy 99% 

Unicolor Weave Hand-
Torn Textile Set Reported Fit Reported Non-Fit Reported Inconclusive 

True Fit 48 of 49 
(98% True Positive) 

1 of 49 
(2% False Negative) 

0 of 49 
(0% Inconclusive) 

True Non-Fit 0 of 51 
(0% False Positive) 

50 of 51 
(98% True Negative) 

1 of 51 
(2% Inconclusive) 

Accuracy 98% 
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Table 17. Performance rates for the multicolor weave textile set 11 

Multicolor Weave 
Stabbed Textile Set Reported Fit Reported Non-Fit Reported

Inconclusive 

True Fit 47 of 47 
(100% True Positive) 

0 of 47 
(0% False Negative) 

0 of 47 
(0% Inconclusive) 

True Non-Fit 1 of 53 
(2% False Positive) 

52 of 53 
(98% True Negative) 

0 of 53 
(0% Inconclusive) 

Accuracy 99% 

Multicolor Weave Hand-
torn Textile Set Reported Fit Reported Non-Fit Reported

Inconclusive 

True Fit 48 of 48 
(100% True Positive) 

0 of 48 
(0% False Negative) 

0 of 48 
(0% Inconclusive) 

True Non-Fit 0 of 52 
(0% False Positive) 

52 of 52 
(100% True Negative) 

0 of 52 
(0% Inconclusive) 

Accuracy 100% 

Most misleading rates in the experimental datasets originate from false negative or inconclusive results 
on true fits. However, unlike tapes, textiles can be more prone to false positives. When false positives 
are observed, they range from 2 to up to 9%. Figure 35 shows two examples of false positive 
comparisons, Fabric ID 3, denim and Fabric ID 18, 100% cotton. The comparison of the blue denim 
sample 3 is assigned an edge similarity score of 70 by the analyst, who notes construction alignment 
as a particularly influential feature for this comparison, leading to a false positive. The multicolor 
cotton pair #18 receives an edge similarity score between 60 and 70. Both of these cases are reported 
as weak fits. In sample 18, the magnification boxes highlight two interesting areas of multicolored 
design alignment, one of the critical features cited by the analyst as influential in their assessment. The 
analyst also notes the consistency in the weave direction as another feature of influence. There is a 
slight difference in edge shape in this comparison, however. These false positives bring an important 
example of the utility of using the ESS to inform the analyst’s opinion. The population data shows 
that an ESS score below 80 does not provide strong support for a fit; therefore, an F- was reported 
by the analyst in these samples. In a real case, this can be clearly expressed when using the proposed 
criteria (ESS, or SLR) and prevent misleading evidence. Here, for purposes of the performance rates 
evaluation, we used the threshold of 0-40 (non-fit), 40-60 (inconclusive), and 60-100 (fit) to encompass 
worst-case scenarios. However, given a physical fit's probative value, and the observed experimental 
error rates, we recommend a more conservative approach and report a fit only for scores 80 or above 
for textile materials. 
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Figure 35. Top: Example of a true non-fitting comparison classified as a “fit” by the analyst for replicate 2 (Fabric 
ID 3, denim). Areas outlined in green were considered a fit for replicate 2 only, while areas outlined in orange were 
classified as a non-fit for both replicates. Areas of interest are showcased in red magnification boxes. Bottom: False-
positive comparison of a non-fit pair identified as a fit (Fabric ID 18, 100% cotton). (Adapted from Andrews et 
al. 11) 
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When considering each of the subsets and potential effects on the ESS and the quality of a physical 
fit, it is difficult to make any inferences using performance rates solely, as the rates are similar between 
subsets. However, differences appear when the edge similarity scores are analyzed more closely using 
boxplots and logistic regression. 

Figure 36 shows the spread of the scores for true fits and true non-fits for each subset. Overall, true 
fits appear to produce a broader range of scores (70-100) than true non-fits, which cluster at lower 
scores (0-10). This indicates that the analyst was more comfortable classifying a comparison as a non-
fit. In contrast, for true fits, certain features influenced the score assigned to the physical fit identified 
by the analyst, producing a wider range of scores. 

When considering specific features that could affect the ESS, the separation method is a prominent 
one. Interestingly, hand-torn pairs presented more variability of scores than stabbed pairs from the 
same subset, likely due to distortions. However, stabbed comparisons can produce more false-positive 
classifications than torn comparisons, as the stabbing mechanism produces less distinctive edge 
patterns than the tearing process, which may make the identification of a non-fit slightly more difficult 
in some cases. 

Fabric construction is another element of interest for a physical fit. A knit fabric generally produces 
lower scores than woven fabric because the knit fabric is more likely to unravel, stretch, and deform 
Indeed, the average score for the hand-torn multicolor knit fabric was approximately 70, while the 
average score for the hand-torn unicolor knit fabric was about 90. On the other hand, the woven 
fabric may be prone to producing false positives at a higher rate than knit fabric. 11 
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Figure 36. Boxplots showing the distribution of edge similarity scores for each subset of textile comparisons. Scores for 
true non-fits are shown on the left, and scores for true fits are shown on the right. 11 

A logistic regression model is also used to complement boxplots information and show the effect of 
each factor on the resulting edge similarity score. After evaluating several possible models, one was 
selected that includes an interaction between construction and separation method as this potential 
interaction is observed in the experimental data. 

While analysts must consider the composition of the fabric when conducting physical fit comparisons, 
the logistic regression model shows that varying factors, such as separation method and construction 
of the fabric, do not have a substantial effect on the ESS used as an indicator of the quality of a 
physical fit. Figure 37 illustrates the effect on textiles shown in the counterfactual plots is minimal, as 
compared to the effects on tapes, previously discussed. 
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Figure 37. Top. Counterfactual plot demonstrating the effect of construction (weave or knit) on edge similarity scores. 
True fits (TF) are presented in dotted lines, while true non-fits (TNF) are in solid lines. Bottom: Counterfactual plot 
demonstrating the effect of separation method (hand-torn or stabbed) on edge similarity scores. True fits (TF) are presented 
in dotted lines, while true non-fits (TNF) are in solid lines. 11 

Finally, score-based likelihood ratios (SLRs) are calculated from ESS of the population sets as a proxy 
for the probative value of the evidence when compared to a relevant population. Because the logistic 
regression model did not demonstrate that any of the tested factors substantially affected the similarity 
scores on textile edges, the knit and woven hand-torn and stabbed subsets are combined to evaluate 
the textile set as a whole. Figure 38 shows the distribution of the SLR, represented in the log scale, 
where positive log SLR values at a specific ESS value indicate that the score provides support for a fit 
conclusion, with stronger support as the larger log SLR is. For example, scores above 60 provide some 
support for a fit (log SLR 0 to 1, or SLR 1 to 10), but ESS values higher than 80 provide strong support 
for a fit conclusion (log SLR ranging from ~1 to 2.7, or SLR 10 to 500). Conversely, negative log SLR 
values observed at a specific ESS value indicate that the score provides support for a non-fit 
conclusion. In this dataset, scores below 10 support a non-fit, with log SLR ranging from 0 to -3 (SLR 
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1 to 0.001). An edge similarity score of 0 results in a log SLR of approximately -3, which indicates that 
observing a score of 0 is about 1000 times more likely if the pieces were not once joined than if they 
were once part of the same object. On the other hand, a score of 100 results in a log SLR of 
approximately 2.7, which indicates that a score of 100 is about 500 times more likely if the pieces were 
once joined than if they were not part of the same object. It is important to note that because the 
dataset is somewhat limited in size, few or no values are observed in experimental data at scores 
ranging from 10 to 60. Therefore, this range of scores should be carefully considered as larger datasets 
are needed before generalizing results.8 

Figure 38. Plot displaying log score-based likelihood ratios versus the ESS for the 100% cotton textile dataset. 11 

Milestone 3¾Practitioners’ contributions: testing and fine-tuning through interlaboratory 
exercises. 

The textile interlaboratory exercise assist with improvement of the method. Unlike tapes, textiles can’t 
be immobilized in clear acetate sheets to preserve the edges when submitted for examination to 
various analysts. As a result, a decision was made to conduct the study utilizing high resolution images 
that the examiner can zoom on each bin at the equivalent observation level as the microscope. This 
approach not only prevent distortion of fracture features but also saves turn-around times and allows 
to mimic a verification process using our template format. 

78 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 
 

 
            

           
           

            
  

 
            

                
   

     
      

     
     

       
       

     
     

 
         

               
            

 
 
              

            
           

              
             

            
 

 
 

 
              

                
 

 

This interlaboratory study involves 15 participants conducting physical fit comparisons of images of 
three textile sample pairs. Participants are familiarized with the examination protocol, the terminology 
and criteria, and the reporting template and interpretation z-score. Using this method only one false 
negative conclusion is reported (3%), while inconclusive results ranged from 8 to 11%, and no false 
positives are observed in this set (Table 18) 

Table 18. Performance rates calculated using participant-reported conclusions and ESS thresholds of fit, inconclusive, 
or non-fit. Inconclusive conclusions are counted as “errors” for the sensitivity and specificity calculations. TPR= true 
positive rate, TNR= true negative rate. Adapted from Andrews et al. 11 

Performance rate by participant 
reported conclusion Performance rate by ESS threshold 

Sensitivity (TPR) 90% (27/30) 90% (27/30) 
Specificity (TNR) 87% (13/15) 87% (13/15) 
False Positive Rate 0% (0/15) 0% (0/15) 
False Negative Rate 0% (0/30) 3% (1/30) 
Inconclusive Rate 11% (5/45) 8% (4/45) 

Accuracy 89% (40/45) 89% (40/45) 

Inter-participant agreement between scores is also generally high. Figure 39 shows that z-scores 
calculated for each participant show that 42 of 45 total comparisons were within the average range of 
ESS values for their respective pairs. The remaining three comparisons were deemed cautionary, while 
no comparisons in this study were deemed unsatisfactory. 

The survey responses gathered by this study show that most participants find the ESS approach easy 
to follow and useful for describing their physical fit examinations, especially for verification or peer 
review purposes. The standardized terminology and descriptors used in this study also offer an 
opportunity to improve the consistency of reporting language used by practitioners, as seen in figure 
40 that displays the median and variation quartiles of the results reported by all participants per each 
pair set. Remarkably, all answers of ESS fell within the expected ranges seen by the consensus pre-
distribution panel. 

Figure 39. Z-scores for the reported ESS value from each participant for each comparison pair. The z-scores have been 
color-coded for enhanced visualization, where green bars indicate satisfactory scores, yellow bars are cautionary, and red 
bars indicate unsatisfactory scores that fall outside the bounds of the confidence interval. 8 
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Figure 40. Boxplots showing the distribution of scores for the three pairs in the interlaboratory study. The true non-fit 
pair is shown in tomato red (NF), the challenging true fit pair is shown in lime green (F-), and the true fit pair is shown 
in forest green. The thresholds for fits (60%) and non-fits (40%) are shown in green and red, respectively. 11 

Milestone 4¾Complementing human-based approaches with computational algorithms 

The use of mutual information and decision tree algorithms has shown valuable for textiles and for 
tapes, and the results were previously discussed in the respective tape section. However, the use of 
machine learning (ML) models to make predictions of whether two input images of textiles are fit or 
non-fit was not as straightforward for textiles. Much of the methodology was like the tape prediction 
process, as the problem is very similar besides from a few subtilties in the preprocessing. The main 
challenge however with textiles is the occurrence of artifacts produced by loose fibers that are 
inherently created during a separation process, particularly when hand-torn. Also, another issue is the 
fact that unlike duct tapes, the size of a known and questioned textile comparison vary largely in their 
fractured edge size. 

The CNN model is optimized to a point where it can be trained on reasonably processed textile pair 
images. In the textile digital datasets there are 294 Fit pairs and 305 non-fit pair examples. During the 
preprocess we remove textile pairs that are not able to be processed with the current method. This is 
either caused by bugs in the edge detection algorithm or long strands that extend far in the x-
dimension. Some examples of these issues can be seen in Figure 41. In total 93 Fit pairs were removed 
such that the preprocessing scripts run without issue and the textiles look reasonable. Thus, the model 
only considers 201 fit pairs. 
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Figure 41. Examples of issue textiles. These textiles failed the preprocessing due to artifacts 
produced. 

A 5-fold cross-validation is applied. The textile fit pairs are split into five folds, with four folds acting 
as the training set and the last fold as the validation set. This is performed five times, switching out 
each fold for the testing set. This will judge how well the model generalizes to random datasets. Next, 
the non-fits are generated from the fits for the training and validation up to a certain fit/non-fit ratio. 
Here, are fit/non-fit ratio was chosen to be 0.3 fit/non-fit as this turned out to be optimal or the 
textiles pair training. The metrics are displayed in Table 19 with accuracies ranging from 74 to 86%. 
Although these rates are inferior to the human-based examination, they provide a basis for future 
improvements as the database increases in sample size. Following Layer-wise Relevance Propagation 
(LRP), the method highlights important pixels for the decision of a prediction. In Figure 42, LRP is 
demonstrated on a true fit pair. 

Figure 42. Layer-wise Relevance Propagation (LRP) analysis is compared to human comments on Fits. Important 
LRP pixels are colored. LRP identifies the most important features in accordance with the examiners bin-by-bin 
respective annotations. 
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Table 19. Metrics from 5-fold cross validation for the textiles comparisons using CNN 

Accuracy Precision Recall Specificity F1 

Training 85.6 82.7 72.0 92.4 76.6 
Validation 74.3 62.2 64.2 79.4 62.8 

It should be noted the results are achieved with a relatively low number of fit pairs. Increasing the 
amount of textile fit pairs can improve the results. To do this, the preprocessing algorithm must be 
improved to take care of the issues highlighted before. Along with improving the preprocessing 
algorithm, more test needs to be done regarding the model architecture. The preliminary model was 
trained using grayscale image; however, the textile images contain color information that might prove 
useful in classification. In the future, a model will be created that can include all color channels. On 
the other hand, it is expected that the model accuracy will also depend on the number of images used 
for training. 

2.2.4. Automotive plastics physical fit method 

The third material evaluated in this study is hard brittle polymers; we focus on automotive parts as 
they occur frequently in vehicle-related offenses. The results are anticipated to be applicable to similar 
polymers in other applications. 

Milestone 1¾Method development and optimization of standardized criteria 

Major modifications were necessary to develop the method of examination and to identify relevant 
features on automotive plastics as their fracture characteristics and multi-dimensions and planes of 
the pieces make it very different to handle than flat and thinner materials like duct tape and textiles. 
Also, literature on brittle plastics’ fits is relatively scarce.54-59 Therefore, the method development 
includes identifying relevant comparison features, deciding how the polymer edges can be divided into 
subunits for comparison, and developing standardized quantitative criteria. A reporting template is 
also designed to guide analysts through the comparison and process documentation. The terminology 
to describe these features and factors that can influence a fit or non-fit decision is established to ensure 
consistency in the reporting. 

Ten main features are established for this material and described in the methodology section. In 
addition to the ESS similarity score, another metric is implemented in this method to estimate the 
influence of each feature on a given decision. To evaluate the features quantitatively, each response 
option for the feature description is assigned a value, referred to as the feature prominence value 
(FPV). When the feature is absent or when the feature indicates an inconclusive alignment, the FPV 
is 0. For fit alignment, the FPV is positive, while a non-fit alignment of the feature contributes a 
negative FPV. The presence of more distinctive features provides either more positive or negative 
FPV for fits or non-fit, respectively. Table 20 shows an example the assigned values for a feature and 
respective report options in an arbitrary scale of -2 to +2, and Table 21 illustrates examples of 3D 
edge alignment and some FPV descriptors. The, the FPV of all features is summed for each bin and 
then across all bins to provide the feature prominence sum (FPS). Finally, the final overall decision, 
ESS, and FPS are reported in each comparison. 
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Table 20. Example of documented features, response options, and respective feature prominence value (FPV) for the 
brittle polymer comparisons. 

Features Options for a response to these features 
Feature 
Prominence 
Value 

Present and Highly Distinctive (Indicative of
Fit) 2 

1. 3D Edge Alignment Present and Highly Distinctive (Indicative of
Fit) 1 

Inconclusive 0 
Present but Misaligns (Indicative of Non-fit) -1 
Present but Misaligns (Highly Indicative of 
Non-fit) -2 

Table 21. Description of polymer 3D alignment feature and examples of the weight on the decision of a fit or non-fit. 
3D Alignment Feature 

A. Present and Highly Distinctive
(Indicative of Fit) - This polymer is highly 
distinctive due to how these 3D alignments 
are puzzle-like. Since the pieces are puzzle-
like, the odds of the fracture quickly 
changing directions in the exact same zig-
zag pattern increases the rarity making it 
highly distinctive. This is an example of a 
bin with an FPV value of +2. 

B. Present (Indicative of Fit) - This 
polymer is 3D alignments are “smooth”, 
with no distinct waviness or “puzzle-like” 
areas. Although these pieces align, it is 
likely that these pieces could align with 
other pieces that are flat, translucent, and 
straight-edged. This is an example of a bin 
with an FPV value of +1 

C. Present but Misaligns (Indicative of
Non-fit) - In this image, Sample A and B 
align towards the left. However, there is a 
gap that grows wider as the viewer goes 
more right. The gap is notable enough to 
make it seem as though these pieces do not 
fit together, but not necessarily big enough 
to have an examiner think there may not be 
an intermediate piece that could fit in 
between Sample A and B. This is an 
example of a bin with and FPV of -1. 

D. Present but Misaligns (Highly Indicative of
Non-fit) - In this image, Sample A and B has 
edges that do not align. In the top right area, 
there is a gap that starts to go in opposite 
directions. This is an example of a bin with and 
FPV of -2. 
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Milestone 2¾Method validation through large databases and evaluation of factors that affect 
performance rates 

The 445 pairs of polymer samples originating from automotive headlight and taillight assemblies are 
compared by multiple analysts to evaluate the newly developed method. The polymer sources are 
grouped into three classes based on the main polymer composition and morphology: translucent clear, 
translucent colored, and opaque colored. 

Table 22 shows that misidentification rates of the initial comparison set are relatively low and an 
overall accuracy of 86%, with only one false positive reported in this dataset. However, several false 
negative results are observed, along with several fit and non-fit pairs reported as inconclusive. The 
documentation protocols established in this study allow the evaluation of the reasons and factors that 
lead to those misidentifications. Some misidentifications result from samples lacking distinct features 
on the edges, distortion caused during the fracture event, and features left post-breaking (such as 
scratches created during evidence packaging or comparison). 

Table 22. Performance rates of the analysis of the polymer pairs. This overall set includes a mixture of polymer types, 
compositions, and morphologies.10 

Performance Rates Overall (n = 445) 

# of True Fits/# of True Non-fits 347/98 

True-Positive Rate (%) 83.9 

True-Negative Rate (%) 96.0 

False-Negative Rate (%) 8.9 

False-Positive Rate (%) 1.0 

Inconclusive Rate (True Fits) (%) 7.2 

Inconclusive Rate (True Non-fits) (%) 3.0 

Accuracy (%) 86.5 

As shown in Figures 43 and 44, the method demonstrates that most true non-fit polymers receive 
low ESS (0-10%) and low FPS (less than -5). A worrisome exception is observed for the false positive 
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that received a score of 90%. True fit pairs generally receive high ESS (90-100%) and high FPS (15 or 
greater). Exploratory data analysis shows that polymer composition may impact the quality of a 
physical fit between polymer edges. Inter-analyst variation of ESS and FPS is low for samples analyzed 
by two independent analysts. The documentation template provides clear and transparent insight into 
the features that influenced the decision-making process. Therefore, the proposed approach is 
expected to facilitate the implementation of consensus-based protocols at forensic laboratories and 
provide scientific foundations for data-driven opinions. 7,10 

Figure 43. Distribution of ESS for true fit (TF) and true non-fit (TNF) pairs from the polymer analysis 
(n=385 pairs). One false positive is reported with an ESS of 90, and only a few TNF pairs are reported as 
inconclusive. Figure 43A, top shows boxplot distributions of the ESS values of the polymer samples. The 
distribution of ESS for TF pairs is much broader. Those correctly reported as fits have an overall median ESS of 
100; several pairs receive lower ESS and are misidentified as inconclusive or non-fits. Figure 43B, bottom
shows the histogram of ESS values, where the number of misidentified true fit pairs is visible, and generally 
minimal overlap is observed between ESS on the two groups. 10 
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Figure 44. Frequency distribution of FPS for the initial polymer set. The histogram is color-coded by outcome: True 
Positive (TP), True Negative (TN), False Negative (FN), False Positive (FP), Inconclusive-True-Non-fit (INCN), 
and Inconclusive-True-Fit (INCP). One FP is reported (FPS of 31), and a few TNF and TF are reported inconclusive. 
The distributions of TP sums generally are at 15 or higher, while the TN pairs have sums of -5 or lower. 10 

Table 23 shows the performance rate of the polymer set divided by polymer class. Translucent clear 
polymers are the most common in this set, followed by the translucent colored and then the opaque 
colored. 

Of the three sets, the translucent-colored set generated a higher false negative rate and a high 
inconclusive rate for true fits, as well as the only false positive reported in the set. The 
misidentifications in this set reduce the accuracy for these polymers. During the comparisons, the 
analysts note that these polymer fragments, particularly the orange and red fragments originating 
from a headlight, tend to distort more substantially than some other polymers (see Figure 45 and 
46). Overall, while the initial examination demonstrates that the method performs relatively well, 
analysts must consider the suitability of the samples for comparison. Fragments prone to distortion 
may become misshapen, limiting the utility of the edge for comparison. Figure 47 shows the 
boxplot distributions of pair ESS based on polymer class and composition. The distribution of the 
ESS for true fits and true non-fits is similar for both the samples in the translucent clear and 
translucent colored sets that are made of polycarbonate.7 

86 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.



 

 
 

  

 
 

 
 

 

 
 

 

 
 

 

 

 

   

 
    

 
    

 
    

 
    

 
 

 

   

 
 

 

   

    

 

Table 23. Performance rates of the initial analysis of the polymer pairs, grouped by polymer class of translucent 
clear, translucent color, or opaque color. 10 

Performance 
Rates 

Opaque
Colored 
(n=40) 

Translucent 
Clear 
(n=314) 

Translucent 
Colored 
(n=90) 

# of True Fits/ 

# of True Non-
fits 

31/9 253/62 63/27 

True Positive 
Rate (%) 90.3 83.8 81.0 

True Negative
Rate (%) 88.9 96.8 96.3 

False Negative
Rate (%) 3.2 7.5 12.7 

False Positive 
Rate (%) 0.0 0.0 3.7 

Inconclusive 
Rate 

(True Fits) (%) 

6.5 8.7 6.3 

Inconclusive 
Rate 

(True Non-fits) 
(%) 

11.1 3.2 0.0 

Accuracy (%) 90.0 86.3 85.6 
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Figure 45. Example pair from translucent color polymers. The two fragments have visible surface damage, and 
the respective comparison edge has a noticeable gap between the material of the two edges in a manner that indicates 
they do not fit together. Figures 45A, 45B, and 45D show the gap between the edges caused by missing material 
and distortion of the edges. In contrast, 45C shows an indent in the surface of top sample that causes misalignment 
of the pattern (texture) and the edge of the samples. 10 
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Figure 46. Image of the one false positive pair reported in the set. The sample edge is relatively small, and has 
consistent patterning across the fracture edge, along with additional features noted by the analyst that indicated the 
pieces had substantial similarities 10 

Figure 47. Boxplot distributions of reported ESS grouped by polymer class (translucent clear, translucent colored, and 
opaque colored) and polymer composition (PMMA, polypropylene terephthalate, or polycarbonate). The separation 
between the ESS of true fits and true non-fits for the translucent clear and opaque color sets is relatively strong, and most 
pairs have ESS of 100 or 0 for fits and non-fits, respectively 10 
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Inter-analyst variation 
To further evaluate the method’s performance, a subset of samples from all three polymer classes is 
independently assessed by a second analyst. This subset contains 187 pairs purposely selected to 
include the most challenging samples, including those pairs where the first analyst observes more 
misclassifications. The performance of the method for these samples by both analysts is shown in 
Table 24. Overall, the accuracy is comparable between the two analysts. Most of the pairs 
misidentified by one analyst are also misidentified by the other, and neither reports a false positive. 
Some variation in performance is not unexpected. Differences in the interpretation of features and 
the degree of distinction of the features can contribute to variation in performance, along with each 
analyst’s tolerance for risk. One conclusion that is derived from this assessment is that because there 
are only five bins, a small discrepancy in a single bin can lead to a difference of 10% to 20% in the 
ESS (i.e., assigning a 0.5 versus 0 or 1 in one of the bins). As a result, it is recommended to 
increment the number of comparison bins to at least ten to minimize the variability in reported 
scores. 7 

Table 24. Performance rates of the inter-analyst examination. This set is a subset of the initial set and contains a 
mixture of the polymer classes. 10 

Performance Rates Analyst A Analyst B 

# of True Fits/# of True Non-fits 114/73 114/73 

True Positive Rate (%) 72.8 81.6 

True Negative Rate (%) 95.9 98.6 

False Negative Rate (%) 14.9 11.4 

False Positive Rate (%) 0.0 0.0 

Inconclusive Rate (True Fits) (%) 12.3 7.0 

Inconclusive Rate (True Non-fits) 
(%) 4.1 1.4 

Accuracy (%) 81.8 88.2 

The ESS between the two analysts is also comparable. Analyst A has a slightly wider distribution of 
ESS for true fits, but both analysts have the median ESS for fits at 100 and non-fits at 0. There is 
limited overlap between the ground truth ESS distributions (Figure 48). 
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Figure 48. Boxplot distribution of ESS for true fit (TF) and true non-fit (TNF) pairs from the inter-analyst polymer 
analysis. No false positives are reported, and only a few TNF pairs are reported as inconclusive for both analysts.10 

Moreover, the FPV and FPS metrics reveal a similar weight given by the analysts to the features that 
lead to a particular bin decision. This provides evidence that the metrics are a promising step 
towards the standardization of the polymer fit examinations. Figure 49 shows the comparison of 
FPS for the two analysts on the inter-analyst polymer set. The distributions are similar, sharing the 
general trends in samples correctly identified as fits and non-fits. For both analysts, inconclusive 
samples tended to have FPS between 0 to 10. 
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Figure 49. The frequency distribution of FPS for the 187 inter-analyst pairs. True Positive (TP), True Negative 
(TN), False Negative (FN), False Positive (FP), Inconclusive-True-Non-fit (INCN), and Inconclusive-True-Fit 
(INCP) are shown for each analyst. The distributions of FPS are similar for both analysts, with only minor 
variations in the distributions of the inconclusive pairs. 10 

Overall, the main lessons learned in the polymer set are summarized as follows: 

1) The ESS scores provide a quantitative assessment of the quality of a fit. For this population 
set, ESS scores below 10 support non-fits, while scores above 90 were typically observed for 
true fits. 

2) The novel supplement of the feature prominence sum provided an additional quantitative 
metric to assess the similarity between edges and evaluate which features hold more support 
for the analyst decisions. This study demonstrates preliminary ranges that can be used to 
support an analyst’s decisions: true fits with FPS greater than 15 and true non-fits with FPS 
less than -5. 

3) The qualitative features along with the quantitative ESS and FPS metrics demonstrates good 
overall performance for physical fit examinations of brittle automotive polymers, The initial 
comparison set of 445 comparisons result in an overall accuracy of 86.5%. 

4) Most error rates originate from false negative misidentifications or inconclusive caused by 
distortions during the breaking process. The distortion significantly masks distinctive 
features. 

5) False positives in this dataset are low (1%) but when present, the ESS and FPS values were 
high, which raises awareness that brittle polymers could produce misleading fit results. 

6) Inter-analyst performance shows consistency, with analysts demonstrating similar overall 
accuracies, ESS, and FPS distributions, indicating the method can further assist the discipline 
with a standardized approach for brittle polymers. 
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7) Most informative features occur at the microscopic level. Unfortunately, imaging of 3D 
features are complex and therefore an image database was created at the macroscopic level, 
but microscopic images were not appropriate for the ForensicFit package or CNN networks. 

8) The approach proposed here is anticipated to provide a first step toward more systematic 
comparison criteria and documentation. It is also anticipated that the future evaluation of 
this tool by practitioners can lead to improvements in reproducibility. 

2.3. Limitations 
The main limitation encountered in this study is the implementation of computational CNN 
algorithms for textiles and polymers. The main challenge for polymers is to capture in an image the 
microscopic three-dimensional features that the analysts observe under the microscope. Light 
reflection and refraction, and different focal planes and depths within a polymer broken edge are some 
of the issues that limited the imaging automated comparisons. For that reason, 3D molds and more 
sophisticated 3D scanning technology may be needed to deal with the database imaging of brittle 
plastics. In contrast, tape and textile features are more easily stored in a 2-dimensional matrix where 
each element represents a pixel intensity. 

Although the performance of CNN for automated assessment of tapes and textiles is very promising, 
we acknowledge that the dimensionality of the data requires of much larger datasets. Our image 
collection contains about 9000 images, while CNN computational algorithms for image feature 
recognition. CNN often require more than ten times the size of these sets. However, the collection, 
imaging and cross-validation with examiner-based results is time consuming and unpractical at that 
level of sample size. 

III ARTIFACTS 

3.1 List of products 
3.1.1 Publications at scientific peer-reviewed journals and dissertations 
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International, 307, February 2020, https://doi.org/10.1016/j.forsciint.2019.110103 (served as 

93 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.

https://doi.org/10.1016/j.forsciint.2019.110103
https://doi.org/10.1016/j.forsciint.2020.110349
https://doi.org/10.1016/j.forsciint.2023.111567
https://doi.org/10.1016/j.forc.2023.100487


 

 
 

 
 

    
  

 

  
  

 
 

   
 

  
  

 
 

 
  

 
  

  
    

    
  

  
 

 
   

 

  
 

 
  

 
 

  
 

 
 

  
 

 

a basis of this research) 

2. Published thesis and dissertations. 
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development of practical and systematic methods. Graduate Theses, Dissertations, and 
Problem Reports. 2023, 11644. https://researchrepository.wvu.edu/etd/11644 

6) Zachary Andrews, MSFS (Summer 2022), WVU Department of Forensic and Investigative 
Science, "Evaluating the Validity and Reliability of Textile and Paper Fracture Characteristics 
in Forensic Comparative Analysis" Graduate Theses, Dissertations, and Problem Reports. 
2022. 11373. https://researchrepository.wvu.edu/etd/11373 

3. Submitted under journal review. 
7) M Prusinowski, P Tavadze, Z Andrews, L Lang, Divyanjali Pulivendhan, C Neumann, AH. 

Romero, T. Terjos. Experimental results on data analysis algorithms for extracting and 
interpreting edge feature data for duct tape and textile physical fit examination. Under review, 
submitted Journal of Forensic Science, June 2023 

8) M Prusinowski, P Tavadze, Z Andrews, C Dolton, C Vogler.. Development of a systematic 
comparison method for forensic physical fit analysis of automotive polymers. Under review, 
submitted Forensic Chemistry, June 2023 

9) Z Andrews, M Prusinowski, E Nguyen, C Neumann, T Trejos. Assessing physical fit 
examinations of stabbed and torn textiles through a large dataset of casework-like items and 
inter-laboratory studies. Under review, Journal of Forensic Sciences. Submitted May 2023 

10) P Tavadze, L Lang, M Prusinowski, Z Andrews, T Trejos, and AH. Romero. Using 
convolutional neural networks to support examiners in duct tape physical fit comparisons. 
Under review, Forensic Science International. Submitted January 2022 

3.1.2. Presentations at Scientific Meetings 

1) February 2023, Zachary Andrews, Meghan Prusinowski, Tatiana Trejos. Assessment of a 
novel method for physical fit examinations using an extensive database of casework-like 
samples and interlaboratory studies. AAFS meeting, Orlando, FL (poster presentation) 

2) September 14th, 2022. T Trejos, A Quigley-McBride, M Prusinowski, Z Andrews. Workshop: 
Forensic Examinations of Physical Fits—Past, Present, and Future. MAFS 51st Annual Fall 
Meeting A Joint Meeting with ASTEE, Des Moines, Iowa. (workshop organizer and 
instructor, full day workshop) 

3) September 15th, 2022. Meghan Prusinowski, Zachary Andrews, Tatiana Trejos. Development 
of systematic and practical documentation templates for tape and textile physical fit 
comparisons. MAFS 51st Annual Fall Meeting A Joint Meeting with ASTEE. Des Moines, 
Iowa. (Oral presentation) 

4) September 16th, 2022. Zachary Andrews, Colton Diges, Tatiana Trejos. Evaluating the use of 
microfiber alignment in office paper and postage stamps to identify physical fits. MAFS 51st 
Annual Fall Meeting A Joint Meeting with ASTEE. Des Moines, Iowa. (Oral presentation) 
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5) June 1st, 2022. Meghan Prusinowski, Zachary Andrews, Cedric Neumann, Tatiana Trejos. 
Assessing significant factors that can influence physical fit examinations of tape and textiles. 
European Academy of Forensic Sciences (EAFS) conference, Stockholm, Sweden (Poster) 

6) February 2022. Meghan Prusinowski, Evie Nguyen, Tatiana Trejos. Validation of a Systematic 
Method for Duct Tape Physical Fits Through Inter-Laboratory Studies. 2022 AAFS 
Conference, Seattle, WA. (Poster, Virtual) 

7) February 2022. Zachary Andrews, Colton Diges, Tatiana Trejos. Feature Occurrence and 
Error Rates in Textile Physical Fit Comparisons. 2022 AAFS Conference, Seattle, WA. 
(Poster) 

8) October 2021. Meghan Prusinowski, Zachary Andrews, Tatiana Trejos. Development of 
systematic methods for the physical edge comparison of trace materials. 2021 Brazil Winter 
3rd School of Forensic Sciences (Virtual, Oral Presentation) 

9) July 29th, 2021. Colton Diges, Zachary Andrews, Meghan Prusinowski. Microfiber Alignment 
in Stamp Edges for Physical Fit. 13th Annual summer undergraduate research symposium, 
Morgantown, WV https://www.youtube.com/watch?v=tdt-TiiNtXM 

10) July 28th, 2021. Zachary Andrews, Colton Diges, Meghan Prusinowski, Tatiana Trejos. 
Assessing the Value of Microfiber Alignment Between Stamp Edges for Physical Fit 
Comparisons. Current Trends in Forensic Trace Analysis 2021 Online Forensic Symposium. 
(poster) 

11) June 2nd, 2021. Tatiana Trejos, Meghan Prusinowsli, Zachary Andrews. Forensic Examination 
of Duct Tape Physical Fits: Interlaboratory Results, NIST-OSAC Trace Subcommittee (oral) 

12) February 2021, Meghan Prusinowski, Zachary Andrews, Evie Nguyen, Tatiana Trejos. 
Development of Systematic Approaches for Physical Fit Comparisons of Trace Materials. 
Presented at Virtual AAFS Conference (E-Poster) 

3.1.3. Website(s) or other Internet site(s) 

Development of the package ForensicFit. Tavadze P, Lang L. romerogroup/ForensicFit: First release of ForensicFit 
Package [Internet]. Zenodo; 2022. Available from: https://doi.org/10.5281/zenodo.7435058 

3.2.Data sets generated 
According to our data management plan, the data resulting from this research was curated and 
compiled into a centralized dataset repository. The dataset generated in this study consists of a 
physical collection of about 9,000 fractured items, which is maintained at the Trejos’ laboratory, and 
from these samples, a total of 4,773 pairs were generated for analysis. The overall composition of 
the datasets is shown in Figure 15 of this report. The digital dataset contains the archived data, and 
includes: 

a) A master inventory with the sample unique identifier (no personal identification information) and 
the ground truth of the items (i.e., known true fit, known true non-fit) 
b)  Images of the fractured edges: tape and textile scans, automotive plastic photographic images. 

95 This resource was prepared by the author(s) using Federal funds provided by the U.S.  
Department of Justice. Opinions or points of view expressed are those of the author(s) and do not 

necessarily reflect the official position or policies of the U.S. Department of Justice.

https://doi.org/10.5281/zenodo.7435058
https://www.youtube.com/watch?v=tdt-TiiNtXM


 

 
 

           
 

          
 

            
 

  
 

 
     

 
  

  

 
  
 

 
    

 
  

 

    
 

               
           

            
              

 
 
 

c) Microsoft Excel reporting templates with the sample's unique identifier and the examiner’s 
observations of the physical fit examinations, including qualifiers and similarity scores. 
d) Microsoft Excel files with the ground truth and respective examiner’s conclusions and performance 
rate estimations. 
e) Materials such as templates, presentations, and instructions submitted for the interlaboratory studies 
f)  Fourier Transform Infrared Spectroscopy (FTIR) analysis for the polymer study project. 

Data Storage and File Descriptions 
A data drive folder is named Physical Fits NIJ 2020-DQ-BX-0012 archiving, which contains four 
sub-folders, one with the master inventory of all physical samples and their respective unique 
identifier, and three other folders containing each data per type of material, 1) tape, 2) textile, and 3) 
automotive plastic (figure 1) 

Figure 51: Polymer Research Group overall folder structure. 

Each of the Fracture Research subfolders contains 1) the reporting template(s) used during the 
study, 2) the data, split by subsets, each containing an Excel file with all reported results, and one file 
compiling the ground truth, 3) the photos or scans, and 4) the interlaboratory results when 
applicable. 

3.3.Dissemination activities 

To date, the main dissemination routes have been the publication of manuscripts in scientific journals 
and the presentation of research results at scientific meetings, as described in 3.1. An in-person 
workshop was organized at the 2023 MAFS/ASTEE joint meeting, with 30 practitioners and a virtual 
session was organized in Spring 2023 to discuss the result with the interlaboratory participants and the 
invitation was also extended to other agencies of interest, with a total of 42 attendees. 
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IV PARTICIPANTS AND OTHER 
COLLABORATING ORGANIZATIONS 
This research has provided a robust platform for training the next generations of forensic scientists in 
trace evidence, physical fits, and experimental design in forensics. This research has provided research 
opportunities for undergraduate students and graduate students (Master and Doctoral). Table 25 lists 
the main participants and collaborators. 

Moreover, this project's resources and research settings have provided all undergraduate and graduate 
students the unique opportunity to present their results at scientific venues. The opportunities 
provided to undergraduate researchers, some of the first-generation university students or minority 
students, have served as an essential foundation to their professional development. Two of our PhD 
students joined the workforce, and the Master’s student completed his degree and started in the 
doctoral program. One of our undergraduates was hired at a forensic laboratory, two of our 
undergraduate researchers joined graduate school, and another one joined law school, and the three 
remaining undergraduates continue conducting research in our group. These student's achievements 
and STEM professional preparation are, in our opinion, the most valuable product of NIJ-funded 
efforts like this one. 

This project also allowed a valuable collaboration across disciplines, and between academia and 
practitioners at state and federal laboratories, exposing the students, faculty, and practitioners to an 
enriching multi- and inter-disciplinary environment to develop solutions for our criminal justice 
system. 

Table 25. List of main participants and collaborating organizations 

Participant
Name 

Affiliation Role Contributions 

Tatiana Trejos West Virginia 
University 

Principal 
investigator, 
Associate 
Professor 

Managed the project and directly 
supervised students on experimental 
designs, sample collection, method 
development, and statistical 
interpretation of the data. Supervised 
dissemination plans, data curation and 
management plans. 

Aldo Romero West Virginia 
University 

Co-Principal 
investigator, 
Associate 
Professor 

Supervised research related with 
computational algorithms and digital 
database. Assisted with reports and 
manuscripts. 

Cedric Neumann Battelle 
Memorial 
Institute 

Statistician 
Collaborator 
(subaward) 

Collaborated as expert in statistical 
analysis and interpretation of the data 
and as co-author of manuscripts. 

Meghan 
Prusinowski 

West Virginia 
University 

Graduate 
Student (PhD) 

PhD graduate student working at the 
Trejos’s group. Meghan was the lead 
student researcher in the tapes and 
polymers materials, contributed with 
collections, physical and digital 
database, the data acquisition, analysis 
and interpretation. She has been a 
primary contributor to the 
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Participant
Name 

Affiliation Role Contributions 

manuscripts and dissemination of 
results. 

Zachary 
Andrews 

West Virginia 
University 

Graduate 
Student (MSFS 
and PhD) 

Graduate student working at the 
Trejos’s group. Zach was the lead 
student researcher in the textiles, 
contributed with collections, physical 
and digital database, the data 
acquisition, analysis and interpretation. 
He has been a primary contributor to 
the manuscripts and dissemination of 
results. 

Pedram Tavadze West Virginia 
University 

PhD student 
(2021-2022), 
postdoctotal 
fellow (May 
2022-May 2023) 

Pedram was a PhD student at WVU-
Physics Department under Romero’s 
group, who completed his degree in 
Spring 2022. Then, he joined the team 
as postdoctoral fellow under Dr. 
Trejos supervision. His main 
contributions were the development 
of computational algorithms. 

Paige Smith West Virginia 
University 

Undergraduate 
student 

Paige’s main contribution was 
assisting with sampling collections 
and imaging tapes and textiles. 
Paige graduated in spring 2021 

Elizabeth 
Hanley 

West Virginia 
University 

Undergraduate 
student 

Elizabeth’s main contribution was 
assisting with sampling collections 
and imaging tapes and textiles. 
Elizabeth graduated in spring 2022 

Colton Diges West Virginia 
University 

Undergraduate 
student 

Colton’s main contribution was 
assisting with sampling collections, 
imaging, and analysis of polymers 
and textiles, and database curation. 
Colton graduated in December 
2022 

Katelin 
Radonovich 

West Virginia 
University 

Undergraduate 
student 

Katelins’s main contribution was 
assisting with sampling collections, 
imaging, and preparation of the 
physical and digital collection of 
polymers. 

Divyanjali 
Pulivendhan 

West Virginia 
University 

Undergraduate 
student 

Divyanjali Pulivendhan’s main 
contribution was assisting with 
sampling collections, imaging, and 
preparation of the physical and 
digital collection of polymers and 
tapes. Divyanjali graduated in 
spring 2023 

Claire Dolton West Virginia 
University 

Undergraduate 
student 

Claire’s main contribution was 
assisting with sampling collections, 
imaging, analysis, and preparation 
of the physical and digital 
collection of polymers. 
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Participant
Name 

Affiliation Role Contributions 

Charlotte 
Vogler 

West Virginia 
University 

Undergraduate 
student 

Charlotte’s main contribution was 
assisting with sampling collections, 
imaging, analysis, and preparation 
of the physical and digital 
collection of polymers. 

We would like to thank members of the NIST-OSAC trace subcommittee and the physical fits task 
group for their input during the research surveys and feedback sessions. Also, we would like to thank 
the many forensic practitioners and agencies that participated in the interlaboratory studies, their 
names are not listed as we maintained the study anonymous. 

V CHANGES IN APPROACH 
Nothing to report. 
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VII SUPPLEMENTAL 

Supplementary information: Using convolutional neural 
networks to support examiners in physical-fit comparisons in 

duct tape 
1. ForensicFit 
As mentioned in the main manuscript, the most important step in developing a successful machine-
learning model is data preparation. The first step is to develop a well-controlled and efficient 
database where the user can store, query, analyze, and use the data created for a particular 
application. ForensicFit uses state-of-the-art image processing methods to analyze and store the 
generated data. The data is compatible with well-known machine-learning packages such as 
TensorFlow[1], PyTorch, and SciKit-learn[2]. It utilizes NumPy[3], SciPy[4], matplotlib[5], 
OpenCV[6], [7], scikit-image[8], PyMongo, and GridFS. For ease of use and future development, the 
package follows PEP-257[9] and PEP-484[10] for documentation and type hints, respectively. 
ForensicFit uses state-of-the-art image processing methods to analyze and store the generated data. 
The package is organized into three main sub-packages, core, database, and utils. core, as the name 
suggests, contains the most important functionalities within the package. It contains python classes 
that manage the read/write, analysis, and metadata storage. These classes provide a skeleton for the 
data structure used in the package. Moreover, they define the standards for future implementations 
used for different types of materials. database, provides an efficient and flexible method for storing 
and retrieving the raw and preprocessed data. The functionality of the rest of the package does not 
depend on this sub-package. It was added merely to simplify the storage and query process of the 
data. One can still store and access the raw or analyzed data using the traditional image storage 
approaches. Lastly, utils, contains all the image manipulation, plotting, and memory access tools that 
are used in different sections of the package. 

ForensicFit 

core 

Metadata Image Tape Analyzer TapeAnalyzer 

Database utils 

array_tools.py general.py image_tools.py plotter.py 

PyMongo GridFS OpenCV NumPy SciPy Matplotlib Scikit-
image 

The package is organized into three main sub-packages, core, database, and utils. Each sub-package 
contains python classes and their methods (functions). Additional information on a selected number 
of important methods is also provided. For more information on the usage and functionality of each 
method please refer to the package documentation. Additionally, three stand-alone python scripts 
accompany the package for batch processes, create_metadata.py, preprocess_bin_based.py, store_on_db.py. 
The following is an introduction to the package structure, modules, and their purposes in the 
preprocessing. 
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1.1.Core 
As the name suggests, this sub-package contains the most important functionalities within this 
package. The fundamental classes are Metadata, Image, and Analyzer. These parent classes provide a 
skeleton for the data structure used in the package. Moreover, they define the standards for future 
implementations used for different types of materials. Metadata is used as an attribute in both classes 
Image and Analyzer. For application to duct tapes, two children classes were defined: Tape and 
TapeAnalyzer. Tape inherits all the methods and attributes of the class Image, while TapeAnalyzer 
inherits those of the class Analyzer. Thus, we will introduce the child and parent classes together. 

1.1.1.Metadata 
Metadata is a mapping that stores details about their objects. These details include but are not limited 
to, tape name, file location, image resolution, tape quality, and separation method. The metadata is 
stored in the database with the object and can be used as filters for querying. 

1.1.2.Tape (Image) 
The Tape class contains data from scanned images, and each instance of this class represents a tape 
sample. It also contains methods that handle the read/write as well as some basic image 
manipulation tasks. This class can be instantiated directly by providing the image data as a NumPy 
array. Additionally, the instantiation can occur by one of the following classmethods: from_file, 
from_buffer, and from_dict. The methods included in this class to help image processing are isolate, crop, 
convert_to_gray, convert_to_rgb, rotate, resize, flip_h, flip_v, plot, exposure_control, apply_filter, and split_v. 
Split_v divides the image vertically into two sections and retains the requested side. This is especially 
important for images of tapes because only one edge of is relevant at a time. Because of the size of 
the tape and the placement of the tape in the scanner the location in which the splitting must 
happen varies from one image to the other. This is taken care of by finding the location of the 
boundaries of the tape using the TapeAnalyzer and splitting the image at the midpoint of the 
boundary. 
As mentioned before Metadata is used as an attribute in this class. It carries out the task of storing 
information about the tape and any further analysis performed on it. 
1.1.3. TapeAnalyzer (Analyzer) 
This class receives the Tape (Image) class as input and performs further processing to prepare input 
data for machine-learning. In addition to instantiation directly by providing the Tape class, it can use 
its classmethod from_dict. The method from_dict uses a python dictionary as an input. This method is 
very useful when retrieving previously saved data from the database. The most important methods 
that are called upon instantiation in this class are preprocess, get_image_tilt, auto_crop_y. 

• Preprocess finds the boundary of the tape. It first binarizes the image and uses the algorithm 

introduced by Suzuki and Abe[11] implemented in the OpenCV package to find all the 

contours in the image. The largest contour is assumed as the boundary of the tape. 

• Get_image_tilt finds the angle of the scanned image with the horizontal line. This is done by 

dividing the top and bottom edges of the boundary of the tape into multiple segments. 

Using a linear fit the slope and standard deviation (in the y-direction) of each segment are 

calculated. The two segments with the least standard deviation are selected (one from the 

top and one from the bottom). The angle is calculated from the average slope of these two 

lines. 
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• auto_crop_y crops the image in the y-direction based on the information gathered in the 

preprocess and get_image_tilt. This is done carefully to avoid any additional noise introduced by 

protruding weft or warp fibers. 

Now that the boundaries of the tape have been located, the data can be prepared for the machine-
learning process. This task is handled by one of three methods in this class, get_coordinate_based, 
get_bin_based, get_max_contrast. After calling any of the aforementioned methods, the data can be 
accessed like a python mapping (e.g., TapeAnalyzer[‘bin_based’]) or a class attribute (e.g., 
TapeAnalyzer.bin_based). The following is a brief description of the functionality of each method. 

• Coordinate-based quantifies the most important area of the tape, the comparison edge, into 

a collection (x, y) of coordinates. This is done by first identifying the comparison edge by 

dividing the boundary of the tape in x direction into n sections and only keeping the leftmost 

section. The comparison edge is now described by a collection of points in the x-y plane. 

The number of points describing this edge varies by a great deal because of the ragged 

nature of the comparison edge. To provide more consistency in the machine-learning input 

data, a necessity in neural networks, this method asks for the number of output points. It 

divides the comparison edge into small windows and stores the following three values for 

each window: 1) average values of the x and y coordinates of the points in the window; 2) 

standard deviation of the points in the x direction; 3) slope of the linear fit to collection of 

the points. 

• Bin-based represents the comparison by many smaller images selected from the area around 

the edge. This can be visualized by picturing a rectangular window that sweeps over the 

comparison edge and stores the images inside the window. The width (y-direction) of this 

window is defined automatically. By providing the number of bins, n_bins, it will divide the 

width of the tape into n bins. The length, however, must be defined by the user. The tape 

edge divides the image in the window into two parts, the tape, and the background. The 

method receives two variables window_tape — number of pixels from the tape edge towards 

the background — and window_background — number of pixels from the tape edge towards 

the tape. The length of the window, therefore, is the addition of the two variables, 

window_background, and window_tape. 

• Max-contrast represents the comparison edge by maximizing the contrast between the edge 

and the rest of the image. This is done by setting the values of the pixels on the comparison 

edge to their maximum (255) and assigning the minimum value (0) to the remaining pixels. 
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Similar to the get_bin_based method, get_max_contrast, receives the two arguments 

window_background and window_tape. 

It is worth mentioning that these methods can be combined. For example, if one wants to retrieve 
the coordinate-based data of each bin in the bin-based analysis, one can use the mapping 
TapeAnalyzer[‘bin_based+coordinate_based’]. Other methods used in image processing are flip_v, flip_h. 
The data generated for this study was through the get_bin_based method by selecting only one bin to 
represent the whole tape as a big-picture examination. The window_background and window_tape was 
selected at 10 and 400 pixels, respectively. 

1.2.Database 
This sub-package provides an efficient and flexible method for storing and retrieving the raw and 
preprocessed data. The functionality of the rest of the package does not depend on this sub-package. 
It was added merely to simplify the storage and query process of the data. One can still store and 
access the raw and analyzed data using the traditional image storage approaches. There are three 
different types of data in this study, raw data (scanned images), analysis data (e.g., bin-based, or 
maximum contrast) of the tape, and array-like data (e.g., coordinate-based). As the types of these data 
are very different from each other, we use the flexible document-oriented database, MongoDB. The 
raw data (classes Tape and Image) is stored using the GridFS storage specification of MongoDB, 
while the rest of the data types are stored using the standard JSON-like documents used in 
MongoDB. The type of data is referred to as mode in this database. The GridFS is efficient as it 
divides documents (files larger than 16 MB) into multiple “chunks”. This is beneficial when 
accessing portions of the file content, such as a small bin of the comparison edge of a tape. 
Moreover, the “chunks” are accompanied by a “metadata” collection. This approach is very suitable 
for this study as the statistical analysis is often categorized by different types of materials. For 
instance, information like high-quality, scissor-cut, scrim side, etc., can be stored in the metadata. 
This will improve the efficiency of the query process. This sub-package contains two classes 
ClassMap and Database. 
1.2.1. ClassMap 
This class is simply a mapping from the stored information about the data type to its corresponding 
python object. This mapping helps the Database class recognize which core class needs instantiation. 
As mentioned before there are different types of data in this study. This class was introduced to help 
generalize the code, i.e., to avoid writing a database class for each data type. Each data entry contains 
information about its data type (mode) prior to storage. ClassMap links this information, a python 
string, to a python object. 
1.2.2.Database 
The class database is instantiated by providing the name, host, and port of the database. The 
instantiation does not create a database it will only connect to the MongoDB server. The database is 
created, if it does not exist, the moment a document is provided for storage. The two necessary 
methods in any database class are means to store (put) and retrieve (find) data on the database. 
These operations are performed using the insert and find methods. 

• Insert stores any object from the sub-package core in the database. This has the option to 

overwrite, skip, or create a new document if the same object already exists. It is worth 

mentioning that overwriting (update) does not exist in GridFS. For practicality, we have 
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added this option which simply finds the duplicate and removes it before inserting a new 

document. After storage, each document is given a unique id. 

• find queries for all documents matching the provided filter. It then returns them as a list of 

objects from the core sub-package. There are two additional methods that perform this task, 

find_one, and find_with_id. Both methods return an object instead of a list of objects. 

Other useful methods from this class include map_to, filter_with_metadata, count_documents, 
export_to_files, drop_collection, delete, and delete_database. 
This sub-package contains two important functions, dump and restore which export and import the 
database, respectively. 
1.2.3. Utils 
This sub-package is a collection of tools for manipulating images and arrays as well as plotting. 
These tools are not developed in this work, they have been gathered under this sub-package for ease 
of access. The names of each function have been selected such that the functionality would be self-
explanatory. This sub-package contains three main modules: array_tools.py, image_tools.py, and 
plotting_tools.py. The following is a list of functions in each module. 

• Array_tools.py contains vote_calculator; read_bytes_io; and write_bytes_io. 

• Image_tools.py contains rotate_image; gaussian_blur; split_v; to_gray; to_rbg; contours; largest_contour; 

remove_background; get_masked; resize; exposure_control; apply_filter; binerized_mask, and imwrite. 

• Plotting_tools.py contains get_figure_size; plot_coordinate_based; plot_pairs; plot_confusion_matrix; 

plot_kde_distribution; plot_hist_distribution; and plot_metrics. 

2. Fit to non-fit ratio determination 
First, the best Error! Reference source not found.fit/non-fit ratio for training the model is 
determined. For this test, a form of 5-fold cross-validation[12] is applied. The tape fit pairs are split 
into five folds, with four folds acting as the training set and the last fold as the validation set. This is 
performed five times, switching out each fold for the testing set. This will judge how well the model 
generalizes to random datasets. Next, the non-fits are generated from the fits for the training and 
validation up to a certain fit/non-fit ratio. For the validation set, this ratio is kept constant at 0.5. 
The results of the test are shown in Error! Reference source not found.. The ratio 0.3 performs 
the best. This is not surprising since as the ratio decreases, the number of non-fits increases.  This 
will cause the model to be more certain when predicting fits, thus subsequently higher positive 
predictive value and lower true positive rate. 

Table 1 5-fold cross validated test for fit to non-fit ratio of 2.5:10. 

2.5:10 False-positive 
rate 

False-negative 
rate 

True-negative 
rate 

True-positive 
rate 

Accuracy 

HQHT 0.024 (0.057) 0.710 (0.837) 0.976 (0.943) 0.290 (0.163) 0.899 (0.786) 
HQSC 0.073 (0.078) 0.269 (0.363) 0.927 (0.922) 0.731 (0.637) 0.872 (0.806) 
MQHT 0.042 (0.048) 0.538 (0.621) 0.958 (0.952) 0.462 (0.379) 0.863 (0.766) 
MQSC 0.043 (0.067) 0.346 (0.439) 0.957 (0.933) 0.654 (0.561) 0.902 (0.818) 
LQHT 0.029 (0.037) 0.426 (0.531) 0.971 (0.963) 0.574 (0.469) 0.894 (0.806) 
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LQSC 0.094 (0.142) 0.311 (0.406) 0.906 (0.858) 0.689 (0.594) 0.857 (0.761) 
HQ 0.048 (0.066) 0.381 (0.482) 0.952 (0.934) 0.619 (0.518) 0.885 (0.798) 
MQ 0.042 (0.060) 0.442 (0.528) 0.958 (0.940) 0.558 (0.472) 0.883 (0.791) 
LQ 0.062 (0.091) 0.363 (0.454) 0.938 (0.909) 0.637 (0.546) 0.875 (0.782) 
Total 0.051 (0.071) 0.393 (0.486) 0.949 (0.929) 0.607 (0.514) 0.881 (0.791) 

Table 2 5-fold cross validated test for fit to non-fit ratio of 3:10. 

3:10 False-positive 
rate 

False-negative 
rate 

True-negative 
rate 

True-positive 
rate 

Accuracy 

HQHT 0.070 (0.123) 0.367 (0.513) 0.930 (0.877) 0.633 (0.487) 0.890 (0.793) 
HQSC 0.092 (0.094) 0.152 (0.244) 0.908 (0.906) 0.848 (0.756) 0.889 (0.836) 
MQHT 0.054 (0.098) 0.222 (0.328) 0.946 (0.902) 0.778 (0.672) 0.910 (0.835) 
MQSC 0.046 (0.041) 0.071 (0.105) 0.954 (0.959) 0.929 (0.895) 0.949 (0.937) 
LQHT 0.032 (0.062) 0.186 (0.394) 0.968 (0.938) 0.814 (0.606) 0.933 (0.836) 
LQSC 0.146 (0.216) 0.125 (0.193) 0.854 (0.784) 0.875 (0.807) 0.859 (0.789) 
HQ 0.081 (0.109) 0.207 (0.316) 0.919 (0.891) 0.793 (0.684) 0.890 (0.818) 
MQ 0.050 (0.062) 0.147 (0.217) 0.950 (0.938) 0.853 (0.783) 0.929 (0.891) 
LQ 0.090 (0.140) 0.152 (0.281) 0.910 (0.860) 0.848 (0.719) 0.895 (0.811) 
Total 0.074 (0.104) 0.169 (0.273) 0.926 (0.896) 0.831 (0.727) 0.904 (0.840) 

Table 3 5-fold cross validated test for fit to non-fit ratio of 3.5:10. 

3.5:10 False-positive 
rate 

False-negative 
rate 

True-negative 
rate 

True-positive 
rate 

Accuracy 

HQHT 0.062 (0.115) 0.430 (0.593) 0.938 (0.885) 0.570 (0.407) 0.882 (0.788) 
HQSC 0.102 (0.122) 0.128 (0.216) 0.898 (0.878) 0.872 (0.784) 0.889 (0.839) 
MQHT 0.093 (0.147) 0.329 (0.423) 0.907 (0.853) 0.671 (0.577) 0.849 (0.763) 
MQSC 0.071 (0.069) 0.214 (0.316) 0.929 (0.931) 0.786 (0.684) 0.895 (0.852) 
LQHT 0.085 (0.157) 0.168 (0.275) 0.915 (0.843) 0.832 (0.725) 0.895 (0.801) 
LQSC 0.169 (0.211) 0.149 (0.178) 0.831 (0.789) 0.851 (0.822) 0.837 (0.805) 
HQ 0.082 (0.118) 0.206 (0.311) 0.918 (0.882) 0.794 (0.689) 0.886 (0.818) 
MQ 0.082 (0.110) 0.272 (0.372) 0.918 (0.890) 0.728 (0.628) 0.872 (0.806) 
LQ 0.126 (0.185) 0.157 (0.221) 0.874 (0.815) 0.843 (0.779) 0.866 (0.803) 
Total 0.096 (0.138) 0.208 (0.299) 0.904 (0.862) 0.792 (0.701) 0.875 (0.809) 

Table 4 5-fold cross validated test for fit to non-fit ratio of 4:10. 

4:10 False-positive 
rate 

False-negative 
rate 

True-negative 
rate 

True-positive 
rate 

Accuracy 

HQHT 0.077 (0.159) 0.475 (0.658) 0.923 (0.841) 0.525 (0.342) 0.853 (0.736) 
HQSC 0.103 (0.121) 0.137 (0.202) 0.897 (0.879) 0.863 (0.798) 0.884 (0.841) 
MQHT 0.072 (0.132) 0.336 (0.394) 0.928 (0.868) 0.664 (0.606) 0.859 (0.787) 
MQSC 0.078 (0.049) 0.240 (0.260) 0.922 (0.951) 0.760 (0.740) 0.879 (0.886) 
LQHT 0.058 (0.131) 0.235 (0.340) 0.942 (0.869) 0.765 (0.660) 0.894 (0.797) 
LQSC 0.167 (0.196) 0.191 (0.263) 0.833 (0.804) 0.809 (0.737) 0.825 (0.784) 
HQ 0.090 (0.143) 0.223 (0.316) 0.910 (0.857) 0.777 (0.684) 0.871 (0.797) 
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MQ 0.075 (0.091) 0.288 (0.327) 0.925 (0.909) 0.712 (0.673) 0.869 (0.837) 
LQ 0.114 (0.162) 0.209 (0.305) 0.886 (0.838) 0.791 (0.695) 0.858 (0.790) 
Total 0.093 (0.131) 0.238 (0.315) 0.907 (0.869) 0.762 (0.685) 0.866 (0.808) 

3. Artificial Neural networks: 
Artificial neural networks are machine learning methods that were inspired by the workings of 
biological brain. In the brain, neurons are connected through synapses, which are junctions where 
electrical or chemical signals are transmitted from one neuron to another. The strength of these 
connections, or synaptic weights, determines how the signals are transmitted and processed. 
Similarly, in artificial neural networks, the connections between artificial neurons are represented by 
weights. These weights determine how the input signals are combined and processed as they pass 
through the network. The weights are adjusted during the training process, allowing the neural 
network to learn patterns and make predictions based on the input data[13]. 

3.1. Architecture 
The architecture of a neural network defines how the nodes are connected to each other. 
3.2 Single layer (Perceptron) 
The perceptron is the simplest form of an artificial neural network. It is often considered as the 
foundation of more complex machine learning algorithms. It comprises an input layer, which is a 
collection of nodes, and a single output node. 
The input layer receives values that represent various features or characteristics of the data we want 
to analyze. Each input value is multiplied by its corresponding weight, which indicates the 
importance of that input in making a decision or prediction. The weighted inputs are then 
combined, and the sum is fed to the output node. 
At the output node, the sum is processed through a function called the activation function. This 
function converts the sum into a final output value, which represents the perceptron's decision or 
prediction[13]–[15]. 

3.2. Fully connected neural networks 
Fully connected neural networks, also known as dense neural networks, are an extension of the basic 
perceptron model (Section 3.1.1.1). This extension takes place in two main stages, enhancing the 
capabilities of the network for more complex tasks. 
The first stage involves expanding the output layer to consist of multiple nodes instead of just one. 
In this case, each input node is connected to every output node, with each connection having its 
own unique set of weights. This creates a one-layer network with multiple input nodes and multiple 
output nodes, allowing for a broader range of decisions or predictions. 
The second stage of expansion introduces intermediate layers, known as hidden layers, between the 
input and output layers. The output nodes from the previous layer serve as inputs for the next layer. 
This multi-layer structure enables the network to learn more complex patterns and representations 
from the input data, ultimately leading to more accurate predictions and better performance [13]– 
[15]. 
3.4. Convolutional neural networks: 
Convolutional neural networks (CNNs) are specialized neural networks designed for handling data 
with grid-like structures, where data points on the grid exhibit spatial dependencies with their 
neighbors. A prime example of such data is a 2-dimmensional image, where the pixels representing a 
specific feature or pattern share strong spatial connections. A features of CNNs is their ability to 
capture the translational symmetry in data, such as an image. This means that the importance of a 
particular pattern or feature (e.g. comparison edge of a duct tape) remains unchanged regardless of its 
location within the image, whether it is at the center or in one of the corners. The common layers 
used in CNNs are convolution, pooling. 
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Figure 1 An example of convolution applied with a 3×3 filter and a stride of 1×1. This figure was 
inspired by a figure from reference [aggarawal] 

Figure 2 An example of max-pooling with a 2x2 window and a stride of 1x1. 

• Convolution layer: In CNNs, rectangular filters are used to scan the image, examining all 

pixels to detect various patterns within the filter's window. This window is often referred to 
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as the filter or kernel. The algorithm scans the image using a predefined number of steps, 

called the stride, which determines how many pixels the window will move across the image 

after each convolution calculation. The stride is typically chosen by the designer of the CNN 

architecture and helps balance the trade-off between computational efficiency and the ability 

to capture finer details. Figure 1 shows an example of this process. 

• Pooling layer: To reduce the spatial dimensions of the feature map while retaining essential 

information a scheme is employed to map a window of pixel values to one value. The most 

common approach is called max-pooling where the highest value within a rectangular 

window is selected. Figure 2 demonstrates this process. 

3.5. Activation functions 
Activation functions play a crucial role in neural networks, as they process the inputs (from the 
nodes of the previous layer) using the corresponding weights to produce a single output value. The 
choice of an activation function is a critical aspect of neural network design [13]. Several activation 
functions are available, such as sign, sigmoid, tanh, ReLU, and Hard Tanh. In this appendix, we will 
explain the functions used in this study. 

• Rectified Linear Unit (ReLU): ReLU is one of the most popular activation functions. It is 

defined as �(�) = max(0, ∑�!�!). In other words, it calculates the weighted sum of inputs 

and returns it if it’s larger than zero, otherwise it returns zero ReLU functions have gained 

popularity in recent years due to their computational efficiency and scale invariance. 

• Sigmoid (logistic) function: The sigmoid function is a widely-used activation function 
" defined as �(�) = 

"#$%&((∑*!+!)
. The output of a logistic function always falls between zero 

and one, making it a good choice for binary classification tasks. 

3.6. Loss function, optimizers and learning rates 
In practical machine learning problems, the goal is to find a mapping that takes a set of input 
variables and generates output results by identifying patterns in the available input and output data 
(i.e., training data). The loss function is a tool used to evaluate the effectiveness of the mapping in 
predicting known data. Often, the best mapping is achieved by optimizing the loss function. 
A well-known example of a loss function is the squared loss: �(�, �1) = ∑(�! − �1!)-. By minimizing 
this loss function, we encourage the predictions (�1!) to be closer to the actual data (�!). 
Another common loss function is binary cross-entropy, also known as log loss. It measures the 
difference between the true labels and the predicted probability of an instance belonging to a certain 
class. Binary cross-entropy is defined as �(�, �) = −∑(�! ln �! + (1 − �!) ln(1 − �!) [14], [16]– 
[18]. In this formula �! represents the actual label of the i-th instance, and �! , the predicted 
probability of that instance belonging to one of the classes. 
The process of minimizing the loss function involves adjusting the model parameters until the 
desired accuracy is achieved. For instance, in the case of a best-fit line, these parameters are the 
slope and the y-intercept of a line, while in a neural network, the parameters are the weights of the 
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nodes. The minimization of the loss function is performed using various computationally efficient 
algorithms that have been developed over time, such as gradient descent. These algorithms are called 
optimizers. 
Gradient descent iteratively updates the model parameters based on the gradient of the loss 
function. By using the gradient, the algorithm can identify the direction in which the loss function 
decreases most rapidly (steepest decline) and adjust the parameters to minimize the loss and improve 
the predictions' accuracy with respect to the training data. A crucial aspect of this process is 
determining the step size for modifying the parameters. The algorithm must balance between 
making changes that are not too large, which may cause it to overshoot the minimum, and not too 
small, which would compromise computational efficiency. This step size is referred to as the 
learning rate. 

An extension of gradient descent commonly used in neural networks is the Adaptive Moment 
Estimator (ADAM). ADAM dynamically adjusts the learning rate for each parameter, enabling faster 
convergence and improved performance across various problems. It achieves this by computing 
adaptive learning rates for each parameter using the first and second moments of the gradients, 
resulting in more efficient and effective optimization. 
3.7. Dropout 
Dropout is a method to overcome the challenges of overfitting. In this method at a certain layer of 
the fully connected network, a percentage of the nodes (usually from the hidden layers) are 
randomly removed. If a node is dropped, all the incoming and outgoing connections from that node 
need to be dropped as well [13]. 
3.8. Convolutional neural network 
Figure 3 demonstrates the CNN used in this study. 
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Figure 3 Convolutional neural network architecture. 
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4. Decision trees 
Decision trees, also known as classification and regression trees (CART), are a type of supervised 
machine learning algorithm. They simplify complex decision-making processes by breaking them 
down into smaller, more manageable steps. This is achieved by recursively partitioning the feature 
space into a set of rectangles and assigning a constant value to each. This process can be visualized 
as a tree with multiple leaves, each representing a distinct region in the feature space [19]. 
Decision trees have various hyperparameters that need to be fine-tuned for optimal performance. 
The most important hyperparameters include the criterion used to measure the quality of a split, the 
splitting method applied to partition the data, and the maximum depth of the tree. Adjusting these 
hyperparameters can help achieve the right balance between model complexity and accuracy. 

Figure 4 The decision tree used to combine outputs of the scrim and backing convolutional neural 
networks. 

5. Merging results of Scrim and Backing CNNs 
As described in the main manuscript, two separate CNNs were trained on scanned images of the 
scrim and backing sides of duct tapes. To combine the results of these two CNN models, various 
supervised learning approaches were evaluated. These algorithms include Gradient Boosting 
Classifier (GBC), K-nearest neighbors (KNN), Decision tree (DT), Support vector machine (SVM), 
logistic regression (LR), random forest (RF), and AdaBoost (ADA). 
The decision tree algorithm was chosen, taking into account the separation of the distribution of the 
membership probabilities assigned to true fits and true non-fits, as well as the statistical accuracy. 
Figure 5 displays the kernel density estimation of the distribution of these probabilities. Table 4 
presents the performance of these classifiers, as measured by various statistical metrics. By selecting 
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the decision tree method, we aim to achieve a balance between model complexity and accuracy in 
merging the results from the two CNN models. 

Figure 5 Kernel density estimation of the membership probabilities assigned to true fit and true 
non-fit by different classifiers. 

Table 5 Performance of classifiers used to combine the results of the scrim and backing CNNs. The 
color map for true-positive rate (TPR), true-negative rate (TNR), and accuracy (ACC) ranges 

from purple to blue (low to high). Conversely, the color map for false-negative rate (FNR), false-
positive rate (FPR), inconclusive-negative rate (INR), and inconclusive-positive rate (IPR_ 

transitions from blue to purple (low to high). In essence, blue signifies improvement, while purple 
indicates a decline. The classifiers evaluated include Gradient Boosting Classifier (GBC), K-

nearest neighbors (KNN), Decision tree (DT), Support vector machine (SVM), logistic regression 
(LR), random forest (RF), and AdaBoost (ADA). 

GBC KNN DT SVM LR RF ADA 
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TP 
R 

0.734 
± 

0.036 

0.716 ± 
0.045 

0.729 ± 
0.077 

0.726 ± 
0.044 

0.491 ± 
0.073 

0.737 ± 
0.053 

0.223 ± 
0.062 

TN 
R 

0.916 
± 

0.013 

0.918 ± 
0.023 

0.914 ± 
0.018 

0.926 ± 
0.011 

0.962 ± 
0.009 

0.919 ± 
0.015 

0.756 ± 
0.045 

FN 
R 

0.249 
± 

0.031 

0.284 ± 
0.045 

0.268 ± 
0.080 

0.271 ± 
0.042 

0.444 ± 
0.086 

0.254 ± 
0.050 

0.055 ± 
0.008 

FP 
R 

0.077 
± 

0.015 

0.082 ± 
0.023 

0.085 ± 
0.017 

0.074 ± 
0.011 

0.033 ± 
0.007 

0.079 ± 
0.015 

0.012 ± 
0.007 

IN 
R 

0.007 
± 

0.006 

0.000 ± 
0.000 

0.001 ± 
0.002 

0.000 ± 
0.000 

0.005 ± 
0.003 

0.002 ± 
0.003 

0.232 ± 
0.050 

IPR 
0.017 

± 
0.011 

0.000 ± 
0.000 

0.003 ± 
0.007 

0.003 ± 
0.004 

0.066 ± 
0.023 

0.009 ± 
0.007 

0.723 ± 
0.063 

AC 
C 

0.855 
± 

0.017 

0.851 ± 
0.018 

0.853 ± 
0.023 

0.859 ± 
0.016 

0.805 ± 
0.024 

0.858 ± 
0.022 

0.578 ± 
0.048 
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	Assessing the Strength of Trace Evidence Fracture Fits through a Comprehensive, Systematic and Quantifiable Approach 
	I SUMMARY OF THE PROJECT 
	1.1.Abstract 
	Criminal activities such as sexual assaults, kidnappings, hit and runs, and homicides often lead to the fracturing of materials. The realignment between fragments left at the scene and those items recovered from an individual, or object of interest, could become crucial evidence during the investigation. These fracture fits are often regarded as the highest degree of association of trace materials due to the common belief that fracture edges often produce individualizing patterns. Nonetheless, there is a ne
	The overall goal of this research was to develop an effective and practical approach that provides an empirically demonstrable basis to assess the significance of trace evidence fracture fits. Our specific goals were first, to develop a systematic method for the comparison of fracture fits of common trace materials such as duct tapes, textiles, and automotive plastics, using both human-based protocols and automated computational algorithms. Second, to develop a relevant extensive database of nearly 9,000 sa
	This research specifically addressed several research needs identified by NIST-OSACand the NIJTWG(quantitative assessment of error rates, scientific foundations, standardization, validation, interpretation, casework review, and proficiency assessment). As a result, this study is anticipated to transform current trace evidence practice by providing—for the first time—harmonized examination protocols and decision thresholds, effective mechanisms to ensure transparent and systematic peer-review process and int
	1 
	-
	2 

	1.2.Major Goals and Objectives 
	This study aims to contribute to the advancement of the trace evidence discipline by developing a practical approach with an empirically demonstrable basis to assess the probative value of fracture fits. The overall goal of this proposal is to answer the question: “how significant is a given fracture fit between two objects?” Specifically, the study is designed to answer this question within a context relevant to U.S. criminal justice by providing a quantifiable basis for assessing the weight of the evidenc
	1) Objective 1: Develop a systematic method for comparing fracture fits of common trace materials such as duct tapes, textiles, and plastics, using more objective human-based protocols and automated computational algorithms. 
	2) Objective 2: Develop an extensive collection of trace physical fractures to validate methods for a quantitative assessment of the evidence and test the methods proposed under objective 
	1. This collection will be encapsulated in a digital database management system. 
	3) Objective 3: Evaluate the utility and reliability of the proposed approach in the casework context through inter-laboratory studies. 
	These goals are accomplished through the following specific tasks: 
	1) Task 1 (Objective 1)—Develop systematic methods to compare fracture fits of common trace materials such as duct tapes, textiles, and plastics. 
	2) Task 2 (Objective 1) —Develop and validate automated computational algorithms to compare fracture fits. 
	3) Task 3 (Objective 2) —Develop an extensive database on trace physical fractures of duct tape, textiles, and plastics, and test the methods proposed under Objective 1. 
	4) Task 4 (Objective 2) —Validate quantitative methods for assessing the probative value of fracture fits. 
	5) Task 5 (Objective 3) —Design interlaboratory studies for the evaluation of error rates of the proposed comparison approach among practitioners 
	DISCLAIMER: This report summarizes the main findings of this research project. Some of these findings have been published in scientific journals, thesis, dissertations , or have been submitted for publication and are under review.Therefore, some content, tables, and figures are an adaptation of published articles. As per journal copyright policies, the authors are entitled to re-use portions, excerpts, and their own figures or tables in other works that are not published commercially, without permission or 
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	1.3.Research Questions 
	The separation of materials such as tape, plastics, and textiles from their original source frequently occurs during violent activities, leaving distinct patterns along the fractured edges. These features assist examiners when attempting to determine the source of the sample. During the examination of these materials, the analyst compares a known and questioned item to determine if they fit back together like a puzzle. The 3D realignment along the edges of the objects is known as a physical match and is oft
	A decade ago, the National Academy of Sciences (NAS) raised awareness of the need for reporting error rates and uncertainties associated with subjective analysis in pattern evidence. These concerns resurfaced with the President’s Council of Advisors on Science and Technology (PCAST) report in 2016 and statements from the American Statistical Association in 2019.Also, the Organization of Scientific Area Committees (NIST-OSAC) recently identified a major gap in research on trace evidence’s physical fits, whic
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	As a result, this study was designed to answer fundamental questions to build stronger scientific foundations of fracture fit examinations and provide the criminal justice system with reliable resources to assess the relevance of the evidence. These research questions are: 
	1. 
	1. 
	1. 
	Do all physical fits hold the same probative value? 

	2. 
	2. 
	Which individual or class characteristics can be evaluated in fractured edges to assist the forensic examiner during a physical fit examination? 

	3. 
	3. 
	Are these features dependent on the fractured or separated material? 

	4. 
	4. 
	Which factors influence the occurrence of these features and the quality of a physical fit? 

	5. 
	5. 
	What are the performance rates of physical fit examinations? Are the performance rates dependent on the type of object? 

	6. 
	6. 
	Can quantitative metrics demonstrate the quality of a fit and be used for the probabilistic interpretation of the evidence? 

	7. 
	7. 
	Can computational and mathematical models be used to complement human-based examinations? 

	8. 
	8. 
	What strategies can be developed to minimize potential bias and subjectivity during the forensic examination of physical fits? 

	9. 
	9. 
	Can standardized protocols be developed for the examination, documentation, and interpretation of physical fits through the assessment of the method via large datasets and interlaboratory studies? 


	1.4.Research Design, Methods, Data Analysis 
	1.4.1. Research design and methods of analysis 
	Project tasks and methodology 
	The methodology and experimental design are described below within five major tasks to address the major research questions and objectives of this study (See figure 1). 
	Figure 1. Summary of the main five experimental research tasks. 
	Task 1 (Objective 1)— Develop a systematic method for the comparison of fracture fits of common trace materials such as duct tapes, textiles, and plastics 
	In this task, we have developed material-specific systematic methods for identifying and comparing relevant features along fracture edges. To optimize the impact of this study on criminal justice, we utilized a survey conducted by the newly formed NIST-OSAC Physical Fit Task Groupto select the most prevalent materials submitted to forensic agencies. Thus, the three materials evaluated in this research were duct tapes, textiles, and plastics that are typically fractured or separated in a variety of crimes su
	16 

	Trace materials can be recovered from crime scenes as microscopic units often invisible to the naked eye or as larger pieces left behind during the contact between objects and individuals. The pieces should be relatively large (~ cm long) rather than small micro-traces to conduct a fracture alignment. For instance, sizeable pieces of duct tape are often received in cases where victims have been gagged or bound and in the construction of improvised explosive devices. Textile damage is observed in stabbing an
	Each of the materials of interest has different chemical and physical properties and manufacturing construction that inevitably imparts various features during the separation of objects (Figure 2). As a result, the first step in this task was to develop means to standardize the examination protocols. We have defined for each material: 1) what features are relevant for the comparison, 2) what is the smallest subunit “bin” of comparison across the tear or fracture, 3) how to document the examiner observations
	Duct tapes
	For duct tapes, we developed a systematic approach to compare edges. A typical duct tape has a backing layer, a reinforcement scrim fiber, and adhesive. All three components are considered during the examination. Duct tapes of different quality grade (high quality, HQ, medium quality MQ, M, and low quality LQ, L) were separated by hand-torn, HT, or scissor-cut, SC). A subset was also stretched to simulate complex case circumstances (S). We defined terms to describe overall fractured patterns and relevant fe
	Fig. 2. Example of physical fits of textiles (A, B), plastic (C), and duct 
	Microscopic features include 
	tape (D). 
	alignment of the edges, scrim in the warp direction across the tapes, weft fibers across the tear, stretching or distortion in the direction of tearing, backing dimples or markings across the edge, and protrusions and indentations or other loss of material across the edges). The examiners put the joint edges together and observed the tear patterns under a microscope at 10-40x. We used a stereo microscope with an automated stage and reflected and transmitted light and alternate UV and IR light to boost impor
	Also, we have defined the smallest comparison bin as the torn area between a pair of warp scrims. The rationale for this selection is that the number of scrims is a constant feature across a tape roll and therefore provides a systematic means to evaluate the similarities and dissimilarities between tapes. The examiners then report an edge similarity score (ESS) for each tape comparison. An example edge is shown in Figure 3, where 12 scrim bins are visible. The examiner would divide the number of matching ar
	The comparison is then performed by flipping the tape and inspecting the alignment at the backing side. This has been shown to improve other methods that used relative alignment lengths. 
	The estimation of the size of a fracture is somehow arbitrary because a tape fracture is rarely straight. In contrast, our method of estimating a score by scrim bins assures that the examiners will be looking at the same areas and the same number of regions when performing an examination. Moreover, the method applies to a large variety of tapes, regardless of their number of scrims, which is often associated with the tape grade quality. The match score is then utilized to make quantitative assessments of th
	In terms of documentation, the examiner notes any significant factors holding weight in their decision. Through this study, we found that incorporating detailed documentation of the comparison edge features by comparison bin has proven effective during the peer-review process, adds transparency to the decision-making process, and facilitates standardization of procedures. The use of bin-to-bin annotations on digital images has been a beneficial approach, as examiners can independently compare the same regio
	Simple and practical Excel templates were designed with step-by-step instructions to document the observations, including auto-populated cells for each feature of interest and an embedded macro that color-codes each bin decision to aid the examiner in the quick assessment of the fit and non-fit areas. For example, the bin score cells have a built-in code where if the analyst enters the number 0 (non-fit bin), the cell turns red, yellow for 0.5 (inconclusive bin), or green for 1 (fit bin). The templates also
	Simple and practical Excel templates were designed with step-by-step instructions to document the observations, including auto-populated cells for each feature of interest and an embedded macro that color-codes each bin decision to aid the examiner in the quick assessment of the fit and non-fit areas. For example, the bin score cells have a built-in code where if the analyst enters the number 0 (non-fit bin), the cell turns red, yellow for 0.5 (inconclusive bin), or green for 1 (fit bin). The templates also
	final decisions, opinions, and observations in a systematic and reproducible manner. A template example is shown in Figures 4-1, 4-2, and 4-3, where each step of the comparison is broken down into three sections. 

	In the first step, the analysts document overall observations regarding the tape morphology of each edge, along with general edge alignment characteristics. Tape edge’s standardized descriptions include one of four patterns: straight, angled, wavy, or puzzle-like (see Figure 5). This first step allows the examiner to document the general observations of the questioned and the known item edges separately and use this overall assessment to determine the suitability of the specimens for fit examinations. 
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	In the second step, more detailed examination and documentation are conducted to identify major features in relatively large regions of the tape using macroscopic and microscopic observations. To aid with inter-examiner consistency, the template includes eight major features that we have found to hold the most weight in the decision process of a fit or non-fit in this study. Examples of these features are shown in Figure 6. Some of these features, such as severed dimpling and calendaring striations, are obs
	Finally, the last step consists of observation and documentation of the same eight defined features in step two, but here the observations are made on each bin-by-bin comparison, while the samples are compared under the microscope. An advantage of this step is that it adds objectivity since examiners must use standardized criteria to make a data-driven assessment of each bin independently to the results of previous bins. It is in this step that ESS is automatically calculated and displayed in the template t
	WEST VIRGINA UNIVERSITY DUCT TAPE COMPARISON TEMPLATE 
	General instructions 
	Please use the three (3) consecutive steps protocol to examine and report your opinion on each step. Please report your observations and opinions based on the proposed method (regardless of the protocol used in your laboratory). If possible, conduct the observation of the duct tape edges through a transparency film so as to observe the scrim and adhesive without altering the edges in any way. When the tape ends are mounted on clear transparency films, they can be aligned and flipped back and forth without w
	Step 1. Overall Alignment of Tape Edges 
	Section Guidelines: 
	Section Guidelines: 

	1.
	1.
	1.
	 Start the physical fit examination by assessing the questioned/unknown edge. 

	2.
	2.
	 Examine the general features of the alignment of the edges (observe the backing and adhesive sides) 

	3.
	3.
	 Report your observations by clicking in the respective cell below for a drop-down menu of comparison edge overall results options. 

	4.
	4.
	 Click cell 1-1A and record general comments on your assessment of the overall edge appearance, and any overall features of note. 

	5.
	5.
	 Click cell 1-1B for a drop-down menu of the description of your opinion of the overall edge pattern for this tape edge. 


	Section Guidelines: 
	Section Guidelines: 

	1.
	1.
	1.
	 Once analysis of the question tape edge is complete, move on to an independent assessment of the known edge. 

	2.
	2.
	 Examine the general features of the alignment of the edges (observe the backing and adhesive sides) 

	3.
	3.
	 Report your observations by clicking in the respective cell below for a drop-down menu of comparison edge overall results options. 

	4.
	4.
	 Click cell 1-2A and record general comments on your assessment of the overall edge appearance, and any overall features of note. 

	5.
	5.
	 Click cell 1-2B for a drop-down menu of the description of your opinion of the overall edge pattern for this tape edge. 


	Section Guidelines: 
	Section Guidelines: 

	1.
	1.
	1.
	 Slide the transparency films until the edges of interest are positioned side by side. Examine the general features of the alignment of the edges (observe the backing and adhesive sides) 

	2.
	2.
	 Report your observations by clicking in the respective cell below for a drop-down menu of comparison edge overall results options (Cell 1-3A). A preliminary conclusion of fit, non-fit, or inconclusive can be selected for the overall alignment of the edges. 

	3.
	3.
	 Click the respective cell 1-3B for a drop-down menu of the description of your opinion of the overall edge alignment. 

	4.
	4.
	 Provide general comments on your assessment of the comparison pair edges in this first step of the examination in cell 1-3C. 

	5.
	5.
	 Regardless of your conclusion in this step (fit, non-fit or inconclusive) continue with the examination and reporting for the step 2. 


	Step 2. Macroscopic Assessment of Tape Edges 
	Section Guidelines: 
	Section Guidelines: 

	1. 
	1. 
	1. 
	Conduct a more detailed observation of the edge features by visually dividing the tape edge into approximately five macro sections (~1cm each) 

	2. 
	2. 
	For each macro section, observe any alignment (or lack of) and the presence of any differences or presence of similar distinctive features. 

	3. 
	3. 
	Select the observed different or similar characteristics in the macroscopic sections by clicking in the respective cells 2A (I to VIII) drop down options. Provide additional comments of observed features (Cell IX) or additional general comments you may want to share (Cell X). If additional features are present that are not listed here, please describe them in the comments. 

	4. 
	4. 
	Report your observations by clicking the respective section on cell "2B" below for a drop-down menu of observations of compared areas. Select a decision of fit, non-fit, or inconclusive for the alignment of each of the ~1cm macro comparison sections. 

	5. 
	5. 
	Click the respective cell for a drop-down menu of cell "2C" below to select the description of the macro section edge comparison that better describes your observations and opinion. 

	6. 
	6. 
	If at the end of step 2, an obvious non-fit between the edges is determined, a non-fit may be reported with no further microscopic assessment. 

	7. 
	7. 
	If the conclusion at the end of step 2 is fit, inconclusive, or a non-fit which is complex or otherwise difficult to observe, continue with the examination and reporting for the step 3. 


	2 
	Step 3. Subunit Assessment of Tape Edges (Edge similarity score) 
	Section Guidelines: 
	Section Guidelines: 

	1.
	1.
	1.
	1.

	s under a stereomicroscope, both backing and scrim sides. 
	 Examine the pair


	2.
	2.
	 Align the top edge first to help with the physical fit assessment 

	3.
	3.
	 Adjust the number of scrim areas to correspond with your tapes. Each scrim area is the edge region between the consecutive top and bottom scrims. 

	4.
	4.
	 Make observations on each of the scrim areas on cells "3A" below (consider alignment or lack off, and differences or presence of distinctive features) 

	5.
	5.
	 Type "1" if you observed fit in the scrim area, "0" is there is non-fit, or "0.5" is there are some similarities as well as differences (inconclusive). 

	6.
	6.
	 To facilitate the visual observation of the results, these cells should automatically populate once you have entered your area fit codes per scrim area. The cells will automatically populate in color (red = 0, yellow = 0.5, green = 1) 

	7.
	7.
	 Select the observed different or similar characteristics in each micro subunit by clicking in the respective cells 3A (I to VIII) drop down options. Provide additional comments of observed features (Cell IX) or additional general comments you may want to share (Cell X). 

	8.
	8.
	 The systematic documentation of observations per scrim area will facilitate the comparison of relevant features observed by each participant and understand decision processes. This intend to simulate the use of this tool for peer review or training purposes. 

	9.
	9.
	 The number of matching scrim areas (cell 3B) and Edge Similarity Score (cell 3C) for the comparison pair will be automatically calculated and displayed. 

	10. 
	10. 
	Based on the ESS step, click the respective cell "3D" for a drop-down menu of comparison edge overall conclusion options (fit, non-fit, or inconclusive) 

	11.
	11.
	 Click the respective cell "3E" to select a drop-down menu of the description of your opinion on the overall subunit EES comparison 

	12.
	12.
	 Based on pilot studies, a score of 80 or above is usually indicative of a fit, while scores between 60 a 80 are indicative of a fit with less distinctive features. A score below 30 is indicative of a non-fit, beteeen 30 and 40 indicative of a non-fit with some similarities, and a score between 40-60 is indicative of inconclusive. You can use this criteria to form your opinion. 


	Figure 4-3. Step 3 of the documentation template, example of a filled-out form resulting in an ESS of 80. This step covers the microscopic assessment of the compared pairs of tapes. The edges are visually separated into bins based on the number of areas between the scrim fibers. In each bin, the same nine major features from Step 2 are documented. In addition, each section is documented as a fit or non-fit and the confidence level in that decision. The analyst reports each bin as fit, non-fit, or inconclusi
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	3 
	Figure 5. Examples of true fit pairs from the tape sets. The images show the distorted morphology observed in the MQHT-S, LQ-HT, and LQ-HT-S edges. Despite also being hand-torn, the edges observed in the HQ-HT set are very straight and less distinctive, even when stretched.
	-
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	Fig 6. Examples of the eight descriptive features documented for duct tape edge comparisons. These features are some of the most observed on duct tapes regardless of grade. Oftentimes, they help establish and document standardized criteria during sample comparison. Alignment of severed dimples: these are severed dimples on tape backings that align from one edge to the other in shape, size and location across the fracture. This feature is only applicable on the backing side. When it is present and aligns acr
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	Textiles 
	In the case of textiles, yarns are used to create fabric by either weaving or knitting. Yarns are then interlaced by various constructions, depending on the desired properties of the end-product. Modern weave and knit machines provide very consistent yarn constructions. After the fracturing process, samples are compared visually, including examining the general size and shape, weave/knit type, fiber type, and twist. 
	In the proposed method, examiners first analyze a comparison pair's overall edge morphology and general fracture alignment using a stereomicroscope at 10-40x magnification with reflected and transmitted light. Here, features such as weave alignment and pattern/print alignment are observed. Weave alignment occurs when the direction of the weave is consistent between both samples being compared. Pattern or design alignment occurs when designs printed on the fabric, such as stripes or flowers, align across the
	Following this, the examiner subdivides the length of the fracture edge into ten (10) comparison bins or areas of equal size. The examiner conducts an independent comparison within each respective bin and identifies it as a fit, non-fit, or inconclusive, assigning a quantitative value of 1, 0, or 0.5, respectively for the bin. The examiner also uses UV light to identify any fluorescence exhibited by the fibers on either sample. The presence or absence of fluorescence on both samples being compared may incre
	As described in the duct tape section above, the examiner also documents the overall morphological features and individual features observed in each comparison bin in a digital template throughout this process. This digital template follows similar approaches as the ones described for tapes, but it is customized for evaluating the textile’s features. The examiner documents the qualitative features per bin location, allowing for a straightforward peer review process, as previously discussed. Finally, the tem
	Figure 7. Prominent textile-relevant features and terminology defined in this study to assist analysts in making determinations of physical fits.
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	Plastics 
	Plastics have a significantly different composition and construction than duct tape and fibers. Unlike the soft polymers used in duct tape, the composition of rigid plastics is designed to keep the material firm. Therefore, hard plastics are brittle, breaking by tension when enough force is applied. Automotive hard plastic objects commonly submitted to crime laboratories include the vehicle’s headlights, taillights, and fragments from the bumpers found in larger-sized fragments at scenes such as hit-and-run
	To select the samples used in this study, we investigated first some of their mechanical properties and chemical compositions. The main polymers used in manufacturing these parts are polypropylene, polyurethane, and polycarbonate, but they can also include materials such as nylon or polyvinyl chloride. These polymers are common because they are durable and resistant to many environments or substances that would otherwise damage or weaken the polymer material. Automotive plastic objects can sometimes be mark
	The intended purpose of the material influences macroscopic features on the surface of the hard plastics. Polymers from taillights and headlights are generally transparent, may have some degree of curvature or patterning, and contain striations and markings across the surface. Plastics from bumpers may have several layers of paint on top of the polymer core, as well as striations or marks left from wear and tear on the bumpers. General features such as the color, thickness, hardness, presence of a coating o
	Table 1. Description of polymer color, opacity, and chemical composition of the hard plastics collection set. 
	Images were captured of each intact polymer prior to fracturing using a DSLR camera. After imaging, the samples were taped with blue painter’s tape and fractured. Following this, each polymer was reassembled, using the original photographs as a guide, by individuals who would not be conducting any of the comparisons and then renamed with a unique identifier using random number generator. After the fragments were relabeled, they were packaged separately in labeled manila envelopes. 
	Like tapes and textiles, a systematic method was developed and evaluated for the analysis and documentation of automotive plastics (see Table 2 and Figure 9). First, the examiner provides a brief description of each sample and documents the edge shape, color, and pattern (straight, curvy, puzzle-like, or serrated). They then align the two fragments and offer a preliminary conclusion based on macroscopic observations. Following this, regardless of their preliminary conclusion, the examiner proceeds to the mi
	Table 2-1. Polymer features observed during physical fit comparison. 
	Table 2-2. Polymer features observed during physical fit comparison. 
	The features observed and the conclusions for each pair by the examiner are documented on a custom-made template as an Excel sheet. In addition to the ESS metric, the examiner includes the effect of each feature on their decision-making process, by assigning each feature a prominence value (FPV). The prominence values for each feature in each comparison area are summed together to generate an overall Feature Prominence Sum (FPS). In general, positive FP number indicate the presence of a physical fit or an i
	The main analysts in this task are students who have followed at least 2-month material specific introductory training (i.e., duct tape, textiles, and/or plastics) established by the PI that includes: 
	a)
	a)
	a)
	reading and discussion of relevant literature, 

	b) 
	b) 
	testing on three modules in which the students will build knowledge of each material of interest (composition, manufacture, distribution, common cases, typical examination protocol, fracturing mechanisms, data analysis, and interpretation), 

	c) 
	c) 
	hands-on training sets for the examination of fracture fits, for which the “ground” truth is known but maintained blind to the student, 

	d) 
	d) 
	blind hands-on training tests in which the student’s ESS or FPS scores are compared to those reported by a consensus panel and the overall conclusions are evaluated based on the ground truth (i.e., known fit, or known-non fit). 


	Our training quality control has set the accordance and concordance of +/-10%. Accordance is associated with the probability that two identical samples tested by the same individual under the same conditions but at different times will be assigned the same similarity score and associating features. Concordance is related to the probability that two identical samples tested by separate individuals under the same conditions will be given the same similarity score. The analysis of accordance and concordance is
	Fig. 9. Sections 1-3: Example of filled-out cells for step 1 for plastic polymer comparisons; this step covers the macroscopic overall assessment of the compared pairs. Section 4: Example of filled-out cells for step 2 for plastics examinations; this step covers the microscopic assessment of the compared pairs. The edges are visually separated into five sections, and ten major features are documented for their absence or presence, and the weight these features hold in the bind decision, which is automatical
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	Task 2 (Objective 1) — Development and validation of automated computational algorithmsfor the comparison of fracture fits. 
	The primary aim of this task is to supplement the ESS method by introducing a computational comparison model for fractured edges to provide additional objective support for a physical fit examination. Robust and practical computational algorithms are developed for fracture fit analysis for three main purposes: 1) establish a platform to create a database of fractured edges, 2) predict if a compared pair of samples present a physical fit or not using image-recognition algorithms, and 2) gain further understa
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	To achieve this, we utilize a machine-learning model to process images of the fractured items.We first developed an open-source Python package designed for image analysis tasks, including edge detection, background noise-reduction, and image filtering for materials of interest in the field of forensics Additionally, the package contains a database handler to manage the flow of data to and from machine-learning models. We then construct a convolutional neural network (CNN) model that classifies the tape imag
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	There are different situations in forensic science where matching is performed, and the dimensionality of the objects control the method that can be used. In this project, we focus only on cases where images are captured from the objects, and edge analysis is performed to define the contour image. The approach evaluates the performance of machine learning algorithms based on neural networks (fully connected, FNN and convolutional, CNN) to predict if images of two pieces of evidence coincide. The matched obj
	ForensicFit: Fractured edges database 
	Image database set preparation 
	In this project, we center our investigation on duct tapes, textiles, and vehicle plastics and respective images from the fractured edges. A more detailed description of the samples is provided in the following task 3 section. The database has been created by producing images of high resolution using an EPSON 12000XL scanner with images scanned using SilverFast 8, version 8.8.0r14, an interface at a resolution of a minimum 600 dots-per-inch. Hard plastics, on the other hand, present several challenges to ca
	The dataset of tape images includes tapes generated from three different qualities (low, medium, and high grade) and two separation methods (hand-torn or scissor-cut). As a result, there are six total subsets of tape samples. The database consists of images scanned from 900, 200, and 898 low-, 
	The dataset of tape images includes tapes generated from three different qualities (low, medium, and high grade) and two separation methods (hand-torn or scissor-cut). As a result, there are six total subsets of tape samples. The database consists of images scanned from 900, 200, and 898 low-, 
	medium-, and high-quality tape samples, respectively, for a total of 1998 individual tapes and 3996 images from the backing and adhesive/scrim sides. To improve contrast and consistency across images, the samples were placed on top of black cardboard. Each tape was scanned twice, once to capture the top surface of the tape (backing layer) and the second to capture the underside (adhesive/scrim layer). 

	The textiles image dataset consists of 793 textiles samples of various constructions (knit, woven, or mixed), modes of separation (stabbed or hand-torn), compositions (cotton, polyester, rayon, or mixed), and color design (unicolor or multicolor). Each fractured textile was scanned with a white or black cardboard backing to enhance contrast, depending on the color if the fabric. 
	Minor corrections to the images were made during scanning to enhance the contrast and visibility of the edges and features, such as setting the black point of the image to the posterboard to ensure the background was the darkest part of the image (or white for textiles of dark color). Additional corrections are performed using Adobe Photoshop on some images to address specific issues to remove artifacts. Each tape image is stored in a 2-dimensional matrix where each element represents a pixel intensity valu
	After the images are taken, data preprocessing consists of many steps such as data cleaning, transformation, feature extraction, and reformatting. Before setting up the architecture of the network the image dimensions are reduced by; 1) using the smallest image resolution where the edge surface details are still visible; 2) focusing only on the important part of the image— the comparison edge. Here, a python package (ForensicFit ) has been developed to bridge the gap from raw images to data suitable for a m
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	The dots-per-inch (dpi) resolution was set to the minimum scanned dpi value (600 dpi). A window of 410×2400 px(pixels) was selected around the comparison edge. The x-dimension (length of the tape) was achieved with relative cropping from the comparison edge (see Supplementary Information for more details). For the y-dimension (width of the tape), because tapes originating from different rolls may have different widths, they do not have the same size in the y-dimension. The width of the tapes used in this st
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	The output comparison edge image was then further resized to be as small as possible and still retain the fine details of the tape. This resizing was done for computational efficiency and to accommodate GPU memory limitations. In this case, the edge images were reduced by half, leading to an edge image with a size of 205×1200 pxand a resolution of 300 dpi. Figure 10 shows an example of the output 
	The output comparison edge image was then further resized to be as small as possible and still retain the fine details of the tape. This resizing was done for computational efficiency and to accommodate GPU memory limitations. In this case, the edge images were reduced by half, leading to an edge image with a size of 205×1200 pxand a resolution of 300 dpi. Figure 10 shows an example of the output 
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	of the reduction and the concatenated input resulting in two images (scrim and backing) of size 410×1200 pxready to be passed on to the CNN. 
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	Figure 10. Top Left: Scanned image of a low-quality grade tape. Image shows the backing side of the tape. One of the edges has been cut into an arrow shape, representing a non-comparison edge. For this publication this image was manually cropped. Top Right: Preprocessing of tape image by ForensicFit. The image is automatically split in the middle of the tape, its background cleaned, rotated to be horizontal, and cropped to its boundaries in the y direction by ForensicFit. The dashed golden box shows area se
	ForensicFit database 
	ForensicFit is a well-controlled and efficient database where the user can store, query, analyze, and use the data created for a particular application. ForensicFit uses state-of-the-art image processing methods to analyze and store the generated data. The data is compatible with well-known machine-learning packages such as TensorFlow, PyTorch, and SciKit-learn. It utilizes NumPy, SciPy, 
	ForensicFit is a well-controlled and efficient database where the user can store, query, analyze, and use the data created for a particular application. ForensicFit uses state-of-the-art image processing methods to analyze and store the generated data. The data is compatible with well-known machine-learning packages such as TensorFlow, PyTorch, and SciKit-learn. It utilizes NumPy, SciPy, 
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	matplotlib, OpenCV, scikit-image, PyMongo, and GridFS. Also, the package follows PEP-257and PEP-484for documentation and type hints, respectively. 
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	The package is organized into three main sub-packages, core, database, and utils. A brief description is provided here, but more detailed information is provided in the Supplementary section and within the package instructions as well. The subpackage core, as the name suggests, contains the most important functionalities within the package. It contains python classes that manage the read/write, analysis, and metadata storage. These classes provide a skeleton for the data structure used in the package. Moreo
	create_metadata.py
	preprocess_bin_based.py
	store_on_db.py

	Convolutional neural network configuration 
	This model uses a convolutional neural network (CNN) followed by a fully connected neural network as implemented in TensorFlow to train on the prepared images. The CNNs contain a series of convolutional layers followed by a fully connected network. The convolutional layers carry out the tasks of pattern recognition (feature extraction) and dimensionality reduction, while the fully connected layers make the decision on whether the items’ pairs are a fit or non-fit. 
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	The network was built from a series of convolution layers, where filters with small kernel of 3×3 pxwindow (smallest size capable of capturing the notion of left/right, up/down, and center and strides of 1×1 was used. The convolutional layers used Rectified Linear Unit (ReLU) (31) activation functions and were followed by 2×2 pixel window Max-pooling layers to handle the dimension reductions. 
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	The CNN architecture was inspired by the popular VGG-16 , which with a simple architecture achieves remarkable results. The number of convolution layers was selected by considering the size of the reduced dimensions of the image and available GPU memory for training. At the end of the convolutional layer, the image is flattened to a 1-dimensional vector of size 136,192 elements. Compared to the raw flattened input (1200×405=492,000), this significantly reduces the number of parameters the network needs to l
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	The dataset was divided into training and validation with a ratio of 80:20. A five-fold cross-validation scheme was used to maximize the model's familiarity with the data without risking overfitting. Model hyperparameters dictate how the learning is performed. These hyperparameters determine the learning process and must be carefully tuned to ensure a robust convolutional neural network. The batch size, which is the number of images loaded into the memory and processed simultaneously, was set to 5. This cho
	The dataset was divided into training and validation with a ratio of 80:20. A five-fold cross-validation scheme was used to maximize the model's familiarity with the data without risking overfitting. Model hyperparameters dictate how the learning is performed. These hyperparameters determine the learning process and must be carefully tuned to ensure a robust convolutional neural network. The batch size, which is the number of images loaded into the memory and processed simultaneously, was set to 5. This cho
	and the available GPU memory. The substantial size of both the network and the images justified the use of smaller batch sizes. 

	Table 3. Convolutional neural network architecture. The network consists of a series of consecutive 
	convolutional filters followed by a fully connected neural network.
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	The loss function, which measures the model’s accuracy in predicting the training data, was selected as binary cross-entropy. The optimizer, responsible for guiding the model towards minimizing the The learning rate, which defines the optimization step-size during the model training, was set to an initial value 10and gradually decreased to 10over 25 training epochs using a second-degree polynomial function. The learning rate and the number of epochs were determined through trial and error. It was observed t
	loss function, was set to the Adaptive Moment Estimation (Adam) algorithm.
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	Finally, in the case of tapes, the combination of scrim and backing CNNs is necessary to capture the most features on each side. For this, two identical CNN models were independently trained on the scrim and backing sides of the image tapes, resulting in two separate predictions for each of tape pairs. To combine the outcomes from both CNNs, a range of supervised learning techniques was assessed, including Gradient Boosting Classifier, K-nearest Neighbors, Decision Tree, Support Vector Machine, Logistic Reg
	Finally, in the case of tapes, the combination of scrim and backing CNNs is necessary to capture the most features on each side. For this, two identical CNN models were independently trained on the scrim and backing sides of the image tapes, resulting in two separate predictions for each of tape pairs. To combine the outcomes from both CNNs, a range of supervised learning techniques was assessed, including Gradient Boosting Classifier, K-nearest Neighbors, Decision Tree, Support Vector Machine, Logistic Reg
	was ultimately chosen, considering the separation of distribution of fit membership probabilities 
	assigned to true fits and true non-fits, as well as its performance on various statistical metrics.
	12 


	Textile images preprocessing and convolutional neural network 
	The image preprocessing and CNN of textiles followed similar strategies described above for tapes with some modifications.  The first step is determining a way to represent the images in a 1dimensional vector while reducing the “ the curse of dimensionality” and preventing to destroy the spatial context of local features inside the image during the flattening of the array. To address this, the images undergo preprocessing to reduce the size and focus on the edge where the fit features are. The ForensicFit p
	-

	Now, the size of the output edge image will be (610 pixels, 2600 pixels). The x-dimension (length of the textile) is achieved with relative cropping from the edge. The y-dimension (width of the textile) is more complicated as textiles originating from different sources will have massive differences in sizes, and therefore may not have the same size in the y-dimension. The width values of the textiles used in this study range from 2200-2600 pixels. At this same point in the tape preprocessing, the tape image
	The textiles model uses a convolutional neural network (CNN) followed by a fully connected neural network as implemented in TensorFlow to process the database of images. The CNN has two main purposes. Convolutional layers act as a feature extractor and dimensionality reduction technique for the textile pairs, and the fully connected layers make the decision whether the textile pairs are a fit or non-fit. A concatenated input of the textiles along the x-direction was selected to give the input pair a size of
	The textiles model uses a convolutional neural network (CNN) followed by a fully connected neural network as implemented in TensorFlow to process the database of images. The CNN has two main purposes. Convolutional layers act as a feature extractor and dimensionality reduction technique for the textile pairs, and the fully connected layers make the decision whether the textile pairs are a fit or non-fit. A concatenated input of the textiles along the x-direction was selected to give the input pair a size of
	figure, it is of note one of the textiles images is flipped from the original stated and concatenated to the left of the other. This is done so the network can learn on the cross-correlations between the edges of the textiles image. The network should also be able to recognize the symmetry of the inputs. It should not matter which textiles are flipped and concatenated to the other as they are the same fit. This symmetry is taken into account by randomly selecting the textiles to be flipped. 

	The textile CNN network is built from a series of convolution layers, where filters with small receptive field of 3×3 pixel window (smallest size capable of capturing the notion of left/right, up/down, and center) and a strides of 1 was used. The convolutional layers used ReLU activation functions and were followed by 2×2 pixel window Max-pooling layers to handle the dimension reductions. At the end of the convolutional layer, the image is flattened to a 1-dimensional vector of size 215,040 elements. Compar
	Algorithms for extracting and interpreting edge feature data for physical fits 
	A data analysis algorithm using mutual information and a decision tree has been developed to do a physical fit evaluation based on data received from the physical fit examinations performed by examiners with the reasoning of their decisions. For each material, the pairs are examined by a trained analyst using a standardized documentation spreadsheet to record the occurrence of predefined comparison features and document the overall conclusions regarding each comparison pair. 
	-

	All comparisons are performed blindly, meaning the analysts is unaware during the comparison of the ground truth of the sample pair. 
	Reliability of partial comparison items: establishing criteria for minimal sample size for fitcomparisons using mutual information theory 
	To evaluate the value and performance rates of partial comparisons when a full edge sample is not available for comparison, the bin documentation data of all the available tape and textile samples in the reporting template are extracted to assess the minimum width needed for reliable physical fit examinations. Following this, partial widths simulating the recovery of only a portion of the edge are defined based on the number of bin areas. Next, a randomly selected starting point among the edge is chosen for
	9 

	This process is repeated for all potential lengths across all samples in the dataset. Five iterations of random selections of widths and starting points are performed to evaluate the variability in performance across the datasets. Following the calculation of the performance rates for each partial width across all five iterations of the model, beta regression is applied to the performance rates. 
	Mutual information (MI) is used to analyze the data from the analyst’s reporting templates. The numerical code of the template indicates the analyst’s decision for each bin (0, 0.5, or 1) regarding whether the two samples fit together. The other columns describe the major features for comparison used by the analysts and the analyst’s opinion regarding the influence of that feature on the bin decision, as illustrated in Figures 4, 8, and 9, for tapes, textiles, and plastics templates, respectively. To determ
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	Computational decisions on fit comparisons using decision tree algorithms 
	Decision trees are used here as supervised machine-learning algorithms to break down a complex decision-making process into smaller, more manageable steps. This is done by recursively partitioning the feature space into a set of rectangles and assigning a constant (e.g., fit or non-fit) to each. A single tree can fully describe the feature space partitioning. Creating the decision tree is equivalent to finding the optimum partitioning for an n-dimensional feature space. 
	Finding the optimal partitioning of the feature space is shown to be a nondeterministic polynomial-time complete (NP-complete), a type of computational problem that no efficient solution algorithm has been found to solve, and so scientists use different approaches to find locally optimal partitioning. The methods to quantify the quality of each split include misclassification rate, entropy, and Gini index. This study uses the DecisionTreeClassifier function implemented in the Scikit learn package using the 
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	Task 3 (Objective 2) — Develop an extensive database on trace physical fractures of duct tape, textiles, and plastics, and test the method proposed under Objective 1. 
	The data generated from this study will serve as an essential body of knowledge for interpreting fracture fit evidence. We have created the most extensive available collection set on trace physical fractures to serve as the basis for the validation of decision criteria and statistical methods for quantitative assessment of the evidence. We collected nearly 9,000 items to generate 4,733 independent physical comparison pairs (Table 4). Since the “ground truth” of the source of each sample is known, the datase
	The data generated from this study will serve as an essential body of knowledge for interpreting fracture fit evidence. We have created the most extensive available collection set on trace physical fractures to serve as the basis for the validation of decision criteria and statistical methods for quantitative assessment of the evidence. We collected nearly 9,000 items to generate 4,733 independent physical comparison pairs (Table 4). Since the “ground truth” of the source of each sample is known, the datase
	performance studies can detect the effects of the different factors (and their two-way interactions) on the ESS scores and respective performance rates. 

	Table 4. Sample information for the development and validation of the database of fracture fits. 
	25 
	Two main types of data are generated in the study, 1) metadata in the standardized reporting templates containing qualitative descriptions and numeral data, and 2) images of the samples scanned and curated as explained in the previous task 2 section. The samples were prepared by nonparticipating students, maintaining the examiners blind to the origin of the samples during the examination and data analysis. A random number generator was then used to create new sample ID numbers to minimize bias and the groun
	-

	Duct tape dataset sample preparation 
	The tape rolls used to create the subsets for this study were of different grades (Figure 15). All the within-set pairwise comparisons were prepared using pieces from the same roll by either tearing the tape by hand or cutting it with a pair of scissors. To simulate complex samples, a subset was also stretched by removing three times the tape from the acetate and stretching it in the width and length directions. The fractured pieces are approximately four inches long and placed onto transparent acetate film
	The participating examiners were given a standard reporting template to fill out with the comparison pairs pre-listed (Microsoft Excel spreadsheet) and asked to examine the assigned pairs, first documenting observation for the questioned (set arbitrarily as left side sample in the list), followed by the known sample, and then placed them side by side. The low and mid-quality tape sets had semitransparent adhesive, allowing the scrim to be seen through the acetate and the adhesive. Observations were made usi
	-

	Textiles dataset sample preparation 
	The textile physical fit study originally consisted of sampling and analysis of 600 total 100% cotton comparison pairs split evenly between plain weave, pattern weave, and plain knit design and construction types. However, due to some stretching and suitability issues observed in some fabric configurations, the set was increased to 967 comparison pairs to account for other factors (see Figure 15). The textiles used for this study were collected via anonymous donations, including clothing with some normal we
	Comparison pairs were then generated by dressing selected garments onto a foam mannequin. Hand-torn samples were collected by first creating a small 0.25-inch incision to facilitate the tearing process. The garment was then torn by hand to produce an approximate 3 inches fracture. Stabbed pairs were collected using a brand-new 8 inches chef’s knife. A guard was placed on the knife’s blade at 2.5 inches from the tip of the knife to help control penetration depth, and thus, fracture length. The garments were 
	Table 5. Table of fabrics used in this study, including their composition and construction, separated by set. The number in parenthesis in the description column represents the respective textile ID number.
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	Plastics dataset 
	Plastic fragments were collected from shattered headlights, taillights, and bumpers from various vehicles from the WVU Crime Scene Complex and local junkyards. The original light assemblies were documented with images and then disassembled to the extent possible to separate the different observable polymer types (i.e., clear automotive lens cover, black housing, silver accents, and colored sections). Figure 16 shows an example of one of the headlights in its original form, the different components removed, 
	Following deconstruction, the different components are broken further into smaller fragments. Images of each intact polymer are captured before fracturing using a Nikon 7200 DSLR camera with an AF-S Nikkor 18-140 mm lens. After imaging, one side of each sample is covered in painter’s tape to ensure that most fragments stay together after fracturing. The polymers are fractured by placing each piece within a square concrete housing and dropping a 16 kg kettlebell directly onto the polymer sample from a consis
	Since consecutive numbers can induce some bias in the analyst performing examination, another analyst, not participating in the breaking renamed the items with unique identifiers that are selected in a random code. The ID includes differentiation between headlight and taillight, the number of the original polymer sample, the fragment number, and a randomized two-letter code. For example, H2.8TX represents Headlight 2, Fragment 8, and TX is used as a random ID for that specific fragment. Also, each label pla
	-

	True fit comparison pairs are created from pieces known to have been joined together. The individuals preparing the samples then compared the fragments to identify fragments that were not joined together but have similar edge characteristics to create convincing non-fitting comparison pairs and a second examiner (not involved in the blind examination) verifies the quality of non-fits selections. Once the true fitting and true non-fitting pairs were curated, north-east-south-west (NESW) direction codes were 
	Over 1,300 fragments were broken, reassembled, and stored in the laboratory. From this set, 445 comparison pairs, including know true fit and known non-fits were created and analyzed (see Figure 15), and the remaining pieces are kept in the collection for future studies. 
	Task 4 (Objective 2) — Validation of quantitative methods for assessing the probative value of fracture fits. 
	Several methods are used to evaluate the probative value of a fracture fit using the large datasets described in task 3. The first method considers that fracture fits are reported using categorical conclusions, such as fit, inconclusive, or non-fit using the standardized and systematic methods developed in this research. When examining a fracture fit between two objects from which the ground truth is known (but maintained blind to the analyst), six main outcomes are possible: a) true positive, 
	b) true negative, c) false negative, d) false positive, e) inconclusive when the objects originate from the same source, and f) inconclusive when the objects originate from different sources. By estimating the rate of these six possible outcomes using a dataset of independent pairs of objects that simulate casework samples, we can estimate the overall performance rates of fracture fit decisions, such as sensitivity, selectivity, and accuracy. These are important indicators of the reliability of the method. 
	To provide measures of the probative value of fracture fits on continuous scales, we leverage the similarity scores developed during Task 1 (ESS and FPS with the systematic manual method) or Task 2 (computer-based method). Empirical probability density functions of the level of similarity in mated and non-mated pairs of objects can provide valuable insights into the capabilities and limitations of the comparison methods through boxplots, Kernel density functions, Receiver Operating Characteristics (ROC), st
	A critical aspect of the study was first to identify the most distinctive features in a physical fit that, then develop standardized terminology and a systematic method for documenting those features during examination. Second, study the main factors that can influence the quality of a fit and the quantitative metrics. Finally, develop methods to assess the probative value of the evidence and assess intra and inter-examiner variations. 
	Task 5 (Objective 3) — Design interlaboratory studies for the evaluation of error rates of the proposed comparison approach among practitioners 
	After assessing the methods’ accuracies with the large datasets, the overall utility of the methods was tested via inter-laboratory tests. The utility is defined as the “base” consistency rates among examiners using the proposed methodologies. The inter-lab collaborative exercises are anticipated to assist with the standardization of the methods of analysis and interpretation, educate the end-users on the novel protocols, improve the procedures by incorporating the participants’ feedback, and facilitate the
	Duct tape interlaboratory studies Sample preparation and design of studies. The tape samples utilized in these exercises originate from medium-quality grade duct tape. Each sample consists of a hand-torn, 6-8 cm long strip of the roll. Samples are placed on clear acetate and labeled with unique identification numbers that are traceable to the coordination body but maintain the ground truth unavailable to the participants.
	3 

	Pre-distribution consensus results are reported by four independent analysts using a blind process, using the protocols described in task 1. Twenty-one (21) pairs resulting in inter-participant ESS relative standard deviations lower than 10% ESS are selected from the sample set. Table 6 shows that these pairs are rearranged into 3 kits of 7 comparison pairs each, with fracture edge morphology (straight, wavy, or puzzle-like) and ESS as close as possible within each kit. Classification of the seven optimized
	Table 6. Description of the seven tape pairs selected for each of the three interlaboratory kits, and respective images, ground truth, and consensus values obtained by the pre-distribution examination panel.
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	The tests are designed as a Round-Robin where each participant independently receives, processes, and returns the kit and documentation to the coordination body. Study kits are distributed so that each kit returns to the coordination body before re-distribution to the next participant. Since only 3 kits can be shipped at a time, and each laboratory is given 3-4 weeks to complete the exercise, each study took nearly one year from design to collection of data. The results include 252 examinations from 38 part
	The tests are designed as a Round-Robin where each participant independently receives, processes, and returns the kit and documentation to the coordination body. Study kits are distributed so that each kit returns to the coordination body before re-distribution to the next participant. Since only 3 kits can be shipped at a time, and each laboratory is given 3-4 weeks to complete the exercise, each study took nearly one year from design to collection of data. The results include 252 examinations from 38 part
	material containing examples of the feature descriptions and an explanation of the ESS method to familiarize themselves with the protocols. 

	Textile interlaboratory study Sample preparation and experimental design 
	The inter-laboratory study is distributed to 15 participants from ten U.S. laboratories. Each participant is assigned a unique identification code, and the study is conducted anonymously and following a blind approach, meaning participants don’t have access to the ground truth and are instructed to complete the study independently of any other analyst. 
	Prior to distribution, a consensus of results is evaluated by a panel of five independent student analysts. The student analysts examine the images of each comparison pair and document their conclusions using the same techniques the study participants will use. The study consists of three pairs, one true non-fit, and two true fits, with one true fit exhibiting more straightforward features that should lead to a high-confidence fit conclusion, while the other has more challenging features that it is anticipa
	comparison is 27% ± 14%. A summary for each of the three pairs included in this study can be seen in Table 7. 
	7 

	To minimize the risk of edge distortions while passing the fabrics across participants, the exercise consists of digital images of the textile pairs instead of the items themselves. Also, because some laboratories verify physical fits through images of the samples, this study is designed to simulate that verification process. One advantage of this design, as compared to the duct tape one, is that the digital version allows faster turn-around times. Each pair is scanned using an Epson Expression 12000XL scan
	7 

	Table 7. Summary of textile pairs selected for the pilot interlaboratory study, including ground truth and pre-study consensus scores for each pair. 
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	1.4.2. Data Analysis 
	Data analysis in this project required using metadata (descriptive nominal), and numerical data (ESS, FPV, FPS metrics, probability outputs) as well as digital images. To assess performance, false-positive rates, false-negative rates, sensitivity, specificity, and accuracy are reported for each duct tape, textile, or plastic dataset. 
	The data are also analyzed using box plots, a logistic regression model, and score likelihood ratios from the ESS and FPS metrics. The plots can aid in visualizing the spread of the ESS metrics assigned to true-positives and true-negatives in the dataset, as well as any potential overlaps between ground truth sets. Histograms, kernel density distribution plots, ROC curves, and Tippett plots provide insight of the discrimination power and accuracy of the method. A logistic regression model is used to study t
	The data are also analyzed using box plots, a logistic regression model, and score likelihood ratios from the ESS and FPS metrics. The plots can aid in visualizing the spread of the ESS metrics assigned to true-positives and true-negatives in the dataset, as well as any potential overlaps between ground truth sets. Histograms, kernel density distribution plots, ROC curves, and Tippett plots provide insight of the discrimination power and accuracy of the method. A logistic regression model is used to study t
	case, the dependent variable is the value of the ESS, and the predictors are factors that are thought to influence the quality of a physical fit. For example, in the case of textile the factors of interest are the separation method (hand-torn or stabbed), the construction of the textile (knit or weave), the composition of the textile (cotton, polyester, mixed), and the design of the textile (unicolor or multicolor). Variable selection determines the level of interactions between the predictors. 

	Several computational algorithms are used throughout the study. Convolutional neural networks are used to evaluate the digital images of known-matted and known-non-matter pairs as explained in task 2 and to create the database. Mutual information algorithms are used to extract bib-by-bin data to evaluate level of importance of each fracture feature and determine the effect of comparing two samples, when one of them has only a portion of the item left. Lastly, this study uses the DecisionTreeClassifier funct
	Performance rates and statistical analysis are performed in Microsoft Excel (Version 19.08), JMP Pro 16 (v.2021, SAS Institute Inc., NC), and mathematical and statistical algorithms created in open access R (version 4.2.2, R studio version 2022.07.2+576). Computational algorithms used open-source Python packages. 
	To maintain traceability of the data, files are named with pre-determined nomenclature. An inventory master list is created for this databaset, containing the ID number and the respective metadata and descriptors associated with each sample. For the interlaboratory study, the ID of the participants remains anonymous. Each data file collected is stored in a centralized computer following WVU technical support protocols to ensure data security. All the collected data is evaluated separately by at least two in
	1.5.Expected applicability of the research 
	Fracture fits are considered the highest degree of association between two trace materials. Still, an objective and statistical assessment of the weight of the evidence is not yet used in current practice. This research has generated, for the first time, a large dataset of fractured duct tapes, textiles, and plastics to provide: 
	1) Systematic methods of analysis, 
	2) Quantifiable methods for the evaluation of the quality of a fracture match, 
	3) Assessment of the accuracy and reliability of the fracture fit comparisons and conclusions, 
	4) Decision criteria thresholds for human-based and computational-based approaches to assess the evidence, 
	5) Formal assessment of inter-examiner error rates that can serve as a basis for optimal content on training, proficiency testing, and 
	6) A model for an effective and traceable peer-review process. 
	In particular, our study is designed to address the research needs identified by NIST-OSAC and six of the top ten operational requirements specified by the NIJ-TWG on pattern and trace evidence. Moreover, the strategic multi-disciplinary team of researchers and practitioners is critical for transformative and adoptable end-products. Relevant population datasets are used to develop user-friendly automated interfaces to estimate the significance of a given fracture fit and to substantiate the expert conclusio
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	Moreover, the interdisciplinary nature of this study has provided advanced STEM technical training and education to undergraduates, graduate students, and post-doctoral fellows, preparing a future generation of forensic scientists with more robust skills to enhance forensic science practice. 
	The project is at the stages of method development and validation. Nonetheless, the partnership between the diverse academic team, statisticians, and practitioners has been crucial in disseminating the primary outcomes of this project and envisioning future adoption in the field. In particular, we collaborate with forensic laboratories that provide physical fit examination services. Also, the interlaboratory studies help engage the end-users in assessing the utility of the proposed approach (51 practitioner
	One major advantage of this approach is that the method adoption does not require much investment, other than a microscope (widely available at crime labs), the custom-made Microsoft reporting templates, and the personnel time required to train the practitioners and incorporate the new methods into their quality management system. 
	This research narrows the current knowledge gap in forensic fit examination and brings several benefits (see Figure 17) to the criminal justice system: 
	1) Provides simple protocols that can be easily adopted at laboratories, 
	2) Increases the current capacity to demonstrate the thought process and judgment criteria in a physical fit examination to complement and modernize current practice, 
	3) Access to systematic approaches to aid in the standardization of examination and interpretation criteria for physical fits and increase the consensus among laboratories protocols and practitioners’ opinions when conducting physical fit examinations, 
	4) Improves objectivity with quantifiable data-driven conclusions and probabilistic interpretation of the probative value of the evidence, 
	5) Increases transparency in the documentation and peer review process, facilitating more independent, objective and blind verification processes, and assisting with training protocols to compare directly the decision criteria between trainers and trainees. This also helps in the incorporation of more stringent quality controls and monitoring of potential bias in the process, 
	6) Assists practitioners in supporting and informing opinions with protocols and metrics that built the scientific validity in this field. 
	II OUTCOMES 
	2.1. Activities/accomplishments 
	One of the main goals of this project is to contribute to the preparation of a specialized future workforce in STEM. This project provides unique opportunities for students and faculty to network across several disciplines, including forensic science, physics, mathematics, and statistics. Our research team comprises several researchers; Dr. Trejos and Dr. Romero serve as the PIs, overseeing the project and mentoring graduate students and undergraduates. Also, Dr. Cedric Neumann collaborates as consulting st
	The research team progressed on each of the main five tasks and 77 activities proposed in this award, with the following major accomplishments: 
	1. 
	1. 
	1. 
	Novel methods for comparing fracture fits using human-based and automated algorithm approaches. Comparison methods for the forensic fit examination of duct tapes, textiles, and polymers. The methods include identifying and reporting relevant and distinctive features and an approach to document and quantify the quality of the fit. 

	2. 
	2. 
	The creation of the ForensicFit database and access to the package and algorithms. 

	3. 
	3. 
	A collection database that consists of 3321 duct tape comparison pairs (various quality grades), 967 textile fit comparisons (various fabrics compositions, textures, and constructions), and 455 comparison pairs from vehicle plastics (headlights, taillights, and bumpers). To simulate samples typically seen in casework, the duct tape edges are created by scissor cut or hand-torn, and further stretched, whereas the textiles are stabbed or hand-torn, and the polymers are fractured by impact to simulate impact f

	4. 
	4. 
	Analysis of nearly 5,000 tapes, textiles, and polymers, and a physical collection of around 9,000 samples and digital images. For each set, the results are documented, including data analysis and interpretation. 

	5. 
	5. 
	Validation of a quantitative method for assessing the probative value of duct tape fits, which serve as a basis for other materials in this study. 

	6. 
	6. 
	A logistic regression model is developed to evaluate the effect of various factors on score metrics for predicting a fit or non-fit for duct tapes and textiles. 

	7. 
	7. 
	7. 
	Design of interlaboratory studies for duct tapes, instructional videos, and training sessions to recruit forensic practitioners. Through the collaboration of 38 forensic practitioners from 23 

	laboratories, the results from 252 examinations are compared across participants and to a consensus ESS established prior to administering the studies by an independent panel. 

	8. 
	8. 
	A workshop for 30 practitioners on physical fit examinations at the MAFS/ASTEE 2022 meeting. This helps to disseminate the methods developed within future end-users, receive valuable feedback for improvements, and recruit volunteers for interlaboratory exercises. 

	9. 
	9. 
	Design of an interlaboratory study for textile fit examination, instructional videos, and training sessions to recruit forensic practitioners. The inter-laboratory study is distributed to 15 participants across ten laboratories. The results from 45 examinations are compared across participants and to a consensus ESS established prior to administering the studies by an independent panel. 

	10. 
	10. 
	A virtual session to discuss the results of the duct tape and textile interlaboratory studies, with 42 participants from forensic agencies, research centers, and academia. 

	11. 
	11. 
	Graduate students are trained in statistical packages (R) and programming language (Python), and undergraduate and graduate students in data curation and archiving, sample preparation, and examination of duct tapes, textiles, and polymers. 

	12. 
	12. 
	The research findings are disseminated through 1) publishing four manuscripts and 4 more are under journal revisions, 2) presenting the findings at 12 scientific meetings, nationally and internationally, 3) leading one workshop and one informative session with practitioners to familiarize them with the new methods and scope. 


	2.2. Results and findings 
	2.2.1. Executive summary of the main findings of the research 
	This project aimed to develop an effective and practical approach that provides an empirically demonstrable basis to assess the significance of trace evidence fracture fits. We have accomplished this goal by: 
	1) Developing a systematic method for the comparison of fracture fits of common trace materials such as duct tapes, textiles, and plastics, using both human-based protocols and automated computational algorithms. 
	2) Developing a relevant extensive database of nearly 5,000 comparison pairs to assess the weight of a fracture fit using similarity metrics, probabilistic estimates, and score likelihood ratios. 
	3) Evaluating the utility and reliability of the proposed approach through inter-laboratory studies that can establish consistency base rates. The strategic partnership of experienced forensic researchers, computational material science physicists, statisticians, and practitioners has been crucial for planning the adoption of the developed approaches within crime laboratories. 
	Some of the major findings of this study are: 
	1) Not every physical fit determination holds the same probative value. There is a wide arrange of factors that can influence the quality of a fit; therefore, our study demonstrates that quantifying the quality of a fit can assist forensic practitioners in informing and supporting their decisions. The study also raises awareness of the importance of assessing the suitability of certain materials for physical fit examinations and conducting a thorough assessment of a fractured edge to substantiate a physical
	2) The fracture edge features that are relevant and more individualizing are particular to each material composition, construction, and separation method. The results of this study reveal that the separation of textiles, duct tapes, and plastics impart different features to the fractured edges, and that the influence of various factors on the quality of a fit and error rates vary by material type. Thus, standardized material-specific terminology and criteria are crucial to harmonize and optimize protocols o
	3) There is a risk of introducing bias and errors when the examination of physical fits is conducted merely based on the judgment of the examiner, particularly in the absence of consensus-based criteria. To minimize those risks, qualitative and quantitative descriptors of the quality of a fit or non-fit can be standardized and documented to demonstrate the basis for conclusions. 
	4) The methods developed in this study have several benefits: 1) provide a systematic method to utilize qualitative descriptors and quantitative metrics to inform and substantiate the examiner opinion, 2) offer a practical mechanism to document the examiner’s thought process, which adds transparency and minimize risks of bias, it also allows for a means to improve peer-review and verification processes, 3) the metrics provide criteria to assess the probative value of a fit and visualization methods to demon
	5) This study demonstrates the feasibility of computational algorithms to build physical-fit databases and automated comparisons using deep neural networks, which can be used as a model for other materials. Although the algorithm rates are not as good as the human-based rates, it shows that CNN are a feasible approach to assist practitioners and to understand the most critical features identified by the CNN and supplement decision criteria independently documented by the examiner. 
	6) Overall, performance rates evaluated in this study through the blind examination of extensive datasets of duct tapes, textiles, and hard polymers representing casework-like items demonstrate that the accuracy of physical fit examinations is high with a very low incidence of false positives. These error rates, however, depend on various factors, including the type of material and conditions of the specimens: 
	a. Duct tapes: 1) The accuracy of physical fit examinations is generally high (over 98%) except for higher quality grade hand-torn tapes (~84%). 2) No false positives were reported for any of the sets examined (>3,320 pairs examined). Overall, this research demonstrates that the occurrence of observing a physical fit on two duct tape pieces that were not joined together is extremely rare, as no false positives are observed in the various populations evaluated. 3) When evaluating the statistical effect of th
	a. Duct tapes: 1) The accuracy of physical fit examinations is generally high (over 98%) except for higher quality grade hand-torn tapes (~84%). 2) No false positives were reported for any of the sets examined (>3,320 pairs examined). Overall, this research demonstrates that the occurrence of observing a physical fit on two duct tape pieces that were not joined together is extremely rare, as no false positives are observed in the various populations evaluated. 3) When evaluating the statistical effect of th
	-

	quality, and then high-quality grades. As such, it is critical for examiners to consider the type of tape during physical examinations. 

	b. 
	b. 
	b. 
	Textiles: 1) The accuracy of physical fit examinations is generally high (88 to 100%) but generally lower than duct tape, as more variables can cause distortions on fractured textiles. 2) False positive rates are low, but not zero; the observed false positive rate (2% false positives, 10 of 477 total true non-fit pairs) raises a flag and demonstrates the importance of assessing the quality of a physical fit during an examination to minimize risks. 3) A suitability assessment was deemed necessary prior to ph

	c. 
	c. 
	Hard plastics: 1) The accuracy of physical fit examinations is generally acceptable (85 to 90%) but relatively lower than duct tape and textiles, as more variables cause distortions on fractured plastics and some lack of distinctive features can lead to higher rates of false negatives. 2) The method demonstrates that most true non-fit polymers receive low ESS (0-10%) and low FPS (less than -5). True fit pairs generally receive high ESS (90-100%) and high FPS (greater than +15). Therefore, ESS and FPS metric

	d. 
	d. 
	Sample size and suitability: As it’s not unusual for analysts to receive items that are partially damaged or with missing portions, this study answers the question of how small a partial sample can be before it becomes unreliable for physical fit examinations. The results of the models indicate that acceptable accuracies for correctly identifying true fits and non-fits occur when at least 35% of a sample length is present. However, lower accuracies are observed for samples prone to stretching or distortion.

	e. 
	e. 
	Quantitative metrics of the quality of a fit: The ESS and FPS metrics demonstrate good performance to assess the quality of a fit and they are very versatile in the sense that they can be used in different ways to assess a fit examination. For example, the metrics are easy to interpret and can be used as a simple criterion based on experimental thresholds of the scores. They also provide a basis to evaluate the scientific validity of the field through performance rates. Additionally, the FPS also provides a


	7) Interlaboratory studies reveal that inter-examiner agreement rates above 95% are attained when using the proposed examination, documentation, and interpretation methods. Overall, the studies demonstrate that the proposed ESS method provides support to participant conclusions, demonstrates scientific reliability with low error rates and high accuracies, and offers analysts systematic and transparent documentation criteria. 
	8) In summary, the lessons learned in the studies serve as important benchmarks to provide criteria that assist with standardization and transparency of the examination and interpretation, and a mechanism to demonstrate the thought process during training, examination, technical review, or verification of physical fits. These findings are anticipated to offer a path forward to the forensic examination of physical fits and facilitate incorporation into current guidelines. The proposed method aligns with ongo
	The focus of this research is to improve objectivity, consensus, and scientific validity in the discipline. This is achieved through various stages of the investigation, and a brief discussion of the primary results is provided below. However, additional information can be found in the cited publications derived from this award effort (see section 3.1 of this report) 
	2.2.2. Duct tapes physical fit method: evolution through the validation process 
	Duct tape was the first material of choice for this study as it is one of the primary items submitted for The versatility of duct tape makes it a piece of evidence that can be used in many circumstances, such as gaging or restraining a victim, building an improvised explosive device, and smuggling drugs, to mention a few. Thus, its potential value in forensic science is remarkable, as it can provide leads during an investigation and high probative value to link the fractured object to another item found at 
	fit examinations.
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	Some literature on duct tape fits provides an important foundation for this research , as well as a preliminary method developed by our group that serves as an important basisMore recently, some contemporaneous publications agree with our findings and provide additional validity to the experimental approaches that are used here.In this research, the proposed method for examination, documentation, and interpretation has evolved through the feedback provided by analysts and an inter-disciplinary team of resea
	39-44 
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	Milestone 1¾Method development and optimization of standardized criteria 
	First, the main novel aspect of the proposed method is the development of standardized terminology and the identification of relevant features. This is not a trivial task, as it is the central aspect of creating sound criteria for what constitutes an individualizing feature. This is achieved through the analysis of the occurrence of various edge features in known true fits and non-fits sets. Second, we develop quantitative metrics to assess the quality of a fit and serve as a more objective means to interpr
	First, the main novel aspect of the proposed method is the development of standardized terminology and the identification of relevant features. This is not a trivial task, as it is the central aspect of creating sound criteria for what constitutes an individualizing feature. This is achieved through the analysis of the occurrence of various edge features in known true fits and non-fits sets. Second, we develop quantitative metrics to assess the quality of a fit and serve as a more objective means to interpr
	experimental designs is to assure we could assess potential bias and error rates with an appropriate sample size to make valid statistical inferences of factors that influence the quality of a fit. 

	Here, one of the main discoveries is that duct tape tends to fracture in four main patterns that we defined as angled, straight, wavy, and puzzle-like, as illustrated in Figure 18. Also, the occurrence of these patterns is dependent on the separation method and quality grade of the tape. Figure 19 and Figure 20, illustrate these findings. For example, for hand-torn sets, the lower scrim count in the low-and medium-quality tapes can cause irregularity and more puzzle-like edges when the tape is torn, while t
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	Scissor-cut edges consist of straight, angled, and wavy patterns, regardless of the tape grade. In very few cases, scissor-cut tapes produce puzzle-like patterns caused by a slight change of directionality on the cut, particularly with thicker adhesives (Figure 19). 
	44 
	Also, after separating hundreds of duct tape pieces, and evaluating the features that are indicative of a fit or non-fit, we define eight main features for the examination of duct tape as follows (see table 8): 
	1. 
	1. 
	1. 
	Alignment of severed dimples: these are severed dimples on tape backings that align from one edge to the other in shape, size and location across the fracture. This feature is only applicable on the backing side. When it is present and aligns across the separated edges, it can provide support to a fit decision because these manufactured-imparted marks have some inherent variability across a single roll and when split through the fracture, those patterns are very unlikely to align by chance. Likewise, when t

	2. 
	2. 
	Calendaring striations across the edge: calendaring striations are small scratches or marks left during the manufacturing process on the backing side. When these marks align across fracture edges in their relative position, shape, and depth, they can provide support for a fit. Otherwise, when they show misalignment, they support a non-fit. 

	3. 
	3. 
	Alignment of warp scrim: warp fibers are an inherent component of duct tape, and they are known to be present and constructed in a reproducible manner across a tape roll. Therefore, when these fibers transverse the fracture and align to the corresponding fiber on the other side, they support a fit decision, and vice versa in a non-fit situation. 

	4. 
	4. 
	Correspondence of protruding warp yarns and the respective pattern gaps in the otheredge: when the separation of the tape lifts warp fibers away from one of the edges, leaving an indentation on the adhesive of their original location, the correspondence of the warp fibers that extend past the edge of one tape piece and the gap of the missing scrim on the opposite side becomes evident. This feature, when present can support a fit decision. 

	5. 
	5. 
	Weft scrim at or near the edge consistent with the overall weft pattern: another important component in the scrim construction is the yarn that runs across the width of the tape. Because, the separation and construction patterns are reproducible within a single roll, and variable between different roll sources, this feature can be valuable in the examination. When the weft yarns on each edge are consistent with the rest of the weft fibers on the opposing edge, they support a fit decision; otherwise, they su

	6. 
	6. 
	Continuation of scrim weave pattern: this feature refers to the consistency, or inconsistency, of the construction pattern of the weave and warp yarns in the separated edge as compared to the expected sequence of the pattern observed in the rest of the tape pieces. And the continuation, or lack of, can aid in the fit or non-fit determination. 

	7. 
	7. 
	Distortion explained by stretching directionality: stretching inevitably occurs to some extent during a tape separation and this can hide both non-fitting and fitting features. When the alteration to the backing and adhesive morphology coincides with the direction of the tearing, the distortion can be explained although it would not provide a strong support of a fit. Otherwise, when the distortion is not explained by stretching directionality, the feature can lead to a non-fit decision or an inconclusive re

	8. 
	8. 
	Missing material: gaps left on the edge alignment by missing material can provide support for non-fit decisions. 


	Table 8. Table of features extracted from the documentation for tapes and the respective response options for observation of the features at the macroscopic and microscopic level.
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	With these bases, a systematic documentation template is created to document the observed features during macroscopic and microscopic stages of the examination, report a score per bin that provides visualization at-a-glance of fit, non-fit and inconclusive areas, and estimate the ESS. A workflow and defined criteria are proposed, proving a path forward to address standardization and consensus within the discipline (see Figure 21). 
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	To illustrate the use of the proposed approach, a kidnapping/homicide mock case is described here. In this case, the mock scene includes a victim who is bound and gagged with duct tape, and the evidence is collected to simulate a high level of difficulty for the tape examiners. For example, some items are stretched during the restraining to the victim and placed on full acetate sheets, while others are crumpled up in plastic bags, as shown in Figure 22. A known tape roll is submitted for comparison. Upon ex
	Fig 22. Images taken of the tape samples collected from the mock crime scene. Image A, shows a tape placed on the mannequin. Image B, shows a tape sample that was received crumpled, and image C shows a false negative example of a distorted tape (right) compared to the  known source (left). Adapted  from Prusinowski et a.l. 
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	Fig 23. Left: Score distributions of the true positives (TP, blue) and true negatives (TN, green) of the medium quality tape hand-torn set for both participating analysts. Right: Logarithmic score likelihood distribution for both analysts in the medium quality tape hand-torn set. 
	Three analysts independently examine the tape pairs. The criteria they used for ESS are 0-40% fit support, 40-60% inconclusive, and 60-80% weak-moderate support of fit, 80-100% moderate-strong support of fit. The SLRs provide an easier scale to express the opinion as it is not tightly binned as the ESS, but they complement each other. All of the non-fitting tapes are correctly identified in this case, with ESS ranging from 0-30%, and SLR ranging from 0.0001 to 0.01, thus no false positives were reported. Of
	6 

	Table 9. Range ESS and score likelihood value (n=3) and interpretation for each known match for the casework set (nine questioned items). Adapted  from Prusinowski et a.l. 
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	Milestone 2¾Method validation through large databases and evaluation of factors that affectperformance rates 
	As described in the “research design, methods and data analysis” section, the duct tape forensic examination method is validated through a large database of over 3,000 comparison pairs of various qualities and separation methods. This validation provides answers to the following research questions: 
	1) Do all physical fits hold the same probative value? Can quantitative metrics demonstrate the quality of a fit and be used for the probabilistic interpretation of the evidence? 
	2) What are the performance rates of physical fit examinations? 
	3) Which factors influence the occurrence of these features and the quality of a physical fit? 
	4) Can standardized protocols be developed for the examination, documentation, and interpretation of physical fits through the assessment of the method via large datasets and interlaboratory studies? 
	The answer to the first question is “no”, not all physical fits hold the same probative value, as we will demonstrate in the next paragraphs. Indeed, the use of quantitative metrics ESS and SLRs are key to demonstrating this point. 
	Let’s first look at the analysis of method performance and distributions of edge similarity scores on true-fit and true-non-fit populations from an exploratory perspective. For the ESS score (and respective SLR) to help in assessing the quality of a fit, there should be a minimal overlap of the observed scores in true fit and non-fit datasets, and the value of that score should serve as a scaled range of the probative value, rather than a binary decision. In other words, ideally, if the metrics are informat
	One simple way of visualizing the distribution of the scores in true fits and true non-fit datasets, is through distribution graphs such as histograms or boxplots. Figure 24 displays the experimental ESS for each set of tapes based on the ground truth. For most of the sets, there is an observable separation between the ESS obtained for true fit pairs and the non-fit pairs (i.e., minimal overlap, high discrimination power). The score distributions for all the sets for true non-fit pairs are generally consist
	4,6 

	Some trends are helpful to understand the different behavior in some subsets. For example, for hand-torn sets (HT), a broader variability of scores and a shift to slightly lower rates in the distribution of true fitting pairs is observed in the HQ-HT and LQ-HT, resulting from the edge morphology and predominant features observed on those sets. The distribution of scores for stretched true fits in the LQ-HT-S is also consistent with the LQ-HT set. The scissor-cut sets for both low-and high-quality tape have 
	4 

	The distributions of scores for the true fitting pairs in both HQ-HT and HQHT-S are much wider than in any other set. This is explainable when looking back at the most prevalent fracture patterns of HQ-HT. As illustrated before, HQ-HT tends to fracture in straight edges; thus, is prone to contribute fewer features for comparison. The distortion of the samples caused by removing the thick adhesive and the additional stretching compounds the issue with this type of tape, indicating that the high-quality tape 
	-
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	When using the ESS criteria to form opinions, the method demonstrates good performance, with accuracies for all sets at approximately 98% or higher, except for the HQ-HT sets (80-85%). As seen in Table 10, the tape subsets in this study did not result in any false positive results. This is a critical finding as it provides scientific support to the general belief that tape separated items exhibit physical features that realign in a manner that is not expected to be replicated by chance. As anticipated from 
	Table 10. Summary of the method’s performance rates for the duct tapes. For the low quality (LQ), medium quality (MQ), and high quality (HQ), the subsets are labeled as scissor cut (SC), hand-torn (HT), and hand-torn stretched (HT-S). Two analysts independently evaluated the MQ-HT set. There are no false positives reported for any set. Inconclusive results are not included in the false positive and negative rates but are incorporated in the overall accuracy estimation. 
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	53 
	To further evaluate factors that can affect the ESS scores and quality of a fit, we use a logistic regression generalized linear mixed effect model. This model is only meant to interpret the effect of the different factors through the interpretation of the regression coefficients, and not for predictive purposes. The coefficients of our model are estimated by considering the log-odds transform of the ESS for each comparison as the dependent variable, and encodings of the different levels of the different fa
	4 

	The results show that the effect of separation and the quality of the tape have varying effects depending on the ground truth. For example, 
	1) For non-fits, the ESS trend towards low values, and the influence of the separation method and quality of tape on the ESS values is negligible 
	2) For true fit pairs, scissor-cut tapes tend to result in higher scores in comparison to hand-torn pairs. 
	3) Regarding tape quality, in true fit pairs, medium-quality tapes tend to receive higher scores overall, followed by low-quality, and then high-quality. 
	The observed effect seen in the counterfactual plot shown in Figure 25 coincides with the exploratory data analysis from the different tape sets. Counterfactual plots explore the effect of each experimental factor on the log odds of the ESS (and, therefore, on the similarity scores). Counterfactual plots show the distributions of the expected values of the dependent variable under all combinations of levels of the different factors of a model, accounting for the uncertainty in the values of the model’s para
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	Figure 25A shows the counterfactual plot for the grade of tape. The left side of the counterfactual plot shows the distributions of the expected values of the log-odds ESS resulting from the model, while the right side of the plot shows kernel density estimated distributions of the empirical ESS data from the analyzed tape pairs. The empirical results indicate that there are statistically different effects for the different levels of the grade factor, as the distributions for the coefficient values for the 
	When considering the separation method, Figure 25B confirms that cut tapes result in better separated ESS distributions than torn tape. These results indicate that despite the cleaner edges, scissor-cut edges still retain sufficient features for reliable comparisons, particularly when these observations are made at the microscopic bin sub-unit.
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	Figure 25. Counterfactual plot showing the distributions of the expected ESS values for duct tape data. The counterfactual plot shows both the expected ESS values resulting from the model, as well as the experimental data. Figure 25A (top) shows the distributions marginalized for grade of tape. Medium-quality tape generally results in higher ESS than when other types of tape when samples truly originated from the same tape. Figure 25B (bottom) shows the distributions marginalized for separation method. Scis
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	Milestone 3¾Practitioners’ contributions: testing and fine-tuning through interlaboratory exercises. 
	The practitioner’s feedback is one of the most critical stages in the assessment of a new method. Here, we conduct two interlaboratory studies to evaluate the performance of the method. A total of 266 pairs are examined by thirty-eight (38) participants across 23 laboratories. Each participant receives a kit with seven questioned-known tape pairs to conduct the physical examination and fit assessment. The participants' responses are compared to a consensus pre-distribution panel and to the mean of the parti
	Several improvements are made to the overall method based on practitioners’ feedback. For instance, the process is split into three main defined steps, in the first step the analyst reviews the question sample first before seeing the known, which is an additional effort to minimize bias. The second step and third steps include additional auto-populated cell options to annotate the importance of each of the relevant features. Also, an inconclusive bin-score option is added to the template. Finally, the templ
	Figure 26 shows an example of the display of the participants' responses for the second exercise using z-scores. Here, the z-scores are bracketed into three regions, z-scores below 2 are considered satisfactory meaning they agree with the study-mean within that interval, while z-scores between 2 and 3 are considered cautionary, and above 3 the results are insufficient. In this study, most responses were deemed satisfactory, with only 5 responses being cautionary and one insufficient for one participant for 
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	outside the confidence interval). Ground truth of the samples is as follows: Sample I (F+), Sample II (F-), Sample III (F+), Sample IV(NF+), Sample
	outside the confidence interval). Ground truth of the samples is as follows: Sample I (F+), Sample II (F-), Sample III (F+), Sample IV(NF+), Sample
	outside the confidence interval). Ground truth of the samples is as follows: Sample I (F+), Sample II (F-), Sample III (F+), Sample IV(NF+), Sample
	outside the confidence interval). Ground truth of the samples is as follows: Sample I (F+), Sample II (F-), Sample III (F+), Sample IV(NF+), Sample
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	(NF+), Sample VI (F+), and Sample VII (NF+). 
	(NF+), Sample VI (F+), and Sample VII (NF+). 
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	Figure
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	Fig. 3. Example of alignment of scrim bins to estimate ESS 
	Fig. 3. Example of alignment of scrim bins to estimate ESS 
	Fig. 3. Example of alignment of scrim bins to estimate ESS 
	Fig. 3. Example of alignment of scrim bins to estimate ESS 




	Table
	TR
	Tape A 
	Tape B 

	Tape Pair 
	Tape Pair 
	1-A 
	1-B 


	Step 1 1. Assessment of Known Tape Edge 
	Step 1 1. Assessment of Known Tape Edge 
	Step 1 1. Assessment of Known Tape Edge 

	1-1A. Questioned Tape (Tape A) Edge Description 
	1-1A. Questioned Tape (Tape A) Edge Description 
	1-1B. Edge Pattern of Questioned Tape (Tape A) 

	Puzzle like protruding morphology at top of fracture edge, some slight disortion/stretching near the bottom of the edge 
	Puzzle like protruding morphology at top of fracture edge, some slight disortion/stretching near the bottom of the edge 
	Puzzle-Like 


	Step 1 2. Assessment of Questioned Tape Edge 
	Step 1 2. Assessment of Questioned Tape Edge 
	Step 1 2. Assessment of Questioned Tape Edge 

	1-2A. Known Tape (Tape B) Edge Description 
	1-2A. Known Tape (Tape B) Edge Description 
	1-1B. Edge Pattern of Known Tape (Tape B) 

	Puzzle like indentation at top of fractured edge. Some minor distortion/curling near the bottom of the fracture edge 
	Puzzle like indentation at top of fractured edge. Some minor distortion/curling near the bottom of the fracture edge 
	Puzzle-Like 


	Table
	TR
	STEP 1 3. REPORTING OF STEP 1 COMPARISON RESULTS: Overall Alignment of Tape Edges 

	1A. Comparison Pair Overall Alignment Conclusion 
	1A. Comparison Pair Overall Alignment Conclusion 
	1B. Description of Overall Edge Tape Alignment 
	1C. Additional Edge Comparison Comments 

	Fit 
	Fit 
	High confidence in Fit (I am confident that the sample edges are a physical fit based on the observed general features) 
	Edge morphology corresponds with distinct puzzle-like morphology. Some observable distortion/curling at bottom of fracture 

	Figure 4-1 Example of step 1 of the documentation template with filled out annotations. This step covers the overall assessment of each edge independently and then a side-by-side comparison, where the analyst documents whether they observe the pair as a fit or non-fit and the confidence level in that decision.
	Figure 4-1 Example of step 1 of the documentation template with filled out annotations. This step covers the overall assessment of each edge independently and then a side-by-side comparison, where the analyst documents whether they observe the pair as a fit or non-fit and the confidence level in that decision.
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	Macro Comparison Area 
	Macro Comparison Area 
	Macro Comparison Area 
	2A. Observation of Distinctive Features and Comments on Macro Sections 

	I. Alignment of Edge Pattern Morphology 
	I. Alignment of Edge Pattern Morphology 
	II. Alignment of Severed Dimples on Tape Backing 
	III. Calendaring Striations across Edge 
	IV. Macro Alignment of Warp Scrim 
	V. Correspondence of Protruding Warp Yarns and the Respective Pattern Gaps in the Other Edge 
	VI. Continuation of Scrim Weave Pattern 
	VII. Distortion Explained by Stretching Directionality 
	VIII.Weft Scrim at or near Edge Consistent with the Overall Weft Pattern 
	IX. Missing Material 
	X. Additional features not listed here (please write in comments what those features are) 
	XI. Edge Comparison Comments 

	1 
	1 
	Present indicative of fit 
	-

	Absent 
	Present indicative of fit 
	-

	Present indicative of fit 
	-

	Present -indicative of fit 
	Present indicative of fit 
	-

	Present and explained by stretching 
	Consistent 
	Not applicable (no missing material) 
	Corresponding edge morphology and calendaring striations. Distortion present but consistent 

	2 
	2 
	Present indicative of fit 
	-

	Absent 
	Present indicative of fit 
	-

	Present indicative of fit 
	-

	Present -indicative of fit 
	Present indicative of fit 
	-

	Absent 
	Consistent 
	Not applicable (no missing material) 
	Corresponding protruding warp yarns and respective gaps. 

	3 
	3 
	Present indicative of fit 
	-

	Absent 
	Present indicative of fit 
	-

	Present indicative of fit 
	-

	Present -indicative of fit 
	Present indicative of fit 
	-

	Present and explained by stretching 
	Consistent 
	Not applicable (no missing material) 
	Corresponding edge morphology and calendaring striations. Distortion present but consistent 

	4 
	4 
	Present indicative of fit 
	-

	Absent 
	Present indicative of fit 
	-

	Present indicative of fit 
	-

	Absent 
	Present indicative of fit 
	-

	Present and explained by stretching 
	Consistent 
	Not applicable (no missing material) 
	Corresponding edge morphology and calendaring striations. Distortion present but consistent 

	5 
	5 
	Present indicative of fit 
	-

	Absent 
	Present indicative of fit 
	-

	Present indicative of fit 
	-

	Absent 
	Present indicative of fit 
	-

	Present and explained by stretching 
	Consistent 
	Not applicable (no missing material) 
	Corresponding edge morphology and calendaring striations. Distortion present but consistent 


	Table
	TR
	REPORTING OF STEP 2 COMPARISON RESULTS: Macroscopic Assessment of Tape Edges 

	Macro Comparison Sections 
	Macro Comparison Sections 
	2B. Macro Comparison Sections Conclusion 
	2C. Description of Macro Sections Edge Comparison 

	1 
	1 
	Fit 
	High confidence in Fit (I am confident that the sample edges are a physical fit based on the observed macroscopic features) 

	2 
	2 
	Fit 
	High confidence in Fit (I am confident that the sample edges are a physical fit based on the observed macroscopic features) 

	3 
	3 
	Fit 
	High confidence in Fit (I am confident that the sample edges are a physical fit based on the observed macroscopic features) 

	4 
	4 
	Fit 
	High confidence in Fit (I am confident that the sample edges are a physical fit based on the observed macroscopic features) 

	5 
	5 
	Fit 
	High confidence in Fit (I am confident that the sample edges are a physical fit based on the observed macroscopic features) 

	Figure 4-2. Example of filled-out cells for step 2; this step covers the macroscopic assessment of the compared pairs of tapes. The edges are visually separated into five macroscopic sections, and nine major features are documented for their absence or presence. If present, the analyst document whether the feature indicates a fit or non-fit. In addition, each section is documented as a fit or non-fit and the confidence level in that decision. 
	Figure 4-2. Example of filled-out cells for step 2; this step covers the macroscopic assessment of the compared pairs of tapes. The edges are visually separated into five macroscopic sections, and nine major features are documented for their absence or presence. If present, the analyst document whether the feature indicates a fit or non-fit. In addition, each section is documented as a fit or non-fit and the confidence level in that decision. 
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	Table
	TR
	5A REPORT NG OF EACH SUBUN T 

	Scr m Area 
	Scr m Area 
	Area F t Code (1 f F t, 0 5 NC 0 Non F t) 
	Area Comments 
	A gnment o Edge Pattern Morpho ogy 
	A gnment o Severed D mp es on Tape Back ng 
	Ca endar ng Str ations across Edge 
	V M cro A gnment of Warp Scr m 
	V Correspondence o Protrud ng Warp Yarns and the Respective Pattern Gaps n the Other Edge 
	V Continuation of Scr m Weave Pattern 
	V D stortion Exp a ned by Stretch ng D rectiona ty 
	V We t Scr m at or near Edge Consistent w th the Overa Weft Pattern 
	X. M ssing Mater a 
	X. Add tiona eatures not sted here p ease wr te n comments what those eatures are 

	1 
	1 
	1 
	Consistent edge morphology and scrim weave 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Absent 
	Consistent 
	Not applicable (no missing material) 

	2 
	2 
	1 
	Consistent edge morphology and protruding fiber 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Present - indicative of fit 
	Present - indicative of fit 
	Present - indicative of fit 
	Absent 
	Consistent 
	Not applicable (no missing material) 

	3 
	3 
	0.5 
	Slight distortion of edge, missing partial warp scrim fiber 
	Present - indicative of fit 
	Absent 
	Absent 
	Present - indicative of fit 
	Present - indicative of non-fi
	t Present - indicative of fit 
	Present and explained by stretching 
	Consistent 
	Not applicable (no missing material) 

	4 
	4 
	1 
	Consistent edge morphology and scrim weave 
	Present - indicative of fit 
	Absent 
	Absent 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Absent 
	Consistent 
	Not applicable (no missing material) 

	5 
	5 
	1 
	Consistent edge morphology and protruding fiber 
	Present - indicative of fit 
	Absent 
	Absent 
	Present - indicative of fit 
	Present - indicative of fit 
	Present - indicative of fit 
	Absent 
	Consistent 
	Not applicable (no missing material) 

	6 
	6 
	1 
	Consistent edge morphology and scrim weave 
	Present - indicative of fit 
	Absent 
	Absent 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Absent 
	Consistent 
	Not applicable (no missing material) 

	7 
	7 
	1 
	Consistent edge morphology and scrim weave 
	Present - indicative of fit 
	Absent 
	Absent 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Absent 
	Consistent 
	Not applicable (no missing material) 

	8 
	8 
	1 
	Consistent edge morphology and scrim weave 
	Present - indicative of fit 
	Absent 
	Absent 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Absent 
	Consistent 
	Not applicable (no missing material) 

	9 
	9 
	1 
	Consistent edge morphology and protruding fiber 
	Present - indicative of fit 
	Absent 
	Absent 
	Present - indicative of fit 
	Present - indicative of fit 
	Present - indicative of fit 
	Absent 
	Consistent 
	Not applicable (no missing material) 

	10 
	10 
	1 
	Consistent edge morphology and protruding fiber 
	Present - indicative of fit 
	Absent 
	Absent 
	Present - indicative of fit 
	Present - indicative of fit 
	Present - indicative of fit 
	Absent 
	Consistent 
	Not applicable (no missing material) 

	11 
	11 
	0.5 
	Distortion of edge morphology 
	Present - indicative of fit 
	Absent 
	Absent 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Present and explained by stretching 
	Consistent 
	Not applicable (no missing material) 

	12 
	12 
	1 
	Consistent edge morphology and scrim weave 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Absent 
	Consistent 
	Not applicable (no missing material) 

	13 
	13 
	1 
	Consistent edge morphology and scrim weave 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Absent 
	Consistent 
	Not applicable (no missing material) 

	14 
	14 
	1 
	Consistent edge morphology and scrim weave 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Absent 
	Consistent 
	Not applicable (no missing material) 

	15 
	15 
	1 
	Consistent edge morphology and protruding fiber 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Present - indicative of fit 
	Present - indicative of fit 
	Present - indicative of fit 
	Absent 
	Consistent 
	Not applicable (no missing material) 

	16 
	16 
	1 
	Consistent edge morphology and scrim weave 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Absent 
	Consistent 
	Not applicable (no missing material) 

	17 
	17 
	1 
	Consistent edge morphology and scrim weave 
	Present - indicative of fit 
	Absent 
	Absent 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Present and explained by stretching 
	Consistent 
	Not applicable (no missing material) 

	18 
	18 
	1 
	Consistent edge morphology and scrim weave 
	Present - indicative of fit 
	Absent 
	Absent 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Present and explained by stretching 
	Consistent 
	Not applicable (no missing material) 

	19 
	19 
	1 
	Consistent edge morphology and scrim weave 
	Present - indicative of fit 
	Absent 
	Absent 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Absent 
	Consistent 
	Not applicable (no missing material) 

	20 
	20 
	1 
	Consistent edge morphology and scrim weave 
	Present - indicative of fit 
	Absent 
	Absent 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Absent 
	Consistent 
	Not applicable (no missing material) 

	21 
	21 
	1 
	Consistent edge morphology and scrim weave 
	Present - indicative of fit 
	Absent 
	Absent 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Absent 
	Consistent 
	Not applicable (no missing material) 

	22 
	22 
	0.5 
	Distortion of edge morphology 
	Present - indicative of fit 
	Absent 
	Absent 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Absent 
	Consistent 
	Not applicable (no missing material) 

	23 24 
	23 24 
	0.5 1 
	Distortion of edge morphology Consistent edge morphology and scrim weave 
	Present - indicative of fit Present - indicative of fit Present - indicative of non-fit 
	Absent Absent Absent 
	Present - indicative of fit Present - indicative of fit Absent 
	Present - indicative of fit Present - indicative of fit Present - indicative of fit 
	Absent Absent Absent 
	Present - indicative of fit Present - indicative of fit Present - indicative of fit 
	Absent Absent Present and not explained by stretching 
	Consistent Consistent Consistent 
	Not applicable (no missing material) Not applicable (no missing material) Observed Missing Material 

	25 
	25 
	0 
	Tape curled at area - missing material 

	26 
	26 
	0.5 
	Consistent edge morphology and scrim weave 
	Present - indicative of fit 
	Absent 
	Absent 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Absent 
	Consistent 
	Not applicable (no missing material) 

	27 
	27 
	1 
	Consistent edge morphology and scrim weave 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Absent 
	Consistent 
	Not applicable (no missing material) 

	28 
	28 
	1 
	Consistent edge morphology and scrim weave 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Absent 
	Consistent 
	Not applicable (no missing material) 

	29 
	29 
	1 
	Consistent edge morphology and scrim weave 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Absent 
	Consistent 
	Not applicable (no missing material) 

	30 
	30 
	0.5 
	Distortion of edge morphology 
	Present - indicative of fit 
	Absent 
	Absent 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Present and not explained by stretching 
	Consistent 
	Not applicable (no missing material) 

	31 
	31 
	0 
	Tape curled at area - missing material 
	Present - indicative of non-fit 
	Absent 
	Absent 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Present and not explained by stretching 
	Consistent 
	Observed Missing Material 

	32 
	32 
	0.5 
	Distortion of edge morphology 
	Present - indicative of fit 
	Absent 
	Absent 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Present and not explained by stretching 
	Consistent 
	Not applicable (no missing material) 

	33 
	33 
	0.5 
	Distortion of edge morphology 
	Present - indicative of fit 
	Absent 
	Absent 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Present and not explained by stretching 
	Consistent 
	Not applicable (no missing material) 

	34 
	34 
	0.5 
	Distortion of edge morphology 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Present and not explained by stretching 
	Consistent 
	Not applicable (no missing material) 

	35 
	35 
	0.5 
	Distortion of edge morphology 
	Present - indicative of fit 
	Absent 
	Absent 
	Present - indicative of fit 
	Absent 
	Present - indicative of fit 
	Present and not explained by stretching 
	Consistent 
	Not applicable (no missing material) 


	Table
	TR
	REPORTING OF STEP # 3 COMPARISON RESULTS: Subunit Assessment 

	3B. Number of Matching Scrim Areas 
	3B. Number of Matching Scrim Areas 
	3C . Edge Similarity Score 
	3D. Comparison Pair Overall Conclusion 
	3E. Description of subunit ESS overall comparison 
	3F. Edge Comparison Comments 

	28 
	28 
	80 
	Fit 
	High confidence in Fit (I am confident that the sample edges are a physical fit based on the observed features (e.g., ESS score 80 or higher)) 
	While slight distortion, edges have consistent puzzle-like morphology, and demonstrate multiple instances of corresponding protruding fibers 


	Figure
	Figure
	Figure
	Figure
	Fig. 8-1. Example of filled-out cells for step 1 for textile comparisons; this step covers the macroscopic assessment of the compared pairs.
	Fig. 8-1. Example of filled-out cells for step 1 for textile comparisons; this step covers the macroscopic assessment of the compared pairs.
	8 



	Figure
	Fig. 8-2. Example of filled-out cells for step 2 for textile examinations; this step covers the microscopic assessment of the compared pairs. The edges are visually separated into ten sections, and seven major features are documented for their absence or presence. If present, the analyst document whether the feature indicates a fit or non-fit. In addition, each section is documented as a fit or non-fit and the confidence level in that decision. At the bottom, the number of fitting areas and the edge similar
	Fig. 8-2. Example of filled-out cells for step 2 for textile examinations; this step covers the microscopic assessment of the compared pairs. The edges are visually separated into ten sections, and seven major features are documented for their absence or presence. If present, the analyst document whether the feature indicates a fit or non-fit. In addition, each section is documented as a fit or non-fit and the confidence level in that decision. At the bottom, the number of fitting areas and the edge similar
	8 



	Item 
	Item 
	Item 
	Color 
	Opacity 
	Chemical Compounds 

	H1.2 
	H1.2 
	Clear 
	Translucent 
	Polycarbonate 

	H1.5 
	H1.5 
	Clear 
	Translucent 
	Polycarbonate 

	H2.14 
	H2.14 
	Red 
	Translucent 
	Polycarbonate, solvent red 111 

	H3.1 
	H3.1 
	Silver/Black 
	Opaque 
	Polypropylene Terephthalate (PPT) 

	H3.2 
	H3.2 
	Clear 
	Translucent 
	Polycarbonate 

	H3.7 
	H3.7 
	Orange 
	Translucent 
	PMMA, solvent orange 60 

	H3.9 
	H3.9 
	Clear 
	Translucent 
	Polycarbonate 

	Item H4.6 
	Item H4.6 
	Color Silver/Black 
	Opacity Opaque 
	Chemical Compounds PolybutyleneTerephthalate (PBT) 

	H4.19 
	H4.19 
	Black 
	Opaque 
	Polycarbonate, PMMA Acrylic 

	H4.25 
	H4.25 
	Clear 
	Translucent 
	Polycarbonate 

	H4.36 
	H4.36 
	Clear 
	Translucent 
	Polycarbonate 

	H4.37 
	H4.37 
	Clear 
	Translucent 
	Polycarbonate 

	H4.40 
	H4.40 
	Silver/Black 
	Opaque 
	Polypropylene Terephthalate (PPT) 

	H5.4 
	H5.4 
	Orange 
	Translucent 
	Polycarbonate, orange 60 

	H5.6 
	H5.6 
	Silver/Black 
	Opaque 
	Polypropylene 

	T1.1 
	T1.1 
	Clear 
	Translucent 
	Polybutylene Terephthalate (PBT) 

	T3.2 
	T3.2 
	Red 
	Translucent 
	PMMA Acrylic, solvent red 111 

	T3.3 
	T3.3 
	Clear 
	Translucent 
	Polycarbonate 


	Feature 
	Feature 
	Feature 
	Description 
	Image 

	3D Edge Alignment 
	3D Edge Alignment 
	The interior edge of the 
	TD
	Figure


	fragment (along the 
	fragment (along the 

	fracture) corresponds. 
	fracture) corresponds. 

	This may be supported 
	This may be supported 

	by protrusions and 
	by protrusions and 

	corresponding 
	corresponding 

	indentations, fracture 
	indentations, fracture 

	marks, and/or shifts in 
	marks, and/or shifts in 

	fracture direction that 
	fracture direction that 

	should be consistent 
	should be consistent 

	across both fragments 
	across both fragments 

	Surface Plane/Directionality Alignment 
	Surface Plane/Directionality Alignment 
	The top and bottom surfaces of the fragments retain the same plane across the fracture. This is maintained whether the surface is flat, curved, or undergoes a distinct change in directionality. 
	TD
	Figure


	Edge Curvature/Directionality 
	Edge Curvature/Directionality 
	The direction of the fracture starting from an origin point remains consistent when observing the two fragments side by side. If one fragment curves, the other fragment curves in 
	TD
	Figure



	Feature Description Image 
	Feature Description Image 
	Feature Description Image 

	Pattern Alignment 
	Pattern Alignment 
	A consistent pattern or texture that maintains shape, location, size, plane, and direction across the fracture. 
	TD
	Figure


	Surface Damage Alignment 
	Surface Damage Alignment 
	A deep scratch, mark, or indent along a surface edge of the polymer that corresponds in depth, width, direction, and location across the fracture. 
	TD
	Figure


	Scratch Alignment 
	Scratch Alignment 
	Light scratches along the 
	TD
	Figure


	surface of the polymer 
	surface of the polymer 

	that correspond in 
	that correspond in 

	direction, depth, width, 
	direction, depth, width, 

	and location across the 
	and location across the 

	fracture. Note: Scratches 
	fracture. Note: Scratches 

	can be present prior to 
	can be present prior to 

	fracturing, created during 
	fracturing, created during 

	the impact and breaking 
	the impact and breaking 

	of the polymer, or 
	of the polymer, or 

	created during handling 
	created during handling 

	of the broken evidence. 
	of the broken evidence. 


	Figure
	Table 2-3. Polymer features observed during physical fit comparison. 
	Table 2-3. Polymer features observed during physical fit comparison. 


	Figure
	Figure
	Figure
	Network type 
	Network type 
	Network type 
	Layer name 
	Activation function 
	Kernel/Pool size 
	Strides 
	Number of filters/units 
	Tensor shape 

	Convolutional 
	Convolutional 
	Input 
	-
	-
	-
	-
	1200×410×1 

	Convolution 
	Convolution 
	ReLU 
	3×3 
	1×1 
	32 
	1200×410×32 

	Max-pooling 
	Max-pooling 
	-
	2×2 
	1×1 
	-
	600×205×32 

	Convolution 
	Convolution 
	ReLU 
	3×3 
	1×1 
	64 
	600×205×64 

	Max-pooling 
	Max-pooling 
	-
	2×2 
	1×1 
	-
	300×103×64 

	Convolution 
	Convolution 
	ReLU 
	3×3 
	1×1 
	128 
	300×103×128 

	Max-pooling 
	Max-pooling 
	-
	2×2 
	1×1 
	-
	150×52×128 

	Convolution 
	Convolution 
	ReLU 
	3×3 
	1×1 
	256 
	150×52×256 

	Max-pooling 
	Max-pooling 
	-
	2×2 
	1×1 
	-
	75×26×256 

	Convolution 
	Convolution 
	ReLU 
	3×3 
	1×1 
	512 
	75×26×512 

	Max-pooling 
	Max-pooling 
	-
	2×2 
	1×1 
	-
	38×13×512 

	Convolution 
	Convolution 
	ReLU 
	3×3 
	1×1 
	1024 
	38×13×1024 

	Max-pooling 
	Max-pooling 
	-
	2×2 
	1×1 
	-
	19×7×1024 

	Fully connected
	Fully connected
	Flatten 
	-
	-
	-
	-
	136192 

	Dropout 
	Dropout 
	-
	-
	-
	-
	136192 

	Dense 
	Dense 
	ReLU 
	-
	-
	500 
	500 

	Dropout 
	Dropout 
	-
	-
	-
	-
	500 

	Dense 
	Dense 
	ReLU 
	-
	-
	100 
	100 

	Dense 
	Dense 
	Sigmoid 
	-
	-
	1 
	1 


	Figure
	Figure 11.  An example of convolution applied with a 3×3 filter and a stride of 1×1. 
	Figure 11.  An example of convolution applied with a 3×3 filter and a stride of 1×1. 
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	Figure
	Figure 12. Example input of a textile image. This image shows one side of the textile. One of the edges has been cut in a triangle shape, representing a non-comparison edge. The preprocessing reduced the original image to the two edges, and the non-comparison edge will not be used. 
	Figure 12. Example input of a textile image. This image shows one side of the textile. One of the edges has been cut in a triangle shape, representing a non-comparison edge. The preprocessing reduced the original image to the two edges, and the non-comparison edge will not be used. 


	Figure
	Figure 13. Example image inputs. Two textile edges. Each image has a size of 1600 × 610 pixels. 
	Figure 13. Example image inputs. Two textile edges. Each image has a size of 1600 × 610 pixels. 


	Figure
	Figure 14. Process of data manipulation for the calculation of mutual information. 
	Figure 14. Process of data manipulation for the calculation of mutual information. 


	Material 
	Material 
	Material 
	Dataset size 
	Composition 
	Sources 

	Duct tapes 
	Duct tapes 
	3321 comparison pairs, each composed of 2 fractured objects (obtained from >6000 samples) 
	3 Tape grades (high, medium, and low quality); 2 separation methods (hand-torn and cut); post-fracture stretching. 
	Duct tape rolls were purchased at retailer stores and online. 

	Textiles 
	Textiles 
	967 comparison pairs (obtained from ~1200 samples) 
	2 patterns (unicolor and multicolored); 2 separation methods (torn and stabbed); 2 fabric constructions (knit and weave), 3 fiber compositions (100% cotton, polyester, and mixed) 
	Fabrics were collected from donated clothing items. 

	Plastics 
	Plastics 
	445 comparison pairs (obtained from 1337 samples) 
	Several automotive plastic types (lights, mirror housing, and bumper). 
	Automotive parts collected at junk yards. 


	Figure
	Figure 15. Left: Breakdown of subsets for the physical fits dataset. The tape set consists of subsets of samples originating from each of three grades of tape, low quality (LQ), medium quality (MQ), or high quality (HQ). Edges are scissor-cut (SC), hand-torn (HT), or hand-torn with additional stretching (HT-S). Mid: The textiles set distribution by composition (polyester, cotton, mixed), construction (knit, weave), design (unicolor, multicolor), and separation method (hand-torn ror stabbed). In the textile 
	Figure 15. Left: Breakdown of subsets for the physical fits dataset. The tape set consists of subsets of samples originating from each of three grades of tape, low quality (LQ), medium quality (MQ), or high quality (HQ). Edges are scissor-cut (SC), hand-torn (HT), or hand-torn with additional stretching (HT-S). Mid: The textiles set distribution by composition (polyester, cotton, mixed), construction (knit, weave), design (unicolor, multicolor), and separation method (hand-torn ror stabbed). In the textile 


	Figure
	Figure
	Figure 16. Images of an original headlight and the separated components before fracture. The initial assembly is shown in the top left image. The lamp is taken apart to separate the different types of polymers and remove non-polymer parts (metal/glass). The bottom four images are examples of reassembled and relabeled true-fit pairs for the clear and orange portions of the headlight, and a zoomed image of the edges, respectively. 
	Figure 16. Images of an original headlight and the separated components before fracture. The initial assembly is shown in the top left image. The lamp is taken apart to separate the different types of polymers and remove non-polymer parts (metal/glass). The bottom four images are examples of reassembled and relabeled true-fit pairs for the clear and orange portions of the headlight, and a zoomed image of the edges, respectively. 


	Figure
	Pair ID 
	Pair ID 
	Pair ID 
	Ground Truth 
	Consensus score (%) 
	ESS 
	Example Image of the Comparison Pair 

	1 
	1 
	Fit (F+) 
	93 ± 4.5 
	TD
	Figure


	2 
	2 
	Fit (F-) 
	89 ± 4.2 
	TD
	Figure


	3 
	3 
	Non-fit (NF+) 
	27 ± 14 
	TD
	Figure



	Figure
	Figure 17. Diagram denoting the main benefits of the physical fit methodologies developed in this research 
	Figure 17. Diagram denoting the main benefits of the physical fit methodologies developed in this research 


	Figure
	Figure 18. Examples of angled, wavy, and puzzle-like patterns observed in duct tape separations. 
	Figure 18. Examples of angled, wavy, and puzzle-like patterns observed in duct tape separations. 


	Figure
	Figure 19. Examples of edge morphology for each sample set. Straight and angled edges were not observed in the LQ-HT set. Stretched sets shared the same edges as the non-stretched edges, so no additional examples are demonstrated here. 
	Figure 19. Examples of edge morphology for each sample set. Straight and angled edges were not observed in the LQ-HT set. Stretched sets shared the same edges as the non-stretched edges, so no additional examples are demonstrated here. 
	4 



	Figure
	Figure 20. Edge pattern occurrence trends for true-fit pairs for all compared sets. Overall, puzzle-like edges are more common in hand-torn sets, while straight or angled edges are more commonly observed in scissor-cut sets. 
	Figure 20. Edge pattern occurrence trends for true-fit pairs for all compared sets. Overall, puzzle-like edges are more common in hand-torn sets, while straight or angled edges are more commonly observed in scissor-cut sets. 
	4 



	Figure
	Figure
	Figure 21. Proposed examination scheme for physical fit comparisons. If the samples are not suitable for physical fit examination, then other chemical examinations are necessary. If the sample edges demonstrate obvious differences in the comparison features at any stage, the outcome is “no physical fit”. Beyond the microscopic comparison (Step 3 of ESS), the outcome is “no physical fit (non-fit)”, “inconclusive”, or “physical fit” with a description of its value. The quantitative ESS score and SLR can then 
	Figure 21. Proposed examination scheme for physical fit comparisons. If the samples are not suitable for physical fit examination, then other chemical examinations are necessary. If the sample edges demonstrate obvious differences in the comparison features at any stage, the outcome is “no physical fit”. Beyond the microscopic comparison (Step 3 of ESS), the outcome is “no physical fit (non-fit)”, “inconclusive”, or “physical fit” with a description of its value. The quantitative ESS score and SLR can then 
	4 



	Figure
	Figure
	Figure
	Figure
	Figure 24. Boxplots showing the ESS distribution of each tape set, with true non-fits (TNF) shown on the top boxplot of each set and true-fits (TF) shown on the bottom boxplot of each set. Generally, there is a separation between the ESS distributions of the true fit and true non-fitting pairs, with higher scores for fits and lower scores for non-fits. 
	Figure 24. Boxplots showing the ESS distribution of each tape set, with true non-fits (TNF) shown on the top boxplot of each set and true-fits (TF) shown on the bottom boxplot of each set. Generally, there is a separation between the ESS distributions of the true fit and true non-fitting pairs, with higher scores for fits and lower scores for non-fits. 
	4 



	Performance rate (%) 
	Performance rate (%) 
	Performance rate (%) 
	LQ-SC (n=250 pairs) 
	LQ-HT (n=200 pairs) 
	LQHT-S (n=200pairs) 
	-

	MQ-SC (n=500 pairs) 
	MQ-HT (Analyst A) (n=508 pairs) 
	MQ-HT (Analyst B) (n=508 pairs) 
	MQ-HT-S (n=508 pairs) 
	HQ-SC (n=250 pairs) 
	HQ-HT (n=199 pairs) 
	HQHT-S (n=198pairs) 
	-


	False positive rate (FP) 
	False positive rate (FP) 
	0.0 
	0.0 
	0.0 
	0.0 
	0.0 
	0.0 
	0.0 
	0.0 
	0.0 
	0.0 

	False negativerate (FN) 
	False negativerate (FN) 
	1.5 
	0.0 
	0.0 
	1.0 
	1.0 
	2.0 
	1.0 
	0.0 
	21.4 
	31.6 

	True negative rate (Specificity) 
	True negative rate (Specificity) 
	97.5 
	99.0 
	100.0 
	100.0 
	100.0 
	100.0 
	100.0 
	100.0 
	100.0 
	100.0 

	True positive rate(Sensitivity) 
	True positive rate(Sensitivity) 
	98.5 
	100.0 
	99.0 
	99.0 
	98.0 
	98.0 
	99.0 
	100.0 
	69.4 
	57.2 

	Accuracy 
	Accuracy 
	98.0 
	99.5 
	99.5 
	99.8 
	99.6 
	99.6 
	99.8 
	100.0 
	84.9 
	79.8 


	Figure
	Figure
	Figure 26. Z-scores of the reported ESS values for ILS 2 for each participant. The participant IDs are independent of the IDs used in ILS 1. The z-values have been color-coded for visualization. Green bars are considered satisfactory, yellow bars are considered cautionary, and red bars are considered insufficient (too far 
	Figure 26. Z-scores of the reported ESS values for ILS 2 for each participant. The participant IDs are independent of the IDs used in ILS 1. The z-values have been color-coded for visualization. Green bars are considered satisfactory, yellow bars are considered cautionary, and red bars are considered insufficient (too far 


	57 
	To visualize the utility of the template documentation, Figure 27 illustrates the color-coded bins for the full width of the compared edges for the more complex fit items by seven participants. It becomes evident, that most of the variability observed in the lower end is caused by edges distortion where various inconclusive bins were reported due to stretching. More extensive discussion of results can be found in the publication by Prusinowski et al. 
	3 

	Figure
	Figure 27. Example of application of documentation template to a duct tape physical fit examination for the pair F-of Kit 1. The participants in this example have slightly different reported ESS, but the overall conclusion of fit is consistent, and most of the participants report the area of distortion consistently. 
	Figure 27. Example of application of documentation template to a duct tape physical fit examination for the pair F-of Kit 1. The participants in this example have slightly different reported ESS, but the overall conclusion of fit is consistent, and most of the participants report the area of distortion consistently. 
	3 



	Milestone 4¾Complementing human-based approaches with computational algorithms 
	Often machine learning is referred as computer systems that learn and adapt by using algorithms and statistical models to analyze and draw inferences from patterns in data. Here we loop the process and use machine learning results to “learn from the machine”, as the results also provide a further understanding of the decision process in human-based fit comparisons. 
	ForensicFIT database and CNN approach 
	The study provides a computational platform for physical fit predictions that can assist analysts in their evaluations. We report the development of an open-source python package, ForensicFit, designed to pre-process images obtained for forensic physical fit examination. The package provides pre-processed data for machine learning to train two independent convolutional neural networks — 
	The study provides a computational platform for physical fit predictions that can assist analysts in their evaluations. We report the development of an open-source python package, ForensicFit, designed to pre-process images obtained for forensic physical fit examination. The package provides pre-processed data for machine learning to train two independent convolutional neural networks — 
	32

	one on the backing side, and the other on the scrim side. Statistical analysis is performed on the resulting probabilities from the network outputs and the performance on known true-fits and non-fits sets is compared to the quantitative assessment of duct tapes using human-based approaches. High agreement is observed between both methods and therefore demonstrates the potential of machine learning models to provide statistical support to the analyst conclusions. 

	The main findings derived from this CNN study can be summarized as follows: 
	1) CNN have shown to be an effective mean to compare separated tape edges of various grade qualities and fracture methods using an automated imaging processing platform (ForensicFit), 
	2) The distribution of human-estimated metrics (ESS) and computer-based CNN-membership probabilities for ground truth fits and non-fits populations shows a minimal overlap between these groups 
	3) Human-estimated ESS and CNN-membership probabilities yield low rates of misleading evidence and provide a means to employ these metrics for statistic assessment of the probative value of the evidence 
	3) The boxplots and kernel distributions illustrate that the occurrence of error rates, mostly false negatives, is influenced by the method of separation and quality of the tape and that those effects are similarly captured by analyst-examination and by the computer-based feature recognition, 
	4) The Layer-wise Relevance Propagation (LRP) analysis can be used to understand the most critical features identified by the CNN and supplement decision criteria independently documented by the examiner. 
	Therefore, the results demonstrate the feasibility of using CNN to assist analysts to enhance objectivity in their fit examinations. Larger datasets are necessary to strengthen the capabilities and accuracy of the computational models. 
	47-49 

	Algorithms for extracting and interpreting edge feature data for fit examinations using mutualinformation and decision trees. 
	This study uses mutual information and decision tree algorithms to support the analyst’s decisions in physical fit examinations of duct tapes and textiles. The first question we are interested in answering comes from a request we received from practitioners during a feedback session. They often receive questioned items that have just a partial edge so in these cases, the whole fractured edge on the known item cannot be compared in its totality to the partial questioned item. For instance, only a small porti
	Figure
	Figure 28. Diagram depicting the random selection and calculation of performance of the ESS method applied to a partial sample width. Selection of two different starting points on the sample pair edge results in significantly different outcomes. The bins contain the overall bin code, colored green (fit, 1), yellow (inconclusive, 0.5), or red (non-fit, 0). The ESS for full width is 43, while the ESS of two randomly selected edge portions (33% each) lead to different ESS outcomes (20 and 80, respectively). 
	Figure 28. Diagram depicting the random selection and calculation of performance of the ESS method applied to a partial sample width. Selection of two different starting points on the sample pair edge results in significantly different outcomes. The bins contain the overall bin code, colored green (fit, 1), yellow (inconclusive, 0.5), or red (non-fit, 0). The ESS for full width is 43, while the ESS of two randomly selected edge portions (33% each) lead to different ESS outcomes (20 and 80, respectively). 
	9 



	Only data collected using the latest template versions is utilized in this study to ensure consistency and minimize variability. The duct tape dataset includes 1098 pairs originating from low and high-quality rolls. The samples are either hand-torn or scissor-cut, and several sets undergo stretching. The textile dataset consists of 600 samples taken from clothing items made of 100% cotton and fractured by stabbing the item or tearing it by hand. In the comparison templates for each material, the analysts do
	Figure
	Figure 29. A) Accuracy of the ESS method as applied to partial widths of the low-quality tape subsets. B) Accuracy of the ESS method as applied to partial widths of the high-quality tape subsets. C) Accuracy of the ESS method as applied to partial widths of the textile samples. HT represents hand-torn samples, while SB represents stabbed samples. The x-axis represents the percent of comparison bins and the y-axis the observed accuracy with the respective uncertainty intervals.Adapted from rom  
	Figure 29. A) Accuracy of the ESS method as applied to partial widths of the low-quality tape subsets. B) Accuracy of the ESS method as applied to partial widths of the high-quality tape subsets. C) Accuracy of the ESS method as applied to partial widths of the textile samples. HT represents hand-torn samples, while SB represents stabbed samples. The x-axis represents the percent of comparison bins and the y-axis the observed accuracy with the respective uncertainty intervals.Adapted from rom  
	9 



	The second aspect we address here is what features hold more weight in the analyst’s bin decisions. Here, a machine learning algorithm extracts and assesses the importance of edge feature information from analysts’ reporting templates. Then, a decision tree model is presented to support and add objectivity to the analysts' conclusions. 
	The extraction and analysis of feature information show that certain features hold different weights in the decision depending on the separation methods and tape’s qualities. For example, the alignment of severed dimples is one of the most influential features of scissor-cut backings, but not other separation methods (Figure 30). Similarly, the importance of a feature such as a scrim weave pattern is superior to high-quality tapes than other grades. While the importance of the features observed in textiles 
	9 

	Figure
	Figure 30. Barplots representing the mutual information of the tape features by separation method (top) and by sample subset (bottom). The larger the bar, the more value the feature has for comparisons. 
	Figure 30. Barplots representing the mutual information of the tape features by separation method (top) and by sample subset (bottom). The larger the bar, the more value the feature has for comparisons. 
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	Figure
	Figure 31. Barplots represent the mutual information of the textile features by separation method. The larger the bar, the more value the feature has for comparisons
	Figure 31. Barplots represent the mutual information of the textile features by separation method. The larger the bar, the more value the feature has for comparisons
	. 7 



	This importance feature information is then used to train decision tree models, which provide comparable performance to the human analysis, and demonstrate the value of incorporating objective computational models to support the analyst’s conclusions. Figure 32 illustrates this process of comparing human-based results to those of the decision tree to support the examiners opinion. 
	Figures 33 and 34, show the level of agreement between the computational decision and the human approach. These results indicate that: 
	9 

	1) The decision tree model shows significant potential as a tool to help in the decision-making process for physical fit comparisons. 
	2) While caution is needed regarding the chance of false identifications, if used in tandem with human-based analysis, the tool could help identify samples where a further examination is recommended if the model outcome disagrees with the analyst. 
	3) It also provides additional information that adds transparency and support to the conclusion. For instance, confidence and objectivity can be demonstrated if the algorithm agrees with the analyst’s decision. 
	4) Notably, the algorithm removes the judgment from the decision process and minimizes the risk of bias from the prior information from the analyst’s observations. 
	Figure
	Figure 32. Diagram demonstrating how the process of human analysis of a pair of tapes would be performed and compared to the results of the decision tree model. 
	Figure 32. Diagram demonstrating how the process of human analysis of a pair of tapes would be performed and compared to the results of the decision tree model. 
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	64 
	Figure
	Figure 33. Performance of the decision tree against the human analysis for each duct tape sample set. The performance rates included are the true positive rate (TPR), true negative rate (TNR), false negative rate (FNR), false positive rate (FPR), inconclusive rates for both true non-fits (INR) and true fits (IPR), and the accuracy (ACC). 
	Figure 33. Performance of the decision tree against the human analysis for each duct tape sample set. The performance rates included are the true positive rate (TPR), true negative rate (TNR), false negative rate (FNR), false positive rate (FPR), inconclusive rates for both true non-fits (INR) and true fits (IPR), and the accuracy (ACC). 
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	Figure
	Figure 34. Performance of the decision tree against the human analysis for each textile sample set. The performance rates included are the true positive rate (TPR), true negative rate (TNR), false negative rate (FNR), false positive rate (FPR), inconclusive rates for both true non-fits (INR) and true fits (IPR), and the accuracy (ACC). 
	Figure 34. Performance of the decision tree against the human analysis for each textile sample set. The performance rates included are the true positive rate (TPR), true negative rate (TNR), false negative rate (FNR), false positive rate (FPR), inconclusive rates for both true non-fits (INR) and true fits (IPR), and the accuracy (ACC). 
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	65 
	2.2.3. Textiles physical fit method 
	For textiles, we apply the main lessons learned from the physical fit examinations of duct tapes with modifications that are necessary to adapt to the inherent factors that influence the fabric's fractures. Like tape, four main milestones were critical to building knowledge in these materials. 
	Milestone 1¾Method development and optimization of standardized criteria 
	Much less literature is available about fabrics’ fracture fit examinations than tapes. Therefore, we compiled information from practitioners’ protocols and evaluated the occurrence of fracture features from pilot datasets analyzed by various analysts. These pilot datasets considered the main factors that can play a role in the features imparted, such as separation method (stabbed, torn), compositions (cotton, polyester, rayon, or mixed), color design (unicolor or multicolor), and construction (knit, weave).
	5, 50-53 

	Some of these features are intrinsic to the fabric itself and can show continuity across the fractured items when they were once a single object. This includes design alignment, construction alignment, and fiber fluorescence. 
	8 

	1) Design alignment refers to the agreement and alignment of fabric patterns, also referred to as multicolor, across the comparison edge of two samples. An example of this feature is the alignment of the camouflage design shown in the table below. These can hold a high influence on the fit or non-fit decision. 
	2) Construction alignment occurs when there is an agreement between two samples regarding the type and direction of the construction of the weave and weft yarns, in addition to the consistency of yarn or thread count in each comparison area. Two true fitting samples woven in a diagonal direction relative to the comparison edge and each possessing the same number of yarns in the comparison area would possess this feature. The alignment of these features typically increases an analyst’s confidence in the pres
	3) The fluorescence of individual yarns in the fabric can also aid in identifying a physical fit. However, fluorescence is rarely the determining factor for fits or non-fits, as fibers originating from the same common clothing source will likely demonstrate similar fluorescence regardless of the location of the fracture. 
	8 

	Other features are extrinsic to the fabric and caused by the separation event.These features include edge alignment, yarn alignment, extreme distortion, and secondary tearing. 
	8 

	4) Edge alignment denotes the alignment of the overall edge morphology between two samples. The three common edge morphologies that are identified in this study are straight, wavy, and puzzle-like edges. The overall edge morphology must align between the two fragments for a physical fit to occur, and yarn count consistency is also part of this feature. 
	5) Yarn alignment refers to the alignment of loose yarns that have been pulled out of the fractured edge of a sample. This has been observed to be much more common in hand-torn samples, which are subject to vigorous pulling and tearing. Stabbed samples generally do not demonstrate the same degree of loose yarns. 
	6) Extreme distortion is caused by stretching and missing material and can hinder other relevant features in the fractured edges. Hand-torn samples are also much more likely to exhibit extreme distortion. 
	7) Secondary tearing describes a minor fracture, often perpendicular to the comparison edge, that is not the primary fracture of interest between two samples. This feature may cause a “non-fit” conclusion for a given bin, as the fracture will most likely only be present on one edge. 
	Some features are more common than others. Construction alignment, for example, is applicable for all comparisons from the same clothing article, and statements about design alignment can be made for all cases involving multicolor fabric. On the other hand, secondary tearing is rare. This information is now available to provide a starting point towards the standardization of terminology, distinctive features, and defined criteria on how to use them on fit examinations. 
	With these features, the reporting template is modified for textiles using a simplified two-step method, in which the first step corresponds to an overall assessment of the edges, and the second step conducts macro and microscopic examination of ten defined bins equally separated across the length of the fracture. 
	Table 11. Table of features extracted for textile comparisons, including a description of the feature, an image of the 
	Table 11. Table of features extracted for textile comparisons, including a description of the feature, an image of the 
	Table 11. Table of features extracted for textile comparisons, including a description of the feature, an image of the 
	feature, and the response options available to select for each feature.
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	Feature 
	Feature 
	Description 
	Options 
	Image 

	I. Construction Alignment 
	I. Construction Alignment 
	Consistency and construction alignment, including type (weave/knit) and direction, between two textile fragments. Consistency in the thread or yarn count between the two fragments is also considered. 
	• Consistent • Inconclusive • Inconsistent • Cannot be assessed 
	TD
	Figure


	II. Gap Alignment 
	II. Gap Alignment 
	Alignment of yarns from one fragment into corresponding gaps observed in another fragment along the comparison edge. 
	• Consistent • Inconclusive • Inconsistent • Cannot be assessed 
	TD
	Figure


	III. Yarn Alignment 
	III. Yarn Alignment 
	Alignment of yarns that have been pulled out of the fracture edge between two textile fragments. 
	• Present -Indicative of fit • Present -Indicative of non-fit • Inconclusive • Absent 
	TD
	Figure


	IV. Design Alignment 
	IV. Design Alignment 
	Consistency and alignment of yarn color and pattern between two textile fragments. 
	• Present -Indicative of fit • Present -Indicative of non-fit • Inconclusive • Absent 
	TD
	Figure


	V. Distortion 
	V. Distortion 
	Force applied during the fracture event causes distortion that can mask other features. 
	• Present -Indicative of fit • Present -Indicative of non-fit • Inconclusive • Absent 
	TD
	Figure


	VI. Secondary Tearing 
	VI. Secondary Tearing 
	A secondary, perpendicular tear that is not the primary fracture that is being compared. 
	• Present -Indicative of fit • Present -Indicative of non-fit • Inconclusive • Absent 
	TD
	Figure


	VII. Fluorescence 
	VII. Fluorescence 
	Fluorescence of individual yarns can aid in the identification of a physical fit. 
	• Consistent • Inconclusive • Inconsistent • Cannot be assessed 
	TD
	Figure



	Milestone 2—Creation of textiles dataset and validation 
	The textile population dataset used in this study consists of 967 textile fit comparisons from the examination of 774 paired items by one analyst, and a subset of 193 of those items compared by a second independent analyst. These sets contain known true-fits and true-non-fits that allow the assessment of performance rates as explained in the tape section. Figure 15 illustrates the main subsets and respective studies. 
	The main overall findings for textiles are: 
	1) Not all the textiles’ fits hold the same value. 
	2) Not all textiles are suitable for fit examinations. For instance, knit-polyester fabrics yield unacceptable accuracy and therefore fit examinations are not recommended for these types of textiles. 
	3) The separation method and the construction and composition of fabrics do not have a significant effect in the observed ESS. However, the combination of some of these factors critically influence the suitability for examinations. 
	4) Although accuracy of textile fit examinations is relatively high, the occurrence of false positives is possible in textiles, something not observed in duct tapes datasets. 
	5) Given a physical fit's probative value, and the observed experimental error rates, we recommend reporting a fit only for ESS scores 80 or above for textile materials. For lower scores (80-40), we recommend reporting a non-fit and submitting the items for chemical and physical textile/fiber comparisons, if appropriate. Scores below 40 are reported as non fits, and therefore no further analysis are required. 
	6) High agreement is observed between analysis in the database population sets and by interlaboratory exercises, indicating the ESS method and reporting criteria can be used effectively to create consensus-based results in textile fit examinations. 
	One remarkable finding during the validation stage is that not all textiles are suitable for textile fit examinations. For instance, as some fabrics such as jersey knit polyester are more prone to produce an unreasonably large number of misclassifications. This is illustrated in the analysts’ performance of the initial preliminary textile set, where almost two-thirds of the total true-fitting pairs are misclassified as non-fits by the two analysts. As soon as the fabric was cut or torn, the edges curl, fibe
	Among the sample sets investigated in this study, only 100% polyester knit sets led to these suitability issues. However, there may be other fabric compositions and constructions not evaluated here that could as well be unsuitable for fit examinations. Thus, it is recommended to first assess the fabric distortion level. If the items are deemed unsuitable for a physical fit examination, the textiles must instead be considered for other chemical and physical comparisons. 
	In addition to the method’s performance rates, the inter-and intra-analyst variation is investigated. For the inter-analysts, at least two analysts separately analyzed the same subsets. We also introduce a blind intra-analyst test, where the analyst was given the same subset, but randomly re-organized and relabeled. The analyst receives this duplicate set several months later with the assumption he was receiving a new subset to minimize potential bias. 
	Table 12. Performance rates for the inter-analyst variability textile set 
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	Tables 12 to 17 summarize the performance results between different analysts (table 12), the same analyst (Table 13), the knit unicolor (Table 14) and multicolor (Table 15), and the weave unicolor (Table 16) and multicolor (Table 17). Each of these subsets includes error rates for stabbed and hand-torn separations.  Accuracy ranged from 87 to 100% depending on the set. 
	Tables 12 to 17 summarize the performance results between different analysts (table 12), the same analyst (Table 13), the knit unicolor (Table 14) and multicolor (Table 15), and the weave unicolor (Table 16) and multicolor (Table 17). Each of these subsets includes error rates for stabbed and hand-torn separations.  Accuracy ranged from 87 to 100% depending on the set. 
	Tables 12 to 17 summarize the performance results between different analysts (table 12), the same analyst (Table 13), the knit unicolor (Table 14) and multicolor (Table 15), and the weave unicolor (Table 16) and multicolor (Table 17). Each of these subsets includes error rates for stabbed and hand-torn separations.  Accuracy ranged from 87 to 100% depending on the set. 

	Table 13. Performance rates for the intra-analyst variability textile set 
	Table 13. Performance rates for the intra-analyst variability textile set 
	11 


	Stabbed Subset 
	Stabbed Subset 
	Analyst 1 ReportedFit 
	Analyst 1 ReportedNon-Fit 
	Analyst 1ReportedInconclusive 
	Analyst 2 ReportedFit 
	Analyst 2ReportedNon-Fit 
	Analyst 2ReportedInconclusive 

	True Fit 
	True Fit 
	25 of 26 (96% True Positive) 
	1 of 26 (4% False Negative) 
	0 of 26 (0% Inconclusive) 
	23 of 26 (88% True Positive) 
	2 of 26 (8% False Negative) 
	1 of 26 (4% Inconclusive) 

	True Non-Fit 
	True Non-Fit 
	3 of 24 (12% False Positive) 
	21 of 24 (88% True Negative) 
	0 of 24 (0% Inconclusive) 
	2 of 24 (8% False Positive) 
	21 of 24 (88% True Negative) 
	1 of 24 (4% Inconclusive) 

	Accuracy 
	Accuracy 
	92% 
	88% 

	Hand-torn Subset 
	Hand-torn Subset 
	Analyst 1 ReportedFit 
	Analyst 1 ReportedNon-Fit 
	Analyst 1ReportedInconclusive 
	Analyst 2 ReportedFit 
	Analyst 2ReportedNon-Fit 
	Analyst 2ReportedInconclusive 

	True Fit 
	True Fit 
	25 of 26 (96% True Positive) 
	1 of 26 (4% False Negative) 
	0 of 26 (0% Inconclusive) 
	21 of 26 (81% True Positive) 
	3 of 26 (11% False Negative) 
	2 of 26 (8% Inconclusive) 

	True Non-Fit 
	True Non-Fit 
	0 of 24 (0% False Positive) 
	24 of 24 (100% True Negative) 
	0 of 24 (0% Inconclusive) 
	1 of 24 (4% False Positive) 
	23 of 24 (96% True Negative) 
	0 of 24 (0% Inconclusive) 

	Accuracy 
	Accuracy 
	98% 
	88% 

	Stabbed Subset 
	Stabbed Subset 
	Replicate 1 ReportedFit 
	Replicate 1 ReportedNon-Fit 
	Replicate 1ReportedInconclusive 
	Replicate 2 ReportedFit 
	Replicate 2ReportedNon-Fit 
	Replicate 2ReportedInconclusive 

	True Fit 
	True Fit 
	20 of 23 (87% True Positive) 
	2 of 23 (9% False Negative) 
	1 of 23 (4% Inconclusive) 
	22 of 23 (96% True Positive) 
	1 of 23 (4% False Negative) 
	0 of 23 (0% Inconclusive) 

	True Non-Fit 
	True Non-Fit 
	2 of 24 (8% False Positive) 
	21 of 24 (88% True Negative) 
	1 of 24 (4% Inconclusive) 
	1 of 24 (4% False Positive) 
	22 of 24 (92% True Negative) 
	1 of 24 (4% Inconclusive) 

	Accuracy 
	Accuracy 
	87% 
	94% 

	Hand-torn Subset 
	Hand-torn Subset 
	Replicate 1 ReportedFit 
	Replicate 1 ReportedNon-Fit 
	Replicate 1ReportedInconclusive 
	Replicate 2 ReportedFit 
	Replicate 2ReportedNon-Fit 
	Replicate 2ReportedInconclusive 

	True Fit 
	True Fit 
	19 of 23 (82% True Positive) 
	2 of 23 (9% False Negative) 
	2 of 23 (9% Inconclusive) 
	23 of 23 (100% True Positive) 
	0 of 23 (0% False Negative) 
	0 of 23 (0% Inconclusive) 

	True Non-Fit 
	True Non-Fit 
	0 of 24 (0% False Positive) 
	24 of 24 (100% True Negative) 
	0 of 23 (0% Inconclusive) 
	2 of 23 (9% False Positive) 
	21 of 23 (91% True Negative) 
	0 of 23 (0% Inconclusive) 

	Accuracy 
	Accuracy 
	89% 
	96% 


	Table 14. Performance rates for the unicolor knit textile set 
	Table 14. Performance rates for the unicolor knit textile set 
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	Table 16. Performance rates for the unicolor weave textile set 
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	Unicolor Knit Stabbed Textile Set 
	Unicolor Knit Stabbed Textile Set 
	Unicolor Knit Stabbed Textile Set 
	Reported Fit 
	Reported Non-Fit 
	ReportedInconclusive 

	True Fit 
	True Fit 
	30 of 30 (100% True Positive) 
	0 of 30 (0% False Negative) 
	0 of 30 (0% Inconclusive) 

	True Non-Fit 
	True Non-Fit 
	0 of 31 (0% False Positive) 
	31 of 31 (100% True Negative) 
	0 of 31 (0% Inconclusive) 

	Accuracy 
	Accuracy 
	100% 

	Unicolor Knit Hand-torn Textile Set 
	Unicolor Knit Hand-torn Textile Set 
	Reported Fit 
	Reported Non-Fit 
	ReportedInconclusive 

	True Fit 
	True Fit 
	29 of 30 (97% True Positive) 
	0 of 30 (0% False Negative) 
	1 of 30 (3% Inconclusive) 

	True Non-Fit 
	True Non-Fit 
	0 of 29 (0% False Positive) 
	29 of 29 (100% True Negative) 
	0 of 29 (0% Inconclusive) 

	Accuracy 
	Accuracy 
	98% 


	Table 15. Performance rates for the multicolor knit textile set 
	Table 15. Performance rates for the multicolor knit textile set 
	Table 15. Performance rates for the multicolor knit textile set 
	11 


	Multicolor Knit Stabbed Textile Set 
	Multicolor Knit Stabbed Textile Set 
	Reported Fit 
	Reported Non-Fit 
	Reported Inconclusive 

	True Fit 
	True Fit 
	20 of 20 (100% True Positive) 
	0 of 20 (0% False Negative) 
	0 of 20 (0% Inconclusive) 

	True Non-Fit 
	True Non-Fit 
	0 of 20 (0% False Positive) 
	20 of 20 (100% True Negative) 
	0 of 20 (0% Inconclusive) 

	Accuracy 
	Accuracy 
	100% 

	Multicolor Knit Hand-torn Textile Set 
	Multicolor Knit Hand-torn Textile Set 
	Reported Fit 
	Reported Non-Fit 
	Reported Inconclusive 

	True Fit 
	True Fit 
	19 of 20 (95% True Positive) 
	1 of 20 (5% False Negative) 
	0 of 20 (0% Inconclusive) 

	True Non-Fit 
	True Non-Fit 
	0 of 20 (0% False Positive) 
	20 of 20 (100% True Negative) 
	0 of 20 (0% Inconclusive) 

	Accuracy 
	Accuracy 
	98% 


	Unicolor Weave Stabbed Textile Set 
	Unicolor Weave Stabbed Textile Set 
	Unicolor Weave Stabbed Textile Set 
	Reported Fit 
	Reported Non-Fit 
	Reported Inconclusive 

	True Fit 
	True Fit 
	50 of 51 (98% True Positive) 
	1 of 51 (2% False Negative) 
	0 of 51 (0% Inconclusive) 

	True Non-Fit 
	True Non-Fit 
	0 of 49 (0% False Positive) 
	49 of 49 (0% True Negative) 
	0 of 49 (0% Inconclusive) 

	Accuracy 
	Accuracy 
	99% 

	Unicolor Weave Hand-Torn Textile Set 
	Unicolor Weave Hand-Torn Textile Set 
	Reported Fit 
	Reported Non-Fit 
	Reported Inconclusive 

	True Fit 
	True Fit 
	48 of 49 (98% True Positive) 
	1 of 49 (2% False Negative) 
	0 of 49 (0% Inconclusive) 

	True Non-Fit 
	True Non-Fit 
	0 of 51 (0% False Positive) 
	50 of 51 (98% True Negative) 
	1 of 51 (2% Inconclusive) 

	Accuracy 
	Accuracy 
	98% 


	Table 17. Performance rates for the multicolor weave textile set 
	Table 17. Performance rates for the multicolor weave textile set 
	Table 17. Performance rates for the multicolor weave textile set 
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	Multicolor Weave Stabbed Textile Set 
	Multicolor Weave Stabbed Textile Set 
	Reported Fit 
	Reported Non-Fit 
	ReportedInconclusive 

	True Fit 
	True Fit 
	47 of 47 (100% True Positive) 
	0 of 47 (0% False Negative) 
	0 of 47 (0% Inconclusive) 

	True Non-Fit 
	True Non-Fit 
	1 of 53 (2% False Positive) 
	52 of 53 (98% True Negative) 
	0 of 53 (0% Inconclusive) 

	Accuracy 
	Accuracy 
	99% 

	Multicolor Weave Hand-torn Textile Set 
	Multicolor Weave Hand-torn Textile Set 
	Reported Fit 
	Reported Non-Fit 
	ReportedInconclusive 

	True Fit 
	True Fit 
	48 of 48 (100% True Positive) 
	0 of 48 (0% False Negative) 
	0 of 48 (0% Inconclusive) 

	True Non-Fit 
	True Non-Fit 
	0 of 52 (0% False Positive) 
	52 of 52 (100% True Negative) 
	0 of 52 (0% Inconclusive) 

	Accuracy 
	Accuracy 
	100% 


	Most misleading rates in the experimental datasets originate from false negative or inconclusive results on true fits. However, unlike tapes, textiles can be more prone to false positives. When false positives are observed, they range from 2 to up to 9%. Figure 35 shows two examples of false positive comparisons, Fabric ID 3, denim and Fabric ID 18, 100% cotton. The comparison of the blue denim sample 3 is assigned an edge similarity score of 70 by the analyst, who notes construction alignment as a particul
	Figure
	Figure 35. Top: Example of a true non-fitting comparison classified as a “fit” by the analyst for replicate 2 (Fabric ID 3, denim). Areas outlined in green were considered a fit for replicate 2 only, while areas outlined in orange were classified as a non-fit for both replicates. Areas of interest are showcased in red magnification boxes. Bottom: False-positive comparison of a non-fit pair identified as a fit (Fabric ID 18, 100% cotton). (Adapted from Andrews et al. ) 
	Figure 35. Top: Example of a true non-fitting comparison classified as a “fit” by the analyst for replicate 2 (Fabric ID 3, denim). Areas outlined in green were considered a fit for replicate 2 only, while areas outlined in orange were classified as a non-fit for both replicates. Areas of interest are showcased in red magnification boxes. Bottom: False-positive comparison of a non-fit pair identified as a fit (Fabric ID 18, 100% cotton). (Adapted from Andrews et al. ) 
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	When considering each of the subsets and potential effects on the ESS and the quality of a physical fit, it is difficult to make any inferences using performance rates solely, as the rates are similar between subsets. However, differences appear when the edge similarity scores are analyzed more closely using boxplots and logistic regression. 
	Figure 36 shows the spread of the scores for true fits and true non-fits for each subset. Overall, true fits appear to produce a broader range of scores (70-100) than true non-fits, which cluster at lower scores (0-10). This indicates that the analyst was more comfortable classifying a comparison as a non-fit. In contrast, for true fits, certain features influenced the score assigned to the physical fit identified by the analyst, producing a wider range of scores. 
	When considering specific features that could affect the ESS, the separation method is a prominent one. Interestingly, hand-torn pairs presented more variability of scores than stabbed pairs from the same subset, likely due to distortions. However, stabbed comparisons can produce more false-positive classifications than torn comparisons, as the stabbing mechanism produces less distinctive edge patterns than the tearing process, which may make the identification of a non-fit slightly more difficult in some c
	Fabric construction is another element of interest for a physical fit. A knit fabric generally produces lower scores than woven fabric because the knit fabric is more likely to unravel, stretch, and deform Indeed, the average score for the hand-torn multicolor knit fabric was approximately 70, while the average score for the hand-torn unicolor knit fabric was about 90. On the other hand, the woven fabric may be prone to producing false positives at a higher rate than knit fabric. 
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	Figure
	Figure 36. Boxplots showing the distribution of edge similarity scores for each subset of textile comparisons. Scores for true non-fits are shown on the left, and scores for true fits are shown on the right. 
	Figure 36. Boxplots showing the distribution of edge similarity scores for each subset of textile comparisons. Scores for true non-fits are shown on the left, and scores for true fits are shown on the right. 
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	A logistic regression model is also used to complement boxplots information and show the effect of each factor on the resulting edge similarity score. After evaluating several possible models, one was selected that includes an interaction between construction and separation method as this potential interaction is observed in the experimental data. 
	While analysts must consider the composition of the fabric when conducting physical fit comparisons, the logistic regression model shows that varying factors, such as separation method and construction of the fabric, do not have a substantial effect on the ESS used as an indicator of the quality of a physical fit. Figure 37 illustrates the effect on textiles shown in the counterfactual plots is minimal, as compared to the effects on tapes, previously discussed. 
	Figure
	Figure 37. Top. Counterfactual plot demonstrating the effect of construction (weave or knit) on edge similarity scores. True fits (TF) are presented in dotted lines, while true non-fits (TNF) are in solid lines. Bottom: Counterfactual plot demonstrating the effect of separation method (hand-torn or stabbed) on edge similarity scores. True fits (TF) are presented in dotted lines, while true non-fits (TNF) are in solid lines. 
	Figure 37. Top. Counterfactual plot demonstrating the effect of construction (weave or knit) on edge similarity scores. True fits (TF) are presented in dotted lines, while true non-fits (TNF) are in solid lines. Bottom: Counterfactual plot demonstrating the effect of separation method (hand-torn or stabbed) on edge similarity scores. True fits (TF) are presented in dotted lines, while true non-fits (TNF) are in solid lines. 
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	Finally, score-based likelihood ratios (SLRs) are calculated from ESS of the population sets as a proxy for the probative value of the evidence when compared to a relevant population. Because the logistic regression model did not demonstrate that any of the tested factors substantially affected the similarity scores on textile edges, the knit and woven hand-torn and stabbed subsets are combined to evaluate the textile set as a whole. Figure 38 shows the distribution of the SLR, represented in the log scale,
	Finally, score-based likelihood ratios (SLRs) are calculated from ESS of the population sets as a proxy for the probative value of the evidence when compared to a relevant population. Because the logistic regression model did not demonstrate that any of the tested factors substantially affected the similarity scores on textile edges, the knit and woven hand-torn and stabbed subsets are combined to evaluate the textile set as a whole. Figure 38 shows the distribution of the SLR, represented in the log scale,
	1 to 0.001). An edge similarity score of 0 results in a log SLR of approximately -3, which indicates that observing a score of 0 is about 1000 times more likely if the pieces were not once joined than if they were once part of the same object. On the other hand, a score of 100 results in a log SLR of approximately 2.7, which indicates that a score of 100 is about 500 times more likely if the pieces were once joined than if they were not part of the same object. It is important to note that because the datas
	8 


	Figure
	Figure 38. Plot displaying log score-based likelihood ratios versus the ESS for the 100% cotton textile dataset. 
	Figure 38. Plot displaying log score-based likelihood ratios versus the ESS for the 100% cotton textile dataset. 
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	Milestone 3¾Practitioners’ contributions: testing and fine-tuning through interlaboratory exercises. 
	The textile interlaboratory exercise assist with improvement of the method. Unlike tapes, textiles can’t be immobilized in clear acetate sheets to preserve the edges when submitted for examination to various analysts. As a result, a decision was made to conduct the study utilizing high resolution images that the examiner can zoom on each bin at the equivalent observation level as the microscope. This approach not only prevent distortion of fracture features but also saves turn-around times and allows to mim
	This interlaboratory study involves 15 participants conducting physical fit comparisons of images of three textile sample pairs. Participants are familiarized with the examination protocol, the terminology and criteria, and the reporting template and interpretation z-score. Using this method only one false negative conclusion is reported (3%), while inconclusive results ranged from 8 to 11%, and no false positives are observed in this set (Table 18) 
	Table 18. Performance rates calculated using participant-reported conclusions and ESS thresholds of fit, inconclusive, or non-fit. Inconclusive conclusions are counted as “errors” for the sensitivity and specificity calculations. TPR= true positive rate, TNR= true negative rate. Adapted from Andrews et al. 
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	Table
	TR
	Performance rate by participant reported conclusion 
	Performance rate by ESS threshold 

	Sensitivity (TPR) 
	Sensitivity (TPR) 
	90% (27/30) 
	90% (27/30) 

	Specificity (TNR) 
	Specificity (TNR) 
	87% (13/15) 
	87% (13/15) 

	False Positive Rate 
	False Positive Rate 
	0% (0/15) 
	0% (0/15) 

	False Negative Rate 
	False Negative Rate 
	0% (0/30) 
	3% (1/30) 

	Inconclusive Rate 
	Inconclusive Rate 
	11% (5/45) 
	8% (4/45) 

	Accuracy 
	Accuracy 
	89% (40/45) 
	89% (40/45) 


	Inter-participant agreement between scores is also generally high. Figure 39 shows that z-scores calculated for each participant show that 42 of 45 total comparisons were within the average range of ESS values for their respective pairs. The remaining three comparisons were deemed cautionary, while no comparisons in this study were deemed unsatisfactory. 
	The survey responses gathered by this study show that most participants find the ESS approach easy to follow and useful for describing their physical fit examinations, especially for verification or peer review purposes. The standardized terminology and descriptors used in this study also offer an opportunity to improve the consistency of reporting language used by practitioners, as seen in figure 40 that displays the median and variation quartiles of the results reported by all participants per each pair s
	-

	Figure
	Figure 39. Z-scores for the reported ESS value from each participant for each comparison pair. The z-scores have been color-coded for enhanced visualization, where green bars indicate satisfactory scores, yellow bars are cautionary, and red bars indicate unsatisfactory scores that fall outside the bounds of the confidence interval. 
	Figure 39. Z-scores for the reported ESS value from each participant for each comparison pair. The z-scores have been color-coded for enhanced visualization, where green bars indicate satisfactory scores, yellow bars are cautionary, and red bars indicate unsatisfactory scores that fall outside the bounds of the confidence interval. 
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	Figure
	Figure 40. Boxplots showing the distribution of scores for the three pairs in the interlaboratory study. The true non-fit pair is shown in tomato red (NF), the challenging true fit pair is shown in lime green (F-), and the true fit pair is shown in forest green. The thresholds for fits (60%) and non-fits (40%) are shown in green and red, respectively. 
	Figure 40. Boxplots showing the distribution of scores for the three pairs in the interlaboratory study. The true non-fit pair is shown in tomato red (NF), the challenging true fit pair is shown in lime green (F-), and the true fit pair is shown in forest green. The thresholds for fits (60%) and non-fits (40%) are shown in green and red, respectively. 
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	Milestone 4¾Complementing human-based approaches with computational algorithms 
	The use of mutual information and decision tree algorithms has shown valuable for textiles and for tapes, and the results were previously discussed in the respective tape section. However, the use of machine learning (ML) models to make predictions of whether two input images of textiles are fit or non-fit was not as straightforward for textiles. Much of the methodology was like the tape prediction process, as the problem is very similar besides from a few subtilties in the preprocessing. The main challenge
	The CNN model is optimized to a point where it can be trained on reasonably processed textile pair images. In the textile digital datasets there are 294 Fit pairs and 305 non-fit pair examples. During the preprocess we remove textile pairs that are not able to be processed with the current method. This is either caused by bugs in the edge detection algorithm or long strands that extend far in the x-dimension. Some examples of these issues can be seen in Figure 41. In total 93 Fit pairs were removed such tha
	Figure
	Figure 41. Examples of issue textiles. These textiles failed the preprocessing due to artifacts produced. 
	Figure 41. Examples of issue textiles. These textiles failed the preprocessing due to artifacts produced. 


	A 5-fold cross-validation is applied. The textile fit pairs are split into five folds, with four folds acting as the training set and the last fold as the validation set. This is performed five times, switching out each fold for the testing set. This will judge how well the model generalizes to random datasets. Next, the non-fits are generated from the fits for the training and validation up to a certain fit/non-fit ratio. Here, are fit/non-fit ratio was chosen to be 0.3 fit/non-fit as this turned out to be
	Figure
	Figure 42. Layer-wise Relevance Propagation (LRP) analysis is compared to human comments on Fits. Important LRP pixels are colored. LRP identifies the most important features in accordance with the examiners bin-by-bin respective annotations. 
	Figure 42. Layer-wise Relevance Propagation (LRP) analysis is compared to human comments on Fits. Important LRP pixels are colored. LRP identifies the most important features in accordance with the examiners bin-by-bin respective annotations. 


	Table 19. Metrics from 5-fold cross validation for the textiles comparisons using CNN 
	Table 19. Metrics from 5-fold cross validation for the textiles comparisons using CNN 
	Table 19. Metrics from 5-fold cross validation for the textiles comparisons using CNN 

	TR
	Accuracy 
	Precision 
	Recall 
	Specificity 
	F1 

	Training 
	Training 
	85.6 
	82.7 
	72.0 
	92.4 
	76.6 

	Validation 
	Validation 
	74.3 
	62.2 
	64.2 
	79.4 
	62.8 


	It should be noted the results are achieved with a relatively low number of fit pairs. Increasing the amount of textile fit pairs can improve the results. To do this, the preprocessing algorithm must be improved to take care of the issues highlighted before. Along with improving the preprocessing algorithm, more test needs to be done regarding the model architecture. The preliminary model was trained using grayscale image; however, the textile images contain color information that might prove useful in clas
	2.2.4. Automotive plastics physical fit method 
	The third material evaluated in this study is hard brittle polymers; we focus on automotive parts as they occur frequently in vehicle-related offenses. The results are anticipated to be applicable to similar polymers in other applications. 
	Milestone 1¾Method development and optimization of standardized criteria 
	Major modifications were necessary to develop the method of examination and to identify relevant features on automotive plastics as their fracture characteristics and multi-dimensions and planes of the pieces make it very different to handle than flat and thinner materials like duct tape and textiles. Also, literature on brittle plastics’ fits is relatively scarce.Therefore, the method development includes identifying relevant comparison features, deciding how the polymer edges can be divided into subunits 
	54-59 

	Ten main features are established for this material and described in the methodology section. In addition to the ESS similarity score, another metric is implemented in this method to estimate the influence of each feature on a given decision. To evaluate the features quantitatively, each response option for the feature description is assigned a value, referred to as the feature prominence value (FPV). When the feature is absent or when the feature indicates an inconclusive alignment, the FPV is 0. For fit a
	Table 20. Example of documented features, response options, and respective feature prominence value (FPV) for the brittle polymer comparisons. 
	Features 
	Features 
	Features 
	Options for a response to these features 
	Feature Prominence Value 

	TR
	Present and Highly Distinctive (Indicative ofFit) 
	2 

	1. 3D Edge Alignment 
	1. 3D Edge Alignment 
	Present and Highly Distinctive (Indicative ofFit) 
	1 

	Inconclusive 
	Inconclusive 
	0 

	Present but Misaligns (Indicative of Non-fit) 
	Present but Misaligns (Indicative of Non-fit) 
	-1 

	Present but Misaligns (Highly Indicative of Non-fit) 
	Present but Misaligns (Highly Indicative of Non-fit) 
	-2 


	Table 21. Description of polymer 3D alignment feature and examples of the weight on the decision of a fit or non-fit. 
	3D Alignment Feature 
	3D Alignment Feature 
	3D Alignment Feature 

	A. Present and Highly Distinctive(Indicative of Fit) -This polymer is highly distinctive due to how these 3D alignments are puzzle-like. Since the pieces are puzzle-like, the odds of the fracture quickly changing directions in the exact same zigzag pattern increases the rarity making it highly distinctive. This is an example of a bin with an FPV value of +2. 
	A. Present and Highly Distinctive(Indicative of Fit) -This polymer is highly distinctive due to how these 3D alignments are puzzle-like. Since the pieces are puzzle-like, the odds of the fracture quickly changing directions in the exact same zigzag pattern increases the rarity making it highly distinctive. This is an example of a bin with an FPV value of +2. 
	-

	B. Present (Indicative of Fit) -This polymer is 3D alignments are “smooth”, with no distinct waviness or “puzzle-like” areas. Although these pieces align, it is likely that these pieces could align with other pieces that are flat, translucent, and straight-edged. This is an example of a bin with an FPV value of +1 

	C. Present but Misaligns (Indicative ofNon-fit) -In this image, Sample A and B align towards the left. However, there is a gap that grows wider as the viewer goes more right. The gap is notable enough to make it seem as though these pieces do not fit together, but not necessarily big enough to have an examiner think there may not be an intermediate piece that could fit in between Sample A and B. This is an example of a bin with and FPV of -1. 
	C. Present but Misaligns (Indicative ofNon-fit) -In this image, Sample A and B align towards the left. However, there is a gap that grows wider as the viewer goes more right. The gap is notable enough to make it seem as though these pieces do not fit together, but not necessarily big enough to have an examiner think there may not be an intermediate piece that could fit in between Sample A and B. This is an example of a bin with and FPV of -1. 
	D. Present but Misaligns (Highly Indicative ofNon-fit) -In this image, Sample A and B has edges that do not align. In the top right area, there is a gap that starts to go in opposite directions. This is an example of a bin with and FPV of -2. 


	Figure
	Milestone 2¾Method validation through large databases and evaluation of factors that affect performance rates 
	The 445 pairs of polymer samples originating from automotive headlight and taillight assemblies are compared by multiple analysts to evaluate the newly developed method. The polymer sources are grouped into three classes based on the main polymer composition and morphology: translucent clear, translucent colored, and opaque colored. 
	Table 22 shows that misidentification rates of the initial comparison set are relatively low and an overall accuracy of 86%, with only one false positive reported in this dataset. However, several false negative results are observed, along with several fit and non-fit pairs reported as inconclusive. The documentation protocols established in this study allow the evaluation of the reasons and factors that lead to those misidentifications. Some misidentifications result from samples lacking distinct features 
	Table 22. Performance rates of the analysis of the polymer pairs. This overall set includes a mixture of polymer types, 
	compositions, and morphologies.
	10 

	Performance Rates 
	Performance Rates 
	Performance Rates 
	Overall (n = 445) 

	# of True Fits/# of True Non-fits 
	# of True Fits/# of True Non-fits 
	347/98 

	True-Positive Rate (%) 
	True-Positive Rate (%) 
	83.9 

	True-Negative Rate (%) 
	True-Negative Rate (%) 
	96.0 

	False-Negative Rate (%) 
	False-Negative Rate (%) 
	8.9 

	False-Positive Rate (%) 
	False-Positive Rate (%) 
	1.0 

	Inconclusive Rate (True Fits) (%) 
	Inconclusive Rate (True Fits) (%) 
	7.2 

	Inconclusive Rate (True Non-fits) (%) 
	Inconclusive Rate (True Non-fits) (%) 
	3.0 

	Accuracy (%) 
	Accuracy (%) 
	86.5 


	As shown in Figures 43 and 44, the method demonstrates that most true non-fit polymers receive low ESS (0-10%) and low FPS (less than -5). A worrisome exception is observed for the false positive 
	84 
	that received a score of 90%. True fit pairs generally receive high ESS (90-100%) and high FPS (15 or greater). Exploratory data analysis shows that polymer composition may impact the quality of a physical fit between polymer edges. Inter-analyst variation of ESS and FPS is low for samples analyzed by two independent analysts. The documentation template provides clear and transparent insight into the features that influenced the decision-making process. Therefore, the proposed approach is expected to facili
	7,10 

	Figure
	Figure 43. Distribution of ESS for true fit (TF) and true non-fit (TNF) pairs from the polymer analysis (n=385 pairs). One false positive is reported with an ESS of 90, and only a few TNF pairs are reported as inconclusive. Figure 43A, top shows boxplot distributions of the ESS values of the polymer samples. The distribution of ESS for TF pairs is much broader. Those correctly reported as fits have an overall median ESS of 100; several pairs receive lower ESS and are misidentified as inconclusive or non-fit
	10 

	Figure
	Figure 44. Frequency distribution of FPS for the initial polymer set. The histogram is color-coded by outcome: True Positive (TP), True Negative (TN), False Negative (FN), False Positive (FP), Inconclusive-True-Non-fit (INCN), and Inconclusive-True-Fit (INCP). One FP is reported (FPS of 31), and a few TNF and TF are reported inconclusive. The distributions of TP sums generally are at 15 or higher, while the TN pairs have sums of -5 or lower. 
	Figure 44. Frequency distribution of FPS for the initial polymer set. The histogram is color-coded by outcome: True Positive (TP), True Negative (TN), False Negative (FN), False Positive (FP), Inconclusive-True-Non-fit (INCN), and Inconclusive-True-Fit (INCP). One FP is reported (FPS of 31), and a few TNF and TF are reported inconclusive. The distributions of TP sums generally are at 15 or higher, while the TN pairs have sums of -5 or lower. 
	10 



	Table 23 shows the performance rate of the polymer set divided by polymer class. Translucent clear polymers are the most common in this set, followed by the translucent colored and then the opaque colored. 
	Of the three sets, the translucent-colored set generated a higher false negative rate and a high inconclusive rate for true fits, as well as the only false positive reported in the set. The misidentifications in this set reduce the accuracy for these polymers. During the comparisons, the analysts note that these polymer fragments, particularly the orange and red fragments originating from a headlight, tend to distort more substantially than some other polymers (see Figure 45 and 46). Overall, while the init
	7 

	Table 23. Performance rates of the initial analysis of the polymer pairs, grouped by polymer class of translucent clear, translucent color, or opaque color. 
	10 

	Performance Rates 
	Performance Rates 
	Performance Rates 
	OpaqueColored (n=40) 
	Translucent Clear (n=314) 
	Translucent Colored (n=90) 

	# of True Fits/ # of True Non-fits 
	# of True Fits/ # of True Non-fits 
	31/9 
	253/62 
	63/27 

	True Positive Rate (%) 
	True Positive Rate (%) 
	90.3 
	83.8 
	81.0 

	True NegativeRate (%) 
	True NegativeRate (%) 
	88.9 
	96.8 
	96.3 

	False NegativeRate (%) 
	False NegativeRate (%) 
	3.2 
	7.5 
	12.7 

	False Positive Rate (%) 
	False Positive Rate (%) 
	0.0 
	0.0 
	3.7 

	Inconclusive Rate (True Fits) (%) 
	Inconclusive Rate (True Fits) (%) 
	6.5 
	8.7 
	6.3 

	Inconclusive Rate (True Non-fits) (%) 
	Inconclusive Rate (True Non-fits) (%) 
	11.1 
	3.2 
	0.0 

	Accuracy (%) 
	Accuracy (%) 
	90.0 
	86.3 
	85.6 


	Figure
	Figure 45. Example pair from translucent color polymers. The two fragments have visible surface damage, and the respective comparison edge has a noticeable gap between the material of the two edges in a manner that indicates they do not fit together. Figures 45A, 45B, and 45D show the gap between the edges caused by missing material and distortion of the edges. In contrast, 45C shows an indent in the surface of top sample that causes misalignment of the pattern (texture) and the edge of the samples. 
	Figure 45. Example pair from translucent color polymers. The two fragments have visible surface damage, and the respective comparison edge has a noticeable gap between the material of the two edges in a manner that indicates they do not fit together. Figures 45A, 45B, and 45D show the gap between the edges caused by missing material and distortion of the edges. In contrast, 45C shows an indent in the surface of top sample that causes misalignment of the pattern (texture) and the edge of the samples. 
	10 



	Figure
	Figure 46. Image of the one false positive pair reported in the set. The sample edge is relatively small, and has consistent patterning across the fracture edge, along with additional features noted by the analyst that indicated the pieces had substantial similarities 
	Figure 46. Image of the one false positive pair reported in the set. The sample edge is relatively small, and has consistent patterning across the fracture edge, along with additional features noted by the analyst that indicated the pieces had substantial similarities 
	10 



	Figure
	Figure 47. Boxplot distributions of reported ESS grouped by polymer class (translucent clear, translucent colored, and opaque colored) and polymer composition (PMMA, polypropylene terephthalate, or polycarbonate). The separation between the ESS of true fits and true non-fits for the translucent clear and opaque color sets is relatively strong, and most pairs have ESS of 100 or 0 for fits and non-fits, respectively 
	Figure 47. Boxplot distributions of reported ESS grouped by polymer class (translucent clear, translucent colored, and opaque colored) and polymer composition (PMMA, polypropylene terephthalate, or polycarbonate). The separation between the ESS of true fits and true non-fits for the translucent clear and opaque color sets is relatively strong, and most pairs have ESS of 100 or 0 for fits and non-fits, respectively 
	10 



	Inter-analyst variation 
	To further evaluate the method’s performance, a subset of samples from all three polymer classes is independently assessed by a second analyst. This subset contains 187 pairs purposely selected to include the most challenging samples, including those pairs where the first analyst observes more misclassifications. The performance of the method for these samples by both analysts is shown in Table 24. Overall, the accuracy is comparable between the two analysts. Most of the pairs misidentified by one analyst a
	7 

	Table 24. Performance rates of the inter-analyst examination. This set is a subset of the initial set and contains a mixture of the polymer classes. 
	10 

	Performance Rates 
	Performance Rates 
	Performance Rates 
	Analyst A 
	Analyst B 

	# of True Fits/# of True Non-fits 
	# of True Fits/# of True Non-fits 
	114/73 
	114/73 

	True Positive Rate (%) 
	True Positive Rate (%) 
	72.8 
	81.6 

	True Negative Rate (%) 
	True Negative Rate (%) 
	95.9 
	98.6 

	False Negative Rate (%) 
	False Negative Rate (%) 
	14.9 
	11.4 

	False Positive Rate (%) 
	False Positive Rate (%) 
	0.0 
	0.0 

	Inconclusive Rate (True Fits) (%) 
	Inconclusive Rate (True Fits) (%) 
	12.3 
	7.0 

	Inconclusive Rate (True Non-fits) (%) 
	Inconclusive Rate (True Non-fits) (%) 
	4.1 
	1.4 

	Accuracy (%) 
	Accuracy (%) 
	81.8 
	88.2 


	The ESS between the two analysts is also comparable. Analyst A has a slightly wider distribution of ESS for true fits, but both analysts have the median ESS for fits at 100 and non-fits at 0. There is limited overlap between the ground truth ESS distributions (Figure 48). 
	Figure
	Figure 48. Boxplot distribution of ESS for true fit (TF) and true non-fit (TNF) pairs from the inter-analyst polymer analysis.
	Figure 48. Boxplot distribution of ESS for true fit (TF) and true non-fit (TNF) pairs from the inter-analyst polymer analysis.
	 No false positives are reported, and only a few TNF pairs are reported as inconclusive for both analysts.
	10 



	Moreover, the FPV and FPS metrics reveal a similar weight given by the analysts to the features that lead to a particular bin decision. This provides evidence that the metrics are a promising step towards the standardization of the polymer fit examinations. Figure 49 shows the comparison of FPS for the two analysts on the inter-analyst polymer set. The distributions are similar, sharing the general trends in samples correctly identified as fits and non-fits. For both analysts, inconclusive samples tended to
	Figure
	Figure 49. The frequency distribution of FPS for the 187 inter-analyst pairs. True Positive (TP), True Negative (TN), False Negative (FN), False Positive (FP), Inconclusive-True-Non-fit (INCN), and Inconclusive-True-Fit (INCP) are shown for each analyst. The distributions of FPS are similar for both analysts, with only minor variations in the distributions of the inconclusive pairs. 
	Figure 49. The frequency distribution of FPS for the 187 inter-analyst pairs. True Positive (TP), True Negative (TN), False Negative (FN), False Positive (FP), Inconclusive-True-Non-fit (INCN), and Inconclusive-True-Fit (INCP) are shown for each analyst. The distributions of FPS are similar for both analysts, with only minor variations in the distributions of the inconclusive pairs. 
	10 



	Overall, the main lessons learned in the polymer set are summarized as follows: 
	1) The ESS scores provide a quantitative assessment of the quality of a fit. For this population set, ESS scores below 10 support non-fits, while scores above 90 were typically observed for true fits. 
	2) The novel supplement of the feature prominence sum provided an additional quantitative metric to assess the similarity between edges and evaluate which features hold more support for the analyst decisions. This study demonstrates preliminary ranges that can be used to support an analyst’s decisions: true fits with FPS greater than 15 and true non-fits with FPS less than -5. 
	3) The qualitative features along with the quantitative ESS and FPS metrics demonstrates good overall performance for physical fit examinations of brittle automotive polymers, The initial comparison set of 445 comparisons result in an overall accuracy of 86.5%. 
	4) Most error rates originate from false negative misidentifications or inconclusive caused by distortions during the breaking process. The distortion significantly masks distinctive features. 
	5) False positives in this dataset are low (1%) but when present, the ESS and FPS values were high, which raises awareness that brittle polymers could produce misleading fit results. 
	6) Inter-analyst performance shows consistency, with analysts demonstrating similar overall accuracies, ESS, and FPS distributions, indicating the method can further assist the discipline with a standardized approach for brittle polymers. 
	7) Most informative features occur at the microscopic level. Unfortunately, imaging of 3D features are complex and therefore an image database was created at the macroscopic level, but microscopic images were not appropriate for the ForensicFit package or CNN networks. 
	8) The approach proposed here is anticipated to provide a first step toward more systematic comparison criteria and documentation. It is also anticipated that the future evaluation of this tool by practitioners can lead to improvements in reproducibility. 
	2.3. Limitations 
	The main limitation encountered in this study is the implementation of computational CNN algorithms for textiles and polymers. The main challenge for polymers is to capture in an image the microscopic three-dimensional features that the analysts observe under the microscope. Light reflection and refraction, and different focal planes and depths within a polymer broken edge are some of the issues that limited the imaging automated comparisons. For that reason, 3D molds and more sophisticated 3D scanning tech
	Although the performance of CNN for automated assessment of tapes and textiles is very promising, we acknowledge that the dimensionality of the data requires of much larger datasets. Our image collection contains about 9000 images, while CNN computational algorithms for image feature recognition. CNN often require more than ten times the size of these sets. However, the collection, imaging and cross-validation with examiner-based results is time consuming and unpractical at that level of sample size. 
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	2) M Prusinowski, Z Andrews, C Neumann, T Trejos. Assessing significant factors that can influence physical fit examinations – Part I. Physical fits of torn and cut duct tapes. Forensic Science International. 2023, 343, 
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	4) M Prusinowski, E Brooks, T Trejos. Development and validation of a systematic approach for the quantitative assessment of the quality of duct tape physical fits. Forensic Science International, 307, February 2020, served as 
	4) M Prusinowski, E Brooks, T Trejos. Development and validation of a systematic approach for the quantitative assessment of the quality of duct tape physical fits. Forensic Science International, 307, February 2020, served as 
	https://doi.org/10.1016/j.forsciint.2019.110103 (
	https://doi.org/10.1016/j.forsciint.2019.110103 (


	a basis of this research) 

	2. Published thesis and dissertations. 
	5) Meghan Prusinowski, Ph.D. WVU Department of Forensic and Investigative Science, Enhancing the forensic comparison process of common trace materials through the development of practical and systematic methods. Graduate Theses, Dissertations, and Problem Reports. 2023, 11644. 
	https://researchrepository.wvu.edu/etd/11644 

	6) Zachary Andrews, MSFS (Summer 2022), WVU Department of Forensic and Investigative Science, "Evaluating the Validity and Reliability of Textile and Paper Fracture Characteristics in Forensic Comparative Analysis" Graduate Theses, Dissertations, and Problem Reports. 
	2022. 11373. https://researchrepository.wvu.edu/etd/11373 

	3. Submitted under journal review. 
	7) M Prusinowski, P Tavadze, Z Andrews, L Lang, Divyanjali Pulivendhan, C Neumann, AH. Romero, T. Terjos. Experimental results on data analysis algorithms for extracting and interpreting edge feature data for duct tape and textile physical fit examination. Under review, submitted Journal of Forensic Science, June 2023 
	8) M Prusinowski, P Tavadze, Z Andrews, C Dolton, C Vogler.Development of a systematic comparison method for forensic physical fit analysis of automotive polymers. Under review, submitted Forensic Chemistry, June 2023 
	. 

	9) Z Andrews, M Prusinowski, E Nguyen, C Neumann, T Trejos. Assessing physical fit examinations of stabbed and torn textiles through a large dataset of casework-like items and inter-laboratory studies. Under review, Journal of Forensic Sciences. Submitted May 2023 
	10) P Tavadze, L Lang, M Prusinowski, Z Andrews, T Trejos, and AH. Romero. Using convolutional neural networks to support examiners in duct tape physical fit comparisons. Under review, Forensic Science International. Submitted January 2022 
	3.1.2. Presentations at Scientific Meetings 
	1) February 2023, Zachary Andrews, Meghan Prusinowski, Tatiana Trejos. Assessment of a novel method for physical fit examinations using an extensive database of casework-like samples and interlaboratory studies. AAFS meeting, Orlando, FL (poster presentation) 
	2) September 14, 2022. T Trejos, A Quigley-McBride, M Prusinowski, Z Andrews. Workshop: Forensic Examinations of Physical Fits—Past, Present, and Future. MAFS 51st Annual Fall Meeting A Joint Meeting with ASTEE, Des Moines, Iowa. (workshop organizer and instructor, full day workshop) 
	th

	3) September 15, 2022. Meghan Prusinowski, Zachary Andrews, Tatiana Trejos. Development of systematic and practical documentation templates for tape and textile physical fit comparisons. MAFS 51st Annual Fall Meeting A Joint Meeting with ASTEE. Des Moines, Iowa. (Oral presentation) 
	th

	4) September 16, 2022. Zachary Andrews, Colton Diges, Tatiana Trejos. Evaluating the use of microfiber alignment in office paper and postage stamps to identify physical fitsMAFS 51st Annual Fall Meeting A Joint Meeting with ASTEE. Des Moines, Iowa. (Oral presentation) 
	4) September 16, 2022. Zachary Andrews, Colton Diges, Tatiana Trejos. Evaluating the use of microfiber alignment in office paper and postage stamps to identify physical fitsMAFS 51st Annual Fall Meeting A Joint Meeting with ASTEE. Des Moines, Iowa. (Oral presentation) 
	th
	. 

	5) June 1, 2022. Meghan Prusinowski, Zachary Andrews, Cedric Neumann, Tatiana Trejos. Assessing significant factors that can influence physical fit examinations of tape and textiles. European Academy of Forensic Sciences (EAFS) conference, Stockholm, Sweden (Poster) 
	st


	6) February 2022. Meghan Prusinowski, Evie Nguyen, Tatiana Trejos. Validation of a Systematic Method for Duct Tape Physical Fits Through Inter-Laboratory Studies. 2022 AAFS Conference, Seattle, WA. (Poster, Virtual) 
	7) February 2022. Zachary Andrews, Colton Diges, Tatiana Trejos. Feature Occurrence and Error Rates in Textile Physical Fit Comparisons. 2022 AAFS Conference, Seattle, WA. (Poster) 
	8) October 2021. Meghan Prusinowski, Zachary Andrews, Tatiana Trejos. Development of systematic methods for the physical edge comparison of trace materials. 2021 Brazil Winter 3School of Forensic Sciences (Virtual, Oral Presentation) 
	rd 

	9) July 29, 2021. Colton Diges, Zachary Andrews, Meghan Prusinowski. Microfiber Alignment in Stamp Edges for Physical Fit. 13Annual summer undergraduate research symposium, Morgantown, WV 
	th
	th 
	https://www.youtube.com/watch?v=tdt-TiiNtXM 
	https://www.youtube.com/watch?v=tdt-TiiNtXM 


	10) July 28, 2021. Zachary Andrews, Colton Diges, Meghan Prusinowski, Tatiana Trejos. Assessing the Value of Microfiber Alignment Between Stamp Edges for Physical Fit Comparisons. Current Trends in Forensic Trace Analysis 2021 Online Forensic Symposium. (poster) 
	th

	11) June 2, 2021. Tatiana Trejos, Meghan Prusinowsli, Zachary Andrews. Forensic Examination of Duct Tape Physical Fits: Interlaboratory Results, NIST-OSAC Trace Subcommittee (oral) 
	nd

	12) February 2021, Meghan Prusinowski, Zachary Andrews, Evie Nguyen, Tatiana Trejos. Development of Systematic Approaches for Physical Fit Comparisons of Trace Materials. Presented at Virtual AAFS Conference (E-Poster) 
	3.1.3. Website(s) or other Internet site(s) 
	Development of the package ForensicFit. Tavadze P, Lang L. romerogroup/ForensicFit: First release of ForensicFit Package [Internet]. Zenodo; 2022.
	 Available from: https://doi.org/10.5281/zenodo.7435058 

	3.2.Data sets generated 
	According to our data management plan, the data resulting from this research was curated and compiled into a centralized dataset repository. The dataset generated in this study consists of a physical collection of about 9,000 fractured items, which is maintained at the Trejos’ laboratory, and from these samples, a total of 4,773 pairs were generated for analysis. The overall composition of the datasets is shown in Figure 15 of this report. The digital dataset contains the archived data, and includes: 
	a) 
	a) 
	a) 
	A master inventory with the sample unique identifier (no personal identification information) and the ground truth of the items (i.e., known true fit, known true non-fit) 

	b)
	b)
	  Images of the fractured edges: tape and textile scans, automotive plastic photographic images. 

	c) 
	c) 
	Microsoft Excel reporting templates with the sample's unique identifier and the examiner’s observations of the physical fit examinations, including qualifiers and similarity scores. 

	d) 
	d) 
	Microsoft Excel files with the ground truth and respective examiner’s conclusions and performance rate estimations. 

	e) 
	e) 
	Materials such as templates, presentations, and instructions submitted for the interlaboratory studies 

	f)
	f)
	  Fourier Transform Infrared Spectroscopy (FTIR) analysis for the polymer study project. 


	Data Storage and File Descriptions 
	A data drive folder is named Physical Fits NIJ 2020-DQ-BX-0012 archiving, which contains four sub-folders, one with the master inventory of all physical samples and their respective unique identifier, and three other folders containing each data per type of material, 1) tape, 2) textile, and 3) 
	automotive plastic (figure 1) 
	Figure 51: Polymer Research Group overall folder structure. 
	Figure 51: Polymer Research Group overall folder structure. 


	Each of the Fracture Research subfolders contains 1) the reporting template(s) used during the study, 2) the data, split by subsets, each containing an Excel file with all reported results, and one file compiling the ground truth, 3) the photos or scans, and 4) the interlaboratory results when applicable. 
	3.3.Dissemination activities 
	To date, the main dissemination routes have been the publication of manuscripts in scientific journals and the presentation of research results at scientific meetings, as described in 3.1. An in-person workshop was organized at the 2023 MAFS/ASTEE joint meeting, with 30 practitioners and a virtual session was organized in Spring 2023 to discuss the result with the interlaboratory participants and the invitation was also extended to other agencies of interest, with a total of 42 attendees. 
	IV PARTICIPANTS AND OTHER COLLABORATING ORGANIZATIONS 
	This research has provided a robust platform for training the next generations of forensic scientists in trace evidence, physical fits, and experimental design in forensics. This research has provided research opportunities for undergraduate students and graduate students (Master and Doctoral). Table 25 lists the main participants and collaborators. 
	Moreover, this project's resources and research settings have provided all undergraduate and graduate students the unique opportunity to present their results at scientific venues. The opportunities provided to undergraduate researchers, some of the first-generation university students or minority students, have served as an essential foundation to their professional development. Two of our PhD students joined the workforce, and the Master’s student completed his degree and started in the doctoral program. 
	This project also allowed a valuable collaboration across disciplines, and between academia and practitioners at state and federal laboratories, exposing the students, faculty, and practitioners to an enriching multi-and inter-disciplinary environment to develop solutions for our criminal justice system. 
	Table 25. List of main participants and collaborating organizations 
	ParticipantName 
	ParticipantName 
	ParticipantName 
	Affiliation 
	Role 
	Contributions 

	Tatiana Trejos 
	Tatiana Trejos 
	West Virginia University 
	Principal investigator, Associate Professor 
	Managed the project and directly supervised students on experimental designs, sample collection, method development, and statistical interpretation of the data. Supervised dissemination plans, data curation and management plans. 

	Aldo Romero 
	Aldo Romero 
	West Virginia University 
	Co-Principal investigator, Associate Professor 
	Supervised research related with computational algorithms and digital database. Assisted with reports and manuscripts. 

	Cedric Neumann 
	Cedric Neumann 
	Battelle Memorial Institute 
	Statistician Collaborator (subaward) 
	Collaborated as expert in statistical analysis and interpretation of the data and as co-author of manuscripts. 

	Meghan Prusinowski 
	Meghan Prusinowski 
	West Virginia University 
	Graduate Student (PhD) 
	PhD graduate student working at the Trejos’s group. Meghan was the lead student researcher in the tapes and polymers materials, contributed with collections, physical and digital database, the data acquisition, analysis and interpretation. She has been a primary contributor to the 

	ParticipantName 
	ParticipantName 
	Affiliation 
	Role 
	Contributions 

	TR
	manuscripts and dissemination of results. 

	Zachary Andrews 
	Zachary Andrews 
	West Virginia University 
	Graduate Student (MSFS and PhD) 
	Graduate student working at the Trejos’s group. Zach was the lead student researcher in the textiles, contributed with collections, physical and digital database, the data acquisition, analysis and interpretation. He has been a primary contributor to the manuscripts and dissemination of results. 

	Pedram Tavadze 
	Pedram Tavadze 
	West Virginia University 
	PhD student (2021-2022), postdoctotal fellow (May 2022-May 2023) 
	Pedram was a PhD student at WVU-Physics Department under Romero’s group, who completed his degree in Spring 2022. Then, he joined the team as postdoctoral fellow under Dr. Trejos supervision. His main contributions were the development of computational algorithms. 

	Paige Smith 
	Paige Smith 
	West Virginia University 
	Undergraduate student 
	Paige’s main contribution was assisting with sampling collections and imaging tapes and textiles. Paige graduated in spring 2021 
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	VII SUPPLEMENTAL 
	Supplementary information: Using convolutional neural networks to support examiners in physical-fit comparisons in duct tape 
	1. ForensicFit 
	As mentioned in the main manuscript, the most important step in developing a successful machine-learning model is data preparation. The first step is to develop a well-controlled and efficient database where the user can store, query, analyze, and use the data created for a particular application. ForensicFit uses state-of-the-art image processing methods to analyze and store the generated data. The data is compatible with well-known machine-learning packages such as TensorFlow[1], PyTorch, and SciKit-learn
	ForensicFit core Metadata Image Tape Analyzer TapeAnalyzer Database utils array_tools.py general.py image_tools.py plotter.py PyMongo GridFS OpenCV NumPy SciPy Matplotlib Scikit-image 
	The package is organized into three main sub-packages, core, database, and utils. Each sub-package contains python classes and their methods (functions). Additional information on a selected number of important methods is also provided. For more information on the usage and functionality of each method please refer to the package documentation. Additionally, three stand-alone python scripts accompany the package for batch processes, , , . The following is an introduction to the package structure, modules, a
	create_metadata.py
	preprocess_bin_based.py
	store_on_db.py

	1.1.Core As the name suggests, this sub-package contains the most important functionalities within this package. The fundamental classes are Metadata, Image, and Analyzer. These parent classes provide a skeleton for the data structure used in the package. Moreover, they define the standards for future implementations used for different types of materials. Metadata is used as an attribute in both classes Image and Analyzer. For application to duct tapes, two children classes were defined: Tape and TapeAnalyz
	1.1.1.Metadata Metadata is a mapping that stores details about their objects. These details include but are not limited to, tape name, file location, image resolution, tape quality, and separation method. The metadata is stored in the database with the object and can be used as filters for querying. 
	1.1.2.Tape (Image) The Tape class contains data from scanned images, and each instance of this class represents a tape sample. It also contains methods that handle the read/write as well as some basic image manipulation tasks. This class can be instantiated directly by providing the image data as a NumPy array. Additionally, the instantiation can occur by one of the following classmethods: from_file, from_buffer, and from_dict. The methods included in this class to help image processing are isolate, crop, c
	1.1.3. TapeAnalyzer (Analyzer) 
	This class receives the Tape (Image) class as input and performs further processing to prepare input data for machine-learning. In addition to instantiation directly by providing the Tape class, it can use its classmethod from_dict. The method from_dict uses a python dictionary as an input. This method is very useful when retrieving previously saved data from the database. The most important methods that are called upon instantiation in this class are preprocess, get_image_tilt, auto_crop_y. 
	• Preprocess finds the boundary of the tape. It first binarizes the image and uses the algorithm 
	introduced by Suzuki and Abe[11] implemented in the OpenCV package to find all the 
	contours in the image. The largest contour is assumed as the boundary of the tape. 
	• Get_image_tilt finds the angle of the scanned image with the horizontal line. This is done by 
	dividing the top and bottom edges of the boundary of the tape into multiple segments. 
	Using a linear fit the slope and standard deviation (in the y-direction) of each segment are 
	calculated. The two segments with the least standard deviation are selected (one from the 
	top and one from the bottom). The angle is calculated from the average slope of these two 
	lines. 
	• auto_crop_y crops the image in the y-direction based on the information gathered in the preprocess and get_image_tilt. This is done carefully to avoid any additional noise introduced by protruding weft or warp fibers. 
	Now that the boundaries of the tape have been located, the data can be prepared for the machine-learning process. This task is handled by one of three methods in this class, get_coordinate_based, get_bin_based, get_max_contrast. After calling any of the aforementioned methods, the data can be accessed like a python mapping (e.g., TapeAnalyzer[‘bin_based’]) or a class attribute (e.g., TapeAnalyzer.bin_based). The following is a brief description of the functionality of each method. 
	• 
	• 
	• 
	Coordinate-based quantifies the most important area of the tape, the comparison edge, into a collection (x, y) of coordinates. This is done by first identifying the comparison edge by dividing the boundary of the tape in x direction into n sections and only keeping the leftmost section. The comparison edge is now described by a collection of points in the x-y plane. The number of points describing this edge varies by a great deal because of the ragged nature of the comparison edge. To provide more consisten

	• 
	• 
	Bin-based represents the comparison by many smaller images selected from the area around the edge. This can be visualized by picturing a rectangular window that sweeps over the comparison edge and stores the images inside the window. The width (y-direction) of this window is defined automatically. By providing the number of bins, n_bins, it will divide the width of the tape into n bins. The length, however, must be defined by the user. The tape edge divides the image in the window into two parts, the tape, 

	• 
	• 
	Max-contrast represents the comparison edge by maximizing the contrast between the edge and the rest of the image. This is done by setting the values of the pixels on the comparison edge to their maximum (255) and assigning the minimum value (0) to the remaining pixels. 


	Similar to the get_bin_based method, get_max_contrast, receives the two arguments 
	window_background and window_tape. 
	It is worth mentioning that these methods can be combined. For example, if one wants to retrieve the coordinate-based data of each bin in the bin-based analysis, one can use the mapping TapeAnalyzer[‘bin_based+coordinate_based’]. Other methods used in image processing are flip_v, flip_h. The data generated for this study was through the get_bin_based method by selecting only one bin to represent the whole tape as a big-picture examination. The window_background and window_tape was selected at 10 and 400 pix
	1.2.Database 
	This sub-package provides an efficient and flexible method for storing and retrieving the raw and preprocessed data. The functionality of the rest of the package does not depend on this sub-package. It was added merely to simplify the storage and query process of the data. One can still store and access the raw and analyzed data using the traditional image storage approaches. There are three different types of data in this study, raw data (scanned images), analysis data (e.g., bin-based, or maximum contrast
	1.2.1. ClassMap 
	This class is simply a mapping from the stored information about the data type to its corresponding python object. This mapping helps the Database class recognize which core class needs instantiation. As mentioned before there are different types of data in this study. This class was introduced to help generalize the code, i.e., to avoid writing a database class for each data type. Each data entry contains information about its data type (mode) prior to storage. ClassMap links this information, a python str
	1.2.2.Database 
	The class database is instantiated by providing the name, host, and port of the database. The instantiation does not create a database it will only connect to the MongoDB server. The database is created, if it does not exist, the moment a document is provided for storage. The two necessary methods in any database class are means to store (put) and retrieve (find) data on the database. These operations are performed using the insert and find methods. 
	• Insert stores any object from the sub-package core in the database. This has the option to 
	overwrite, skip, or create a new document if the same object already exists. It is worth 
	mentioning that overwriting (update) does not exist in GridFS. For practicality, we have 
	added this option which simply finds the duplicate and removes it before inserting a new 
	document. After storage, each document is given a unique id. 
	• find queries for all documents matching the provided filter. It then returns them as a list of 
	objects from the core sub-package. There are two additional methods that perform this task, 
	find_one, and find_with_id. Both methods return an object instead of a list of objects. 
	Other useful methods from this class include map_to, filter_with_metadata, count_documents, export_to_files, drop_collection, delete, and delete_database. This sub-package contains two important functions, dump and restore which export and import the database, respectively. 
	1.2.3. Utils 
	This sub-package is a collection of tools for manipulating images and arrays as well as plotting. These tools are not developed in this work, they have been gathered under this sub-package for ease of access. The names of each function have been selected such that the functionality would be self-explanatory. This sub-package contains three main modules: and . The following is a list of functions in each module. 
	array_tools.py
	, image_tools.py, 
	plotting_tools.py

	• 
	• 
	• 
	contains vote_calculator; read_bytes_io; and write_bytes_io. 
	Array_tools.py 


	• 
	• 
	• 
	contains rotate_image; gaussian_blur; split_v; to_gray; to_rbg; contours; largest_contour; 
	Image_tools.py 


	remove_background; get_masked; resize; exposure_control; apply_filter; binerized_mask, and imwrite. 

	• 
	• 
	contains get_figure_size; plot_coordinate_based; plot_pairs; plot_confusion_matrix; 
	Plotting_tools.py 



	plot_kde_distribution; plot_hist_distribution; and plot_metrics. 
	2. Fit to non-fit ratio determination 
	First, the best Error! Reference source not found.fit/non-fit ratio for training the model is determined. For this test, a form of 5-fold cross-validation[12] is applied. The tape fit pairs are split into five folds, with four folds acting as the training set and the last fold as the validation set. This is performed five times, switching out each fold for the testing set. This will judge how well the model generalizes to random datasets. Next, the non-fits are generated from the fits for the training and v
	Table 1 5-fold cross validated test for fit to non-fit ratio of 2.5:10. 
	2.5:10 
	2.5:10 
	2.5:10 
	False-positive rate 
	False-negative rate 
	True-negative rate 
	True-positive rate 
	Accuracy 

	HQHT 
	HQHT 
	0.024 (0.057) 
	0.710 (0.837) 
	0.976 (0.943) 
	0.290 (0.163) 
	0.899 (0.786) 

	HQSC 
	HQSC 
	0.073 (0.078) 
	0.269 (0.363) 
	0.927 (0.922) 
	0.731 (0.637) 
	0.872 (0.806) 

	MQHT 
	MQHT 
	0.042 (0.048) 
	0.538 (0.621) 
	0.958 (0.952) 
	0.462 (0.379) 
	0.863 (0.766) 

	MQSC 
	MQSC 
	0.043 (0.067) 
	0.346 (0.439) 
	0.957 (0.933) 
	0.654 (0.561) 
	0.902 (0.818) 

	LQHT 
	LQHT 
	0.029 (0.037) 
	0.426 (0.531) 
	0.971 (0.963) 
	0.574 (0.469) 
	0.894 (0.806) 

	LQSC 
	LQSC 
	0.094 (0.142) 
	0.311 (0.406) 
	0.906 (0.858) 
	0.689 (0.594) 
	0.857 (0.761) 

	HQ 
	HQ 
	0.048 (0.066) 
	0.381 (0.482) 
	0.952 (0.934) 
	0.619 (0.518) 
	0.885 (0.798) 

	MQ 
	MQ 
	0.042 (0.060) 
	0.442 (0.528) 
	0.958 (0.940) 
	0.558 (0.472) 
	0.883 (0.791) 

	LQ 
	LQ 
	0.062 (0.091) 
	0.363 (0.454) 
	0.938 (0.909) 
	0.637 (0.546) 
	0.875 (0.782) 

	Total 
	Total 
	0.051 (0.071) 
	0.393 (0.486) 
	0.949 (0.929) 
	0.607 (0.514) 
	0.881 (0.791) 


	Table 2 5-fold cross validated test for fit to non-fit ratio of 3:10. 
	3:10 
	3:10 
	3:10 
	False-positive rate 
	False-negative rate 
	True-negative rate 
	True-positive rate 
	Accuracy 

	HQHT 
	HQHT 
	0.070 (0.123) 
	0.367 (0.513) 
	0.930 (0.877) 
	0.633 (0.487) 
	0.890 (0.793) 

	HQSC 
	HQSC 
	0.092 (0.094) 
	0.152 (0.244) 
	0.908 (0.906) 
	0.848 (0.756) 
	0.889 (0.836) 

	MQHT 
	MQHT 
	0.054 (0.098) 
	0.222 (0.328) 
	0.946 (0.902) 
	0.778 (0.672) 
	0.910 (0.835) 

	MQSC 
	MQSC 
	0.046 (0.041) 
	0.071 (0.105) 
	0.954 (0.959) 
	0.929 (0.895) 
	0.949 (0.937) 

	LQHT 
	LQHT 
	0.032 (0.062) 
	0.186 (0.394) 
	0.968 (0.938) 
	0.814 (0.606) 
	0.933 (0.836) 

	LQSC 
	LQSC 
	0.146 (0.216) 
	0.125 (0.193) 
	0.854 (0.784) 
	0.875 (0.807) 
	0.859 (0.789) 

	HQ 
	HQ 
	0.081 (0.109) 
	0.207 (0.316) 
	0.919 (0.891) 
	0.793 (0.684) 
	0.890 (0.818) 

	MQ 
	MQ 
	0.050 (0.062) 
	0.147 (0.217) 
	0.950 (0.938) 
	0.853 (0.783) 
	0.929 (0.891) 

	LQ 
	LQ 
	0.090 (0.140) 
	0.152 (0.281) 
	0.910 (0.860) 
	0.848 (0.719) 
	0.895 (0.811) 

	Total 
	Total 
	0.074 (0.104) 
	0.169 (0.273) 
	0.926 (0.896) 
	0.831 (0.727) 
	0.904 (0.840) 


	Table 3 5-fold cross validated test for fit to non-fit ratio of 3.5:10. 
	3.5:10 
	3.5:10 
	3.5:10 
	False-positive rate 
	False-negative rate 
	True-negative rate 
	True-positive rate 
	Accuracy 

	HQHT 
	HQHT 
	0.062 (0.115) 
	0.430 (0.593) 
	0.938 (0.885) 
	0.570 (0.407) 
	0.882 (0.788) 

	HQSC 
	HQSC 
	0.102 (0.122) 
	0.128 (0.216) 
	0.898 (0.878) 
	0.872 (0.784) 
	0.889 (0.839) 

	MQHT 
	MQHT 
	0.093 (0.147) 
	0.329 (0.423) 
	0.907 (0.853) 
	0.671 (0.577) 
	0.849 (0.763) 

	MQSC 
	MQSC 
	0.071 (0.069) 
	0.214 (0.316) 
	0.929 (0.931) 
	0.786 (0.684) 
	0.895 (0.852) 

	LQHT 
	LQHT 
	0.085 (0.157) 
	0.168 (0.275) 
	0.915 (0.843) 
	0.832 (0.725) 
	0.895 (0.801) 

	LQSC 
	LQSC 
	0.169 (0.211) 
	0.149 (0.178) 
	0.831 (0.789) 
	0.851 (0.822) 
	0.837 (0.805) 

	HQ 
	HQ 
	0.082 (0.118) 
	0.206 (0.311) 
	0.918 (0.882) 
	0.794 (0.689) 
	0.886 (0.818) 

	MQ 
	MQ 
	0.082 (0.110) 
	0.272 (0.372) 
	0.918 (0.890) 
	0.728 (0.628) 
	0.872 (0.806) 

	LQ 
	LQ 
	0.126 (0.185) 
	0.157 (0.221) 
	0.874 (0.815) 
	0.843 (0.779) 
	0.866 (0.803) 

	Total 
	Total 
	0.096 (0.138) 
	0.208 (0.299) 
	0.904 (0.862) 
	0.792 (0.701) 
	0.875 (0.809) 


	Table 4 5-fold cross validated test for fit to non-fit ratio of 4:10. 
	4:10 
	4:10 
	4:10 
	False-positive rate 
	False-negative rate 
	True-negative rate 
	True-positive rate 
	Accuracy 

	HQHT 
	HQHT 
	0.077 (0.159) 
	0.475 (0.658) 
	0.923 (0.841) 
	0.525 (0.342) 
	0.853 (0.736) 

	HQSC 
	HQSC 
	0.103 (0.121) 
	0.137 (0.202) 
	0.897 (0.879) 
	0.863 (0.798) 
	0.884 (0.841) 

	MQHT 
	MQHT 
	0.072 (0.132) 
	0.336 (0.394) 
	0.928 (0.868) 
	0.664 (0.606) 
	0.859 (0.787) 

	MQSC 
	MQSC 
	0.078 (0.049) 
	0.240 (0.260) 
	0.922 (0.951) 
	0.760 (0.740) 
	0.879 (0.886) 

	LQHT 
	LQHT 
	0.058 (0.131) 
	0.235 (0.340) 
	0.942 (0.869) 
	0.765 (0.660) 
	0.894 (0.797) 

	LQSC 
	LQSC 
	0.167 (0.196) 
	0.191 (0.263) 
	0.833 (0.804) 
	0.809 (0.737) 
	0.825 (0.784) 

	HQ 
	HQ 
	0.090 (0.143) 
	0.223 (0.316) 
	0.910 (0.857) 
	0.777 (0.684) 
	0.871 (0.797) 

	MQ 
	MQ 
	0.075 (0.091) 
	0.288 (0.327) 
	0.925 (0.909) 
	0.712 (0.673) 
	0.869 (0.837) 

	LQ 
	LQ 
	0.114 (0.162) 
	0.209 (0.305) 
	0.886 (0.838) 
	0.791 (0.695) 
	0.858 (0.790) 

	Total 
	Total 
	0.093 (0.131) 
	0.238 (0.315) 
	0.907 (0.869) 
	0.762 (0.685) 
	0.866 (0.808) 


	3. Artificial Neural networks: 
	Artificial neural networks are machine learning methods that were inspired by the workings of biological brain. In the brain, neurons are connected through synapses, which are junctions where electrical or chemical signals are transmitted from one neuron to another. The strength of these connections, or synaptic weights, determines how the signals are transmitted and processed. Similarly, in artificial neural networks, the connections between artificial neurons are represented by weights. These weights dete
	3.1. Architecture 
	The architecture of a neural network defines how the nodes are connected to each other. 
	3.2 Single layer (Perceptron) 
	The perceptron is the simplest form of an artificial neural network. It is often considered as the foundation of more complex machine learning algorithms. It comprises an input layer, which is a collection of nodes, and a single output node. The input layer receives values that represent various features or characteristics of the data we want to analyze. Each input value is multiplied by its corresponding weight, which indicates the importance of that input in making a decision or prediction. The weighted i
	3.2. Fully connected neural networks Fully connected neural networks, also known as dense neural networks, are an extension of the basic perceptron model (Section 3.1.1.1). This extension takes place in two main stages, enhancing the capabilities of the network for more complex tasks. The first stage involves expanding the output layer to consist of multiple nodes instead of just one. In this case, each input node is connected to every output node, with each connection having its own unique set of weights. 
	3.4. Convolutional neural networks: 
	Convolutional neural networks (CNNs) are specialized neural networks designed for handling data with grid-like structures, where data points on the grid exhibit spatial dependencies with their neighbors. A prime example of such data is a 2-dimmensional image, where the pixels representing a specific feature or pattern share strong spatial connections. A features of CNNs is their ability to capture the translational symmetry in data, such as an image. This means that the importance of a particular pattern or
	Figure
	Figure 1 An example of convolution applied with a 3×3 filter and a stride of 1×1. This figure was inspired by a figure from reference [aggarawal] 
	Figure
	Figure 2 An example of max-pooling with a 2x2 window and a stride of 1x1. 
	• Convolution layer: In CNNs, rectangular filters are used to scan the image, examining all pixels to detect various patterns within the filter's window. This window is often referred to 
	• Convolution layer: In CNNs, rectangular filters are used to scan the image, examining all pixels to detect various patterns within the filter's window. This window is often referred to 
	as the filter or kernel. The algorithm scans the image using a predefined number of steps, 

	called the stride, which determines how many pixels the window will move across the image 
	after each convolution calculation. The stride is typically chosen by the designer of the CNN 
	architecture and helps balance the trade-off between computational efficiency and the ability 
	to capture finer details. Figure 1 shows an example of this process. 
	• Pooling layer: To reduce the spatial dimensions of the feature map while retaining essential 
	information a scheme is employed to map a window of pixel values to one value. The most 
	common approach is called max-pooling where the highest value within a rectangular 
	window is selected. Figure 2 demonstrates this process. 
	3.5. Activation functions 
	Activation functions play a crucial role in neural networks, as they process the inputs (from the nodes of the previous layer) using the corresponding weights to produce a single output value. The choice of an activation function is a critical aspect of neural network design [13]. Several activation functions are available, such as sign, sigmoid, tanh, ReLU, and Hard Tanh. In this appendix, we will explain the functions used in this study. 
	• Rectified Linear Unit (ReLU): ReLU is one of the most popular activation functions. It is 
	defined as 𝑓(𝐱) = max(0,∑𝑤𝑥). In other words, it calculates the weighted sum of inputs 
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	and returns it if it’s larger than zero, otherwise it returns zero ReLU functions have gained 
	popularity in recent years due to their computational efficiency and scale invariance. 
	• Sigmoid (logistic) function: The sigmoid function is a widely-used activation function 
	 
	defined as 𝑓(𝑥) = . The output of a logistic function always falls between zero 
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	and one, making it a good choice for binary classification tasks. 
	3.6. Loss function, optimizers and learning rates 
	In practical machine learning problems, the goal is to find a mapping that takes a set of input variables and generates output results by identifying patterns in the available input and output data (i.e., training data). The loss function is a tool used to evaluate the effectiveness of the mapping in predicting known data. Often, the best mapping is achieved by optimizing the loss function. A well-known example of a loss function is the squared loss: 𝐿(𝑦,𝑦) = ∑(𝑦−𝑦). By minimizing this loss function, w
	In practical machine learning problems, the goal is to find a mapping that takes a set of input variables and generates output results by identifying patterns in the available input and output data (i.e., training data). The loss function is a tool used to evaluate the effectiveness of the mapping in predicting known data. Often, the best mapping is achieved by optimizing the loss function. A well-known example of a loss function is the squared loss: 𝐿(𝑦,𝑦) = ∑(𝑦−𝑦). By minimizing this loss function, w
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	nodes. The minimization of the loss function is performed using various computationally efficient algorithms that have been developed over time, such as gradient descent. These algorithms are called optimizers. Gradient descent iteratively updates the model parameters based on the gradient of the loss function. By using the gradient, the algorithm can identify the direction in which the loss function decreases most rapidly (steepest decline) and adjust the parameters to minimize the loss and improve the pre

	An extension of gradient descent commonly used in neural networks is the Adaptive Moment Estimator (ADAM). ADAM dynamically adjusts the learning rate for each parameter, enabling faster convergence and improved performance across various problems. It achieves this by computing adaptive learning rates for each parameter using the first and second moments of the gradients, resulting in more efficient and effective optimization. 
	3.7. Dropout 
	Dropout is a method to overcome the challenges of overfitting. In this method at a certain layer of the fully connected network, a percentage of the nodes (usually from the hidden layers) are randomly removed. If a node is dropped, all the incoming and outgoing connections from that node need to be dropped as well [13]. 
	3.8. Convolutional neural network 
	Figure 3 demonstrates the CNN used in this study. 
	Figure
	Figure 3 Convolutional neural network architecture. 
	4. Decision trees 
	Decision trees, also known as classification and regression trees (CART), are a type of supervised machine learning algorithm. They simplify complex decision-making processes by breaking them down into smaller, more manageable steps. This is achieved by recursively partitioning the feature space into a set of rectangles and assigning a constant value to each. This process can be visualized as a tree with multiple leaves, each representing a distinct region in the feature space [19]. Decision trees have vari
	Figure
	Figure 4 The decision tree used to combine outputs of the scrim and backing convolutional neural networks. 
	5. Merging results of Scrim and Backing CNNs 
	As described in the main manuscript, two separate CNNs were trained on scanned images of the scrim and backing sides of duct tapes. To combine the results of these two CNN models, various supervised learning approaches were evaluated. These algorithms include Gradient Boosting Classifier (GBC), K-nearest neighbors (KNN), Decision tree (DT), Support vector machine (SVM), logistic regression (LR), random forest (RF), and AdaBoost (ADA). The decision tree algorithm was chosen, taking into account the separatio
	As described in the main manuscript, two separate CNNs were trained on scanned images of the scrim and backing sides of duct tapes. To combine the results of these two CNN models, various supervised learning approaches were evaluated. These algorithms include Gradient Boosting Classifier (GBC), K-nearest neighbors (KNN), Decision tree (DT), Support vector machine (SVM), logistic regression (LR), random forest (RF), and AdaBoost (ADA). The decision tree algorithm was chosen, taking into account the separatio
	the decision tree method, we aim to achieve a balance between model complexity and accuracy in merging the results from the two CNN models. 

	Figure
	Figure 5 Kernel density estimation of the membership probabilities assigned to true fit and true non-fit by different classifiers. 
	Table 5 Performance of classifiers used to combine the results of the scrim and backing CNNs. The color map for true-positive rate (TPR), true-negative rate (TNR), and accuracy (ACC) ranges from purple to blue (low to high). Conversely, the color map for false-negative rate (FNR), false-positive rate (FPR), inconclusive-negative rate (INR), and inconclusive-positive rate (IPR_ transitions from blue to purple (low to high). In essence, blue signifies improvement, while purple indicates a decline. The classif
	Table
	TR
	GBC 
	KNN 
	DT 
	SVM 
	LR 
	RF 
	ADA 

	TP R 
	TP R 
	0.734 ± 0.036 
	0.716 ± 0.045 
	0.729 ± 0.077 
	0.726 ± 0.044 
	0.491 ± 0.073 
	0.737 ± 0.053 
	0.223 ± 0.062 

	TN R 
	TN R 
	0.916 ± 0.013 
	0.918 ± 0.023 
	0.914 ± 0.018 
	0.926 ± 0.011 
	0.962 ± 0.009 
	0.919 ± 0.015 
	0.756 ± 0.045 

	FN R 
	FN R 
	0.249 ± 0.031 
	0.284 ± 0.045 
	0.268 ± 0.080 
	0.271 ± 0.042 
	0.444 ± 0.086 
	0.254 ± 0.050 
	0.055 ± 0.008 

	FP R 
	FP R 
	0.077 ± 0.015 
	0.082 ± 0.023 
	0.085 ± 0.017 
	0.074 ± 0.011 
	0.033 ± 0.007 
	0.079 ± 0.015 
	0.012 ± 0.007 

	IN R 
	IN R 
	0.007 ± 0.006 
	0.000 ± 0.000 
	0.001 ± 0.002 
	0.000 ± 0.000 
	0.005 ± 0.003 
	0.002 ± 0.003 
	0.232 ± 0.050 

	IPR 
	IPR 
	0.017 ± 0.011 
	0.000 ± 0.000 
	0.003 ± 0.007 
	0.003 ± 0.004 
	0.066 ± 0.023 
	0.009 ± 0.007 
	0.723 ± 0.063 

	AC C 
	AC C 
	0.855 ± 0.017 
	0.851 ± 0.018 
	0.853 ± 0.023 
	0.859 ± 0.016 
	0.805 ± 0.024 
	0.858 ± 0.022 
	0.578 ± 0.048 
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