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Abstract 

Identification of ignitable liquid residues in the presence of background interferences, 

especially those arising from pyrolysis processes, is a major challenge for the fire debris analyst. 

The proposed research will lead to a mathematical model that allows for the detection of an 

ignitable liquid in a fire debris sample and the classification of the ignitable liquid according to 

the ASTM E1618 classification scheme. The research will examine the influence of substrate 

pyrolysis and non-pyrolysis interferences on:  (1) probability of correct prediction of the 

presence of an ignitable liquid in real and simulated fire debris samples (Type I and Type II error 

rates) and (2) probability of correct prediction of the associated ignitable liquid ASTM class and 

sub-class (heavy, medium or light) in positive samples. Potential alternative sub-groupings of 

ignitable liquids will be examined based on cluster analysis techniques. Models will be examined 

which are based on principal components analysis (PCA), linear discriminant analysis (LDA) 

and soft independent model classification analogy (SIMCA). The model will be developed from 

the summed ion spectra of nearly 500 ignitable liquid and 50 pyrolysis sample GC-MS data sets 

with ANOVA-assisted variable selection. Training data sets will be taken from the National 

Center for Forensic Science ignitable liquid and substrate pyrolysis databases. Simulated fire 

debris samples generated in the laboratory and samples from large-scale burns will also be 

employed in model testing. Model performance will be statistically evaluated by receiver 

operator characteristic analysis. The final model will be implemented in a software solution for 

forensic laboratory use. 

This project proposed to investigate the development of a method for classifying fire 

debris GC-MS data sets as: (1) containing or not containing an ignitable liquid, (2) classifying 

any ignitable liquid that may be present under the ASTM E1618 classification scheme and (3) 
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estimating the statistical certainty of the answers to questions 1 and 2. The proposed approach is 

to build a mathematical model that can correctly classify GC-MS data from ignitable liquids and 

pyrolyzed substrates (wood, plastic, etc.). The model will then be applied to GC-MS data from 

laboratory-generated fire debris samples, as well as ignitable liquids and substrates that were not 

used to build the model. The classification success of the model will allow a determination of the 

statistical performance of the model by ROC analysis. The model will be developed based on the 

total ion spectrum, which has already shown a propensity for classifying a set of ignitable liquids 

drawn from multiple ASTM classes. 
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Executive Summary 
 

The Problem  

Standardized practices for the extraction of ignitable liquid residues (1-5) and the analysis of the 

residues (6) have been established and are published by ASTM International.  ASTM E1618-11 

stipulates that analysis of extracts from fire debris samples to be analyzed by gas 

chromatography – mass spectrometry (GC-MS).  Data analysis is comprised of visual pattern 

matching of the total ion chromatogram, extracted ion profiling, and target compound analysis.  

The ignitable liquid is classified into seven classes or a miscellaneous category as described 

within the standard (6).  ASTM E1618-11 provides reliability of the scientific evidence 

consisting of testing, peer review, and general acceptance under the Daubert standard; however, 

it does not provide a means of determining error rates (7).  The standard doesn’t explicitly state 

how an analyst determines whether an ignitable liquid residue is present.  It is assumed that if the 

analyst compares and matches chromatographic patterns of the unknown residue to a reference 

ignitable liquid that the residue is in fact an ignitable liquid.  Therefore the analyst can state there 

was an ignitable liquid present in the fire debris.  The analyst can’t provide error rates using the 

method described because there is no mathematical basis and data analysis results are not 

conducive to statistical methods. In addition to the error rate problem, computational methods 

are often difficult to transition from academic research to operational forensic laboratories. As 

part of this research, the statistical methods developed in the academic research were transitioned 

to operational laboratories by online and face-to-face training.  

 

Purpose of the Research  
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The purpose of the research conducted under this award was to investigate potential ignitable 

liquid classification schemes as alternatives to ASTM E1618 and to develop a method for 

classifying fire debris GC-MS data sets as: (1) positive or negative for an ignitable liquid residue, 

(2) classifying any ignitable liquid residue that may be present under the ASTM E1618 or 

alternative classification scheme and (3) estimating the statistical certainty of the classification. 

Finally, the statistical methods developed under this grant were presented to fire debris analysts 

in operational laboratories through online and face-to-face training. The effectiveness of these 

two methods of transitioning research results to operational laboratories was evaluated. 

 

Research Design  

The research was conducted by utilizing data contained in the Ignitable Liquids Reference 

Collection (ILRC) database and the Substrate Database, which were developed as a collaboration 

between the National Center for Forensic Science (NCFS) at the University of Central Florida 

and the Scientific Working Group for Fire and Explosion (SWGFEX). The databases contain 

GC-MS data collected at the NCFS and reviewed by the SWGFEX Ignitable Liquids Database 

Committee to assign a consensus ASTM E1618 classification to each database record. The data 

analysis was accomplished using standard multivariate statistical techniques and calculations 

were performed using open-source statistical software that is freely available to forensic 

scientists. The results from the research have been published under peer-review and the best 

published classification methods were trained to a group of fire debris analysts in the United 

States and Europe by internet and face-to-face training.  

 

Findings and Conclusions  
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Fire debris is typically analyzed by gas chromatography–mass spectrometry (GC–MS) to test for 

the presence of ignitable liquid (IL) residues.  Any residues extracted from fire debris are 

compared to reference ILs of known class following ASTM E1618-11 (6).  Seven major classes 

of ILs are used:  aromatic products (AR), gasoline (GAS), petroleum distillates (PD), 

isoparaffinic products (ISO), naphthenic-paraffinic products (NP), normal alkane products (NA), 

and oxygenated solvents (OXY).  Samples are only assigned to a miscellaneous category (MISC) 

if they do not meet the criteria of one of the seven classes (6).  The major classes of ILs, except 

for samples in the GAS class, are further divided based on the carbon range into light (L), 

medium (M), and heavy (H) subclasses.  An IL or ignitable liquid residue (ILR) is determined to 

belong to one of the ASTM classes based on analyst interpretation of the total ion chromatogram 

(TIC), extracted ion profiles (EIP), and the presence of target compounds.  Data analysis consists 

mainly of visual pattern recognition of the TIC with the interpretation criteria outlined in ASTM 

E1618-11 (6).   

The examination of possible alternative classification schemes was based on analysis of the total 

ion spectrum (TIS), which is equivalent to the average mass spectrum across the 

chromatographic profile and has been demonstrated to identify and classify ignitable liquids with 

an accuracy comparable to the ability to identify organic compounds based on electron ionization 

mass spectra (8). Further characterization of the TIS constituted the first part of this work. The 

TIS for the 708 IL and SUB samples were binary encoded based on the four different transition 

levels (i.e., intensity relative to the base peak intensity of 1).  The information content for 

transition levels 0.0001, 0.001, 0.01, and 0.1 were calculated, to be:  114.2, 125.1, 121.9, and 

56.53 bits, respectively.  These results are consistent with those found by Grotch for 

approximately 3,000 organic compounds (9).  The number of disagreeing ions between each of 
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the 250,278 unique pairwise comparisons of the 708 IL and SUB samples was determined. The 

average observed number of disagreeing ions for transition levels 0.0001, 0.001, 0.01, and 0.1 

are:  52.61, 58.16, 56.08, and 23.69 ions, respectively. Out of the 250,278 unique pairwise 

comparisons of the 708 IL and SUB samples at the 0.01 transition level, only 20 comparisons 

resulted in zero ion disagreements (approximately 8 x 10-3 %, which extrapolates to 

approximately 80 indistinguishable spectra in 106 comparisons). Grotch found six 

indistinguishable spectra in 106 comparisons for pure organic compounds (2).  Each of the 20 

indistinguishable comparisons in this work occurred between IL samples with the same ASTM 

class (or subclass). These results demonstrate that even when binary encoded at the transition 

levels studied in this work, the “mass spectrum is a very specific chemical signature” (9), and 

while 80 indistinguishable pairs of spectra for each 106 comparisons is significantly larger than 

three indistinguishable pairs, the binary encoded TIS comprise a significantly unique signature 

for complex mixtures, such as ignitable liquids. 

The ASTM classifications of IL defined in E1618 are based primarily on product class and 

petroleum refining methods. It is worth considering other possible groupings or classification 

schemes for these liquids that may be dictated by the chemistry and/or mass spectral behavior, 

without prior bias based on ASTM E1618. Once groupings have been obtained, however, it is 

interesting to compare these grouping to those defined in ASTM E1618 in order to consider any 

new information or further understanding of the emerging classifications. Investigation of 

groupings based on the TIS of ignitable liquids and substrate pyrolysis samples was undertaken 

by two methods, hierarchical clustering and self-organizing feature maps. The TIS for 30 – 200 

m/z were compared for each of 445 IL and 88 SUB samples and clustered by hierarchical cluster 

analysis with optimal leaf ordering. The correlation distance, average linkage methods were used 
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in the comparisons. The resulting clusters were found to strongly overlap with the ASTM E1618 

defined classes, giving significant support to currently followed ignitable liquid classifications 

protocols. The IL corresponding to well-defined classes (i.e., excluding the substrates, 

miscellaneous and oxygenates) clustered into two distinct groups, one consisting of the aromatic 

and gasoline products and the other consisting of the aliphatic hydrocarbon containing classes. 

Within each of these two major clusters, sub-clustering was observed along the lines of the 

ASTM E1618 class definitions. 

The self-organizing feature map made use of 30 ion intensities from the TIS to group similar 

ignitable liquids into neighborhoods (i.e. clusters of liquids sharing common features). The 

cluster structure of the high-dimensional input data may be visualized in a two-dimensional 

unified distance matrix (or U-matrix) which shows the normalized distances between the weight 

vector of each neuron and neighboring neurons Neighborhoods of low similarity in close 

proximity show a distinct line of demarcation when viewed on the U-matrix. The general 

grouping of neurons can be viewed in the context of ASTM classes by projecting class 

membership onto the U-matrix to determine if IL from the same ASTM class group together. 

The U-matrix for the calculated SOFM contained cluster borders which separate the cluster of 

neurons associated with AR, GAS, and OXY ASTM classes from those of ISO, NA, NP, and 

PD.  Separation was also observed for the neurons associated with ISO and NA classes from 

those of PD and NP. As with the hierarchical clustering, the self-organizing feature map results 

reinforced the use of ASTM E1618 classes to define commercially available ignitable liquids. 

The intensity of the 30 ions used in the self-organizing calculation projected onto the U-matrix 

reveal the neighborhoods where they made major contributions and the results also reinforced 

the underlying scientific basis for ASTM E1618. Thirty three samples designated as 
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miscellaneous (MISC), which have spectral characteristics of multiple ASTM classes, were 

projected onto the U-matrix.  Of these samples, 22 projected to neurons associated with one of 

the ASTM classes comprising the liquid or to empty neurons adjacent to a neighborhood 

associated with one of the classes comprising the liquid. Seven samples designated as OXY, 

which contain mixtures of oxygenated compounds with ASTM classs (i.e. LPD+acetone), were 

projected onto the U-matrix.  Projection resulted in four of the samples being assigned to a 

neuron associated with the associated ASTM class, while one sample (LPD+acetone) is assigned 

to an empty neuron adjacent to both OXY and LPD associated neurons. These results reinforce 

not only the ASTM classification system, but the use of the TIS and extracted ion spectra to 

represent ignitable liquid classes as defined by ASTM E1618. The TIS were further utilized in 

the classification of ignitable liquids and substrate pyrolysis samples using multivariate statistical 

methods. 

Linear and quadratic discriminant analysis methods were applied to the TIS of IL and substrate 

pyrolysis (SUB) samples to determine if these statistical methods could reliably classify samples 

as positive or negative for ILR. Samples that were determined to be positive for ILR were further 

classified through a stepwise process of binary classifications into the corresponding ASTM 

classes, excluding the oxygenated class and the miscellaneous category. In each case, the 

covariance matrices of the two classes were found to differ, making the quadratic discrimination 

technique more appropriate. Classification models were generated using a training data set that 

contained only IL and SUB samples, and with a data set containing IL, SUB, IL+20%SUB and 

mixtures of SUB samples. The true positive, false positive, true negative, false negative, 

precision and accuracy rates were calculated for the classification as positive or negative for ILR 

based on cross validation where 20% of each class was withheld randomly without replacement 
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for each of 100 iterations. The classification methods were also tested on fire debris data where 

the “ground truth” was known based on either proximity of the sampling location to the pour trail 

or by data inspection by an analyst with full knowledge of the IL used in the burn.  The QDA 

model produced the lowest false positive rate (6%) in cross-validation for the model containing 

20% substrate contribution. Similarly, QDA gave the lowest false positive rate (8.9%) for the fire 

debris samples with the class assigned based on proximity to the pour; however, the false 

positive rate increased when the fire debris sample designations were based on the analyst.  The 

cross-validation results demonstrate that the QDA model can maintain low false positive rate for 

data sets that resemble the data used to create the model.  The fire debris results, with 

designations based on the pour, demonstrate a lower false positive rate than when the 

designations were based on the analyst. The precision of the methods ranged from 85 – 97% and 

the accuracy was in the range of 82 – 92%.  Similar classification was performed using soft 

independent model classification analogy (SIMCA) on the same data sets. SIMCA based on the 

20% substrate contribution data set gave very good results, with a 94.2% true positive rate and 

5.1% false positive rate with greater than 94% precision and accuracy.  SIMCA detection of the 

presence of IL trace in fire debris samples was in good agreement with the analyst, showing 

greater than 95% true positive; however, the false positive rate for fire debris increased to 

approximately 15%.    

The classification results are somewhat dependent on the method used to normalize the TIS for 

model development and fire debris classification. The methods investigated included adjusting 

all of the intensities in each TIS so they sum to one, setting the maximum intensity in each TIS 

equal to one (“base peak”), and normalizing each TIS to a vector length of one. Classification by 

the SIMCA method and normalization by the “base peak” method resulted in the highest true 
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positive rates and lowest false positive rates for the cross-validation test set.  These methods did 

not perform as well for the fire debris samples and reflected a false positive rate that was nearly 

double the rate obtained using the “summed to one” method.  When considering the QDA 

classification method, low false positive rates were obtained for the model and fire debris 

samples when using the “base peak” method.  The best overall performance was observed for 

QDA classification using the “base peak” method. The normalization method giving the highest 

correct classification rate for each statistical method should be utilized. 

In subsequent steps of the classification into ASTM classes for those samples that were classified 

as positive for ILR, the LDA and QDA performance was varied depending on the data 

normalization method applied prior to model development. Nonetheless the results for most 

classifications were greater than 80%, with some problems observed for discrimination between 

highly similar ASTM classes (i.e., PD vs. NP and NA vs. ISO). The results of these 

classifications are considered less important forensically than the classification of a sample as 

positive or negative for ILR. The correct classification rates for samples that were positive or 

negative for ILR are encouraging and reflect the possibilities for introducing statistical methods 

into the analysis of fire debris in order to bring this area of forensic analysis into closer 

alignment with the Daubert requirement.  

Irrespective of the quality of the research results from this grant or others, forensic science will 

remain unchanged if the research is not transitioned from academic laboratories to operational 

laboratories. As a final part of this research program, the most successful discrimination method 

(QDA with base peak normalization) was presented to operational laboratory fire debris analysts 

by both online and face-to-face training motifs. The online and face-to-face training required a 

maximum of eight hours to complete. An international group of 35 fire debris analysts 

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



 

9 

 

volunteered for the course and only 25 (71%)  participants (9 U.S. and 16 European) finished the 

course online. A second group of 15 U.S. fire debris analysts enrolled to participate in the face-

to-face training. A total of 14 (93%) of the 15 participants were actually trained face-to-face.   

This difference in completion rates (71% versus 93%) is not statistically significant (=0.13) at a 

power of 0.8, which is often considered satisfactory for a small sample size. The average score 

on the final examination in the course was 92% for the online participants and 90% for the face-

to-face participants. This difference is not statistically significant and an indication that the 

methods can be trained either online or face-to-face. The demographic data for both sets of 

participants (online and face-to-face were fairly comparable (see Appendix II at the end of this 

report), with the most significant differences being that the face-to-face participants were older, 

self-reported to be more proficient in English and had more years of experience in fire debris 

analysis.  

 

Implications for Policy and Practice  

The results of this research provide the first large-scale demonstration of statistically reliable 

classification rates for fire debris as positive or negative for ignitable liquid residue. Fire debris 

analysis methods with known error rates meet the Daubert requirements and may someday be 

required under existing rules of evidence. The research results will help to drive policy change to 

improve the practice of forensic fire debris analysis.  
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I.  Introduction  

Statement of the problem  

 Standardized practices for the extraction of ignitable liquid residues (1-5) and the analysis 

of the residues (6) have been established and are published by ASTM International.  ASTM 

E1618-11 stipulates that analysis of extracts from fire debris samples should be analyzed by gas 

chromatography – mass spectrometry (GC-MS).  Data analysis is comprised of visual pattern 

matching of the total ion chromatogram, extracted ion profiling, and target compound analysis.  

The ignitable liquid is classified into seven classes or a miscellaneous category as described 

within the standard (6).  ASTM E1618-11 provides reliability of the scientific evidence 

consisting of testing, peer review, and general acceptance under the Daubert standard; however, 

it does not provide a means of determining error rates (7).  The standard doesn’t explicitly state 

how an analyst determines whether an ignitable liquid residue is present.  It is assumed that if the 

analyst compares and matches chromatographic patterns of the unknown residue to a reference 

ignitable liquid that the residue is in fact an ignitable liquid.  Therefore the analyst can state there 

was an ignitable liquid present in the fire debris.  The analyst can’t provide error rates using the 

method described because there is no mathematical basis and data analysis results are not 

conducive to statistical methods.  The research conducted under this award investigated the 

development of a method for classifying fire debris GC-MS data sets as: (1) positive or negative 

for an ignitable liquid residue, (2) classifying any ignitable liquid residue that may be present 

under the ASTM E1618 classification scheme and (3) estimating the statistical certainty of the 

answers to questions 1 and 2. 

 

Literature review   
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Current Methods of Fire Debris Analysis 

Fire debris is typically analyzed by gas chromatography–mass spectrometry (GC–MS) to test for 

the presence of ignitable liquid (IL) residues.  Any residues extracted from fire debris are 

compared to reference ILs of known class following ASTM E1618-11 (6).  Seven major classes 

of ILs are used:  aromatic products (AR), gasoline (GAS), petroleum distillates (PD), 

isoparaffinic products (ISO), naphthenic-paraffinic products (NP), normal alkane products (NA), 

and oxygenated solvents (OXY).  Samples are only assigned to a miscellaneous category (MISC) 

if they do not meet the criteria of one of the seven classes (6).  The major classes of ILs, except 

for samples in the GAS class, are further divided based on the carbon range into light (L), 

medium (M), and heavy (H) subclasses.  An IL or ignitable liquid residue (ILR) is determined to 

belong to one of the ASTM classes based on analyst interpretation of the total ion chromatogram 

(TIC), extracted ion profiles (EIP), and the presence of target compounds.  Data analysis consists 

mainly of visual pattern recognition of the TIC with the interpretation criteria outlined in ASTM 

E1618-11 (6).  Data interpretation is subject to the skill and experience of the analyst (10); 

however, an automated systematic approach to the analysis of fire debris samples was reported 

by Bertsch as early as 1988, one year preceding the formation of the ASTM Committee E 30 on 

Forensic Science (11).  The method proposed by Bertsch was similar to the procedures 

subsequently adopted in ASTM E1618, making use of extracted ion profiles. Notably, Bertsch’s 

paper was out of step with common practices of the time by promoting a computer automated 

approach that “requires only minimal interaction with the analyst.” ASTM Method E1618 

advocates the use of libraries and target compounds to assist in the pattern recognition of 

different classes of ignitable liquids (6).  Detection of ignitable liquids in fire debris on the basis 

of target compounds was demonstrated by Keto in 1991, prior to the adoption of the first version 
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of E1618 in 1994 (12). Lennard later demonstrated a GC/MS database for ignitable liquids based 

on the use of target compounds (13). In 1997, the National Center for Forensic Science (NCFS) 

and the Technical Working Group for Fire and Explosion (TWGFEX) began a collaboration that 

established the Ignitable Liquid Reference Collection and Database (ILRC), which has grown to 

nearly 1,000 records that are freely available online for fire debris analysts (14). 

 

Facilitating Inter-Laboratory Comparisons  

 The GC-MS is a useful analytical instrument for the analysis of complex mixtures and the 

resulting data are used for the identification of compounds based on their retention times in the 

total ion chromatograms (TICs) and mass spectra.  However, analyses by laboratories with 

different instruments or varying methods generally result in retention time shifts.  Peak 

alignment methods or conversion using retention indices may be performed; however, this is 

time consuming and does not readily lend itself to automation (8).  A simpler method for 

comparing complex samples analyzed with different GC-MS methods involves analysis of the 

total ion spectrum (TIS).  The TIS is defined as the average mass spectrum across the 

chromatographic profile (8); therefore, it contains the mass spectral information for the data set, 

independent of the chromatographic time component.   

 The question of whether or not TIS with a specified mass range contains enough 

information for identification of complex mixtures, such as ignitable liquids, has previously been 

addressed (8).  The question of uniqueness of electron ionization mass spectra was also 

addressed for 3,000 individual organic molecules in 1970 by Grotch using information theory 

(9).  In Grotch’s work, the mass spectral data were binary encoded so a mass spectral peak above 

a specific transition level relative to the base peak (intensity of 1) was encoded as a “1” and 
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peaks with intensities below the transition level were encoded as a “0” (9).  He pointed out that 

analysis of binary encoded mass spectral data with a mass range of 200 amu could theoretically 

encode 2
200

 different compounds;  however, this value would decrease as the correlation between 

the ions present in the spectra increased (9). This behavior would be observed with isotopes or 

ions commonly observed for different types of compounds (i.e. m/z 43, 57, 71, etc. for n-alkane 

containing compounds).  Grotch found that even binary encoded mass spectral data with mass 

range m/z 12-200 contained “highly specific signatures” (9).  This principle was tested on the 

analysis of 440 commercially available IL samples by Sigman et al. in 2008 (8).  When the mass 

spectral data, with a mass range of m/z 30-350, were binary encoded based on a one percent 

transition, an average of 50  differing ions were observed for the 96,580 unique pairwise 

comparisons.  The 440 IL samples in the study were obtained from the ILRC database (2, 8).  

Further characterization of the TIS for the description of ignitable liquids and substrate pyrolysis 

products was examined in the research conducted under this award. 

 The following is a brief computational background regarding the binary encoding of 

spectra and the calculation of information content used by Grotch, and applied to TIS in our 

studies. Each mass spectrum or TIS is binary encoded by first setting a transition level for peak 

detection. If the intensity of an ion in the TIS is greater than or equal to the transition level, the 

peak is assigned an intensity of 1; otherwise, it is assigned a value of 0. For each transition level, 

the total number of differing bits was calculated for each pairwise sample comparison.  Formally, 

each ion in the pair of the binary encoded TIS is compared as defined by the function F(ai,bi) in 

Equations 1 and 2, and the observed number of disagreeing ions (DL(obs)) for a two sample 

comparisons may be calculated by Equation 3 (9), where L is defined as the number ions in the 

spectrum. 
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  (     )                 (1) 

  (     )                  (2) 

    (   )  ∑ (     )

   

   

 (3) 

The average observed number of disagreeing ions ( ̅  (   )) was calculated for all of the unique 

pairwise comparisons of the samples at each of the transition levels.  The average observed 

number of disagreeing ions was determined according to Equation 4: 

  ̅  (   )  
  
 

 (4) 

where P is defined as the number of pairwise comparisons.  The number of pairwise comparisons 

for samples with the same designation was found (9) according to Equation 5: 

   
 (   )

 
 (5) 

where N are the number of samples (9).  In our case, when samples belong to the same class, P is 

calculated as in Equation 5; however, the numbers of pairwise comparisons for those samples 

that have differing designations are calculated according to Equation 6: 

         (6) 

where N1 is the number of samples with one designation and  N2 is the number of samples with 

the second designation. 

The information content for L ions (HL), of the data may be expressed quantitatively by 

the information “entropy” that is measured in “bits”(9) and may be determined  using Equation 7 
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(9), where M refers to the number of levels, which is two in the case of binary encoded data, and 

pik corresponds to the probability of a peak intensity for ion i falling in level k.   

     ∑∑          

 

   

 

   

 (7) 

 

The information content is maximized and equal to L when the chosen transition level is such 

that it is equally likely for a peak in the TIS to be present or not (9).   

 

 

Ignitable Liquid Groupings 

Hierarchical Cluster  

 The TIS allows for an approach to the clustering of ignitable liquids that is outside or 

independent of the framework of ASTM  E1618 (6). Hierarchical cluster analysis of lighter 

fluids and medium petroleum distillates has previously been performed using the TIC; however, 

retention times of the inter-laboratory TIC will vary (8), as described above.  Agglomerative 

hierarchical cluster analysis has previously been used to obtain rational groupings based on mass 

spectral data (15-18). Hierarchical cluster analysis is an unsupervised learning method which 

means that no prior knowledge of group membership is required (19).  The agglomerative 

process begins by considering each object individually, then sequentially grouping the most 

similar objects, and lastly combining similar groups to form new groups.  Ideally, objects within 

a group should be more similar to one another than to objects in other groups (20).  The results 

are typically shown as a dendrogram.  The dendrogram demonstrates how the objects or groups 

are connected using lines with lengths that reflect the distances between the objects or groups.  
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Agglomerative hierarchical cluster analysis was used in the research conducted under this award 

to reassess the groupings of ignitable liquids based on the chemistry of the groups, as reflected in 

the TIS of the liquids. 

 

Self-Organizing Feature Maps (SOFM)  

 Visual pattern recognition, as required under ASTM E1618, is dependent on the 

interpretation of the chromatographic data by the analyst (8, 21) and does not readily lend itself 

to automation. Non-subjective chemometric techniques, which involve the extraction of 

information from chemical data, have been explored as a means of obviating the subjective 

nature of visual pattern recognition (22).  Many chemometric techniques allow for data 

visualization by reducing the dimensionality of the data (23) and clustering or grouping of data 

based on similar characteristics (24).  Kohonen’s SOFMs also known as self-organizing maps 

(SOMs), is an artificial neural networks technique designed as a method for abstraction, 

clustering, and visualization of high-dimensional data (25-27).  This is usually accomplished 

through nonlinear mapping onto a two-dimensional grid space of a predefined number of 

neurons, where each neuron contains a weight vector that is comprised of the same number of 

components as the number of variables (or dimensionality) of the input space (28).  The weight 

vectors are adjusted through an unsupervised learning process resulting in the neurons being 

arranged according to patterns in the input signal (26).  When a sample is introduced to the map, 

a distance is calculated between the sample’s variable vector and the weight vector for each 

neuron, where the Euclidean distance is often used.  The neuron with the smallest distance to the 

sample is determined to be the “winning neuron”, and the weight vector for that neuron is 

adjusted to be more similar to the sample vector.  The weight vectors of neighboring neurons that 

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



 

17 

 

are a given distance from the winning neuron are also updated, which preserves the 

neighborhood relationships of the data within the input space (28). This training process is 

repeated for each of the samples, resulting in the completion of one full cycle or epoch, and this 

process is repeated iteratively for a predefined number of epochs (29). A batch algorithm may 

also be used (25, 30).  The amount of adjustment to the weight vectors and the neighborhood size 

are varied throughout the training process (31).  In the last step of training, the input data is re-

introduced to the grid, and the samples are mapped onto the winning neurons (29).  This process 

results in a two-dimensional map of neurons, where sample data is clustered based on similarity 

while preserving the neighborhood relationships of the data (25, 30, 32).   

SOFMs have previously been used for clustering and/or classifying samples analyzed by 

GC-MS.  Strawberry varieties were studied using solid-phase micro-extraction GC-MS data and 

clustered according to type by SOFM (33).  Crude oil (34) and weathered crude oil samples (29) 

were geographically classified.  Weathered and unweathered lighter fluids were classified based 

on manufacturer (21), and classification according to product type and brands were performed 

for weathered and unweathered medium petroleum distillates (35).  A set of 150 ions resulting 

from pyrolysis mass spectrometry was analyzed with SOFMs to classify plant seeds (31).  While 

SOFMs have been used for classification, Kohonen points out that self-organizing feature maps 

are a beneficial unsupervised method for clustering, visualization, and abstraction, but are not 

meant for statistical pattern recognition (25).  A method that is “particularly suitable for 

statistical pattern recognition” is a supervised version of SOFM known as Learning Vector 

Quantization (LVQ) (25).  In addition to clustering, a SOFM allows visual associations between 

individual variables and clustered samples in order to determine feature attributes for natural 

clusters within the input data space. 
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In the research conducted under this award, 313 ignitable liquids from varying ASTM 

classes were grouped using the unsupervised SOFM technique, and ignitable liquid residues 

were analyzed based on the SOFM model.  The natural clusters of the input data and the 

relationships between these clusters and their spectral variables were examined with respect to 

the ASTM class designations of the ILs.  In this portion of the research, extracted ion spectra 

(EIS) comprised of a limited set of ions that were identified from Table 2 of ASTM E1618 were 

utilized (6).  The EIS of select samples designated as MISC or OXY, as well as ignitable liquid 

residues from fire debris samples, were projected onto the SOFM demonstrating the similarities 

and differences between the variables of the newly projected data compared to those of the data 

used to train the SOFM 

 

Automated Classification  

As described above, current practices in fire debris analysis involve using the total ion 

chromatogram (TIC), extracted ion profiles (EIP), and target compound analysis (TCA) to 

identify the presence of an ignitable liquid and assign it to the correct ASTM class (10, 36, 37).  

The methodology outlined by ASTM E1618 relies on visual pattern recognition to identify the 

presence of an ignitable liquid residue in a fire debris sample.  While this method can work well 

for neat samples of ignitable liquids, classification of post-burn samples may be complicated due 

to the presence of substrate pyrolysis products and the evaporation of more volatile components 

(weathering) (38).  The volume of ignitable liquid(s) used in a fire, the placement of the liquid(s) 

(i.e., on wood, carpet, etc.), and the temperature reached during the fire are among the variables 

that can influence the ratio of ignitable liquid residue-to-substrate pyrolysis products in a sample 

and the analyst’s interpretation of the results (39).  These factors can alter the chromatographic 
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and spectral data of the fire debris samples, thus complicating the classification of ignitable 

liquid residue (38, 40).  Ultimately, it is impossible (and unnecessary) to quantitatively determine 

the ratio of ignitable liquid residue-to-substrate pyrolysis products, and a positive determination 

of ignitable liquid residue in fire debris samples requires a strong or clear chromatographic 

pattern that is representative of an ignitable liquid from a given ASTM class. 

Visual pattern recognition can prove to be time consuming and possibly subjective for 

large sample sets.  Applying multivariate statistical methods to fire debris samples can 

potentially improve the analyst’s ability to identify the presence of ignitable liquid residue, 

discriminate between similar samples, and reduce the analysis time of the sample.  In the 

research conducted under this award, multivariate classification methods were investigated for 

large data sets, and the results include statistically defensible error rates for classification of a fire 

debris sample as positive or negative for ignitable liquid residue.   

 

Previous Work  

 Peer-reviewed literature that has attempted to address the questions of ignitable liquid 

detection and classification has focused primarily on the problem of classification, in many cases 

under the assumption or knowledge that an ignitable liquid was present in the sample. A limited 

number of reports have addressed the influence of interference from “pyrolysis products” and 

other sources on the classification of ignitable liquids. Pattern recognition and classification 

through the use principal components analysis (PCA), canonical variate analysis (CVA) and 

artificial neural networks (ANN) have been addressed. PCA is an unsupervised (i.e. a priori 

classification or groupings is not required) dimension reduction methodology. Application of 

PCA may show clustering of data but clustering is not guaranteed, whereas CVA is designed to 
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give optimal clustering by maximizing between-group variance and minimizing within-group 

variance. CVA is a supervised (i.e. a priori classification or groupings is required) data analysis 

method.  A related method is soft independent modeling of class analogy (SIMCA) wherein PCA 

is performed on data sets for samples constituting different classes and the models applied to 

unknown samples with the use of a distance metric to assess class membership. The ANN is a 

very different approach to pattern recognition. There are many implementation strategies for 

ANNs, some of which utilize supervised learning and some utilize unsupervised learning. The 

paradigm most commonly applied to fire debris analysis is the back-propagation ANN. This 

ANN utilizes supervised training on a series of adjustable weights connecting the input, hidden, 

and output layers. The number of training sets is recommended to exceed the number of 

adjustable weights by a factor of three, otherwise the ANN will “memorize” the input data and 

fail to “extrapolate” when presented with new data (41). Since the number of adjustable weights 

is typically large, the large size of the training data set is a significant impediment to the 

implementation of an ANN solution. These previous works are described in following 

paragraphs. 

Tan et al. has investigated the use of PCA and SIMCA for the classification of 

accelerants (36). The research examined 51 ignitable liquids from five classes (as designated by 

ASTM E1618-94 from 1994).  Some ignitable liquids were soaked into substrates (wood, carpet, 

etc.) and recovered, while some substrates were evaporated to test the effects of weathering. 

Polyolefin carpet samples that had been charred in open air were determined to not produce any 

products that interfered with the data analysis; however, pyrolysis of the carpet led to multiple 

products that can obscure and accelerant pattern and make accelerant identification difficult. 

Data sets were analyzed by summing the total ion intensity in 19 time increments across the 
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chromatographic profile. SIMCA was determined to result in perfect classification of test 

samples.  Many other groups have approached this problem, while limiting themselves to 

narrower range of ignitable liquid classes.  

Sandercock has utilized PCA with subsequent linear discriminant analysis (LDA) of the 

PCA scores to discriminate between samples of unevaporated and evaporated gasoline based on 

the C0- to C2-alkylnaphthalenes in each sample(42, 43). In the second study, 35 gasoline samples 

were shown to form 18 groups based on the C0- to C2-alkylnaphthalenes, irrespective of the 

extent of evaporation. A related study used the peak areas from 44 target compounds in an 

attempt to classify gasoline samples as either premium or regular and to sub-classify the gasoline 

samples into winter or summer sub-groups (10). This study resulted in 80-93% correct 

classification of the gasoline samples as premium or regular, but the correct classification 

dropped to 48-62% when the gasoline samples were further sub-classified into summer/winter 

formulations. A back-propagation ANN was reported to give 97% correct classification down to 

the summer/winter sub-classification. The best performing network was found to have 44 input 

nodes, 18 hidden nodes and 2 output nodes. The ANN model had 1,580 adjustable weights and 

ideally would have required 4,740 unique training data sets. The strong performance by the ANN 

in this case may reflect memorization of the data set. In another multivariate approach, Petraco 

has examined gasoline samples from casework using PCA, CVA and orthogonal canonical 

variate analysis (OCVA) (44). The GC-MS data from liquid gasoline samples was analyzed 

using the peak intensities of 15 target compounds. CVA and OCVA of the data gave good 

classification of the 20 samples analyzed and allowed their discrimination given the a priori 

knowledge of their groups. 
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Synovec has taken an interesting approach to the analysis of GCxGC/MS data of jet fuel 

samples (45). Samples were assigned to groups based on fuel type (JP-7, JP-8, etc.) and the 

resulting GCxGC data were analyzed by ANOVA to determine those parameters (retention times 

on each GC column) which gave large f values (ratio of inter- to intra-class variance). The 

selected parameters were used to perform PCA, the results of which showed excellent grouping 

of the samples by fuel type. PCA of mixed samples were shown to give scores falling along the 

lines connecting the scores of the pure samples used to prepare the mixed samples. In a related 

approach, Borusiewicz has analyzed kerosene and diesel samples by first using MANOVA with 

a Tukey post-hoc test to select the chromatographic peaks that would be used in a PCA attempt 

at clustering (38). A set of only four variables (linear hydrocarbons C11, C15, C17 and C23) 

were chosen for PCA. The probability of association was assessed by a likelihood ratio and the 

pairwise comparison of 12 samples resulted in three Type II errors from 66 unique comparisons 

while holding the Type I error at 5%. Likelihood ratios have been examined elsewhere for the 

evaluation of trace evidence questioned – known comparisons (46). Hupp was also able to 

observe clustering between diesel fuels from different manufacturers using PCA analysis of 

chromatographic data and without prior statistical analysis of the variables (37). 

Previous research from Sigman et al. has demonstrated the use of covariance mapping as 

a method for identification of the gas chromatography-mass spectrometry (GC-MS) data from 

complex mixtures often encountered in fire debris analysis, and a method of rapidly performing a 

numeric search of an ignitable liquid library to find a nearest match (47). One advantage of the 

covariance method is that it overcomes many of the problems associated with lab-to-lab 

variations in analyte chromatographic retention time. Covariance mapping has also been 

demonstrated to provide a method for discriminating between fresh gasoline samples at a known 
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level of statistical significance. While the covariance mapping approach fully utilizes the 

information-rich data sets available based on current GC-MS analysis methods, map calculation 

is somewhat CPU and memory intensive. 

Statistical methods, including combined principal components analysis (PCA) and linear 

discriminant analysis (LDA) (10, 42), and soft independent modeling of class analogy (SIMCA) 

(36), have previously been applied to post-burn ignitable liquid data.   

Artificial neural networks (ANN) have been applied to several studies of ignitable liquid 

classification in the presence of post-burn background contributions (10, 48-51).  Classification 

by ANN has been found to be highly effective for gasoline samples based on near-IR data (49).  

Harrington and coworkers have applied a fuzzy rule building expert system to differential 

mobility spectrometry studies of ignitable liquids from fire debris (52, 53).  In one example, 

relevant to the work conducted under this award, LDA was applied to the scores from the first 

four principal components derived from PCA of the normalized areas of 44 target compounds in 

88 samples of two different brands of Canadian gasoline.  The premium unleaded and regular 

unleaded grades were discriminated by LDA at 80-93% depending on the model development 

and test set composition (10).  In another example, LDA was applied to the first three principal 

component scores resulting from PCA analysis of GC-MS peak area data derived from selected 

ion monitoring of a set of 35 gasoline samples.  The analysis successfully classified 96% of the 

gasoline samples of the same origin; however, in this study, none of the samples contained 

substrate pyrolysis products or other sources of interference (42).  Results from these studies 

reflected varying degrees of success when applying the methods to relatively small samples sets.   
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Classification by LDA and QDA  
As part of the research conducted under this award, Bayesian and Fisher linear 

discriminant analysis (LDA) and Bayesian quadratic discriminant analysis (QDA) were 

investigated as methods of discriminating between samples that were positive or negative for 

ignitable liquid residue. The methods were also applied to the task of assigning samples that 

were positive for ignitable liquid residue into the correct ASTM E1618 classes. 

Several books and monograph chapters are available to provide an introduction to the 

topic of sample classification (54, 55). In a portion of the research conducted under this award, 

the focus was on two-class classification problems using linear and quadratic discriminant 

analysis, LDA and QDA, respectively.  A brief introduction to LDA and QDA is given here for 

the benefit of the reader.  Bayes LDA and QDA are probability-based hard classification 

methods that assign class membership based on a classification function,  ( ) (55).  Hard 

classification methods require that a sample is assigned to only one class and failure to assign a 

sample to a class is not an option.  The sample is assigned to class    provided that   ( )  

  ( ) for classes    , where   is a vector of parameters defining the case in question (54).  A 

minimum error-rate classifier can be achieved by Equation 8, where  (    ) is the class-

conditional probability density and  (  ) is the prior probability of encountering class   .   

   ( )    [ (    )]    [ (  )] (8) 

When the class-conditional probability density is multivariate normal, the discriminant function 

is given in Equation 9. 

 
  ( )   

 

 
  [    ]  

 

 
(    )

   
  (    )    [ (  )] (9) 

In Equation 9,   ,   , and      are the mean vector, the covariance matrix, and the determinant of 

the covariance matrix, respectively, for class   .  In Equation 9, the term (    )
   

  (    ) 
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is the square of the Mahalanobis distance from   to the center of class   .  Simplifying Equation 

9 leads to the following classification function, Equation 10, which is quadratic in  .  Equation 

10 is general to the multivariate normal case where the covariance matrices are different for each 

class. 
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(10) 

When the covariance matrices for each class are the same, Equation 10 simplifies to a 

discriminant function that is linear in  .  When the covariance matrices are equivalent across all 

classes, the     
    term simplifies to       , which is a constant across all classes and can be 

dropped from Equation 10.  The resulting classification function, Equation 11, is now linear in  . 
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An alternative approach, Fisher discriminant analysis, optimizes the ratio of the between 

class to within class separation and conveniently produces a set of n-1 canonical variates, where 

n is the smaller of the number of classes or number of variables (55).  By projecting the 

multivariate data onto the canonical variate space, separation between the classes may be more 

readily visualized.  Fisher discriminant analysis is utilized in this work to aid in visualizing class 

discrimination.  

Classification by SIMCA 
 As part of the research conducted under this award, soft independent modeling of class 

analogy was investigated as method of discriminating between samples that were positive or 

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



 

26 

 

negative for ignitable liquid residue. The method was also applied to the task of assigning a 

sample that was positive for ignitable liquid residue into the correct ASTM E1618 class. 

SIMCA has been applied to understand complex data in a wide variety of areas including 

biology (56, 57), biochemistry , fire debris (36), fruit cultivars (58), gasoline (49), meat 

adulterants (59), oncology (60, 61), pharmaceuticals (62, 63), waste materials (64), and wine 

(58).  One study, relevant to the work undertaken as part of this grant, classified three sample 

sets of gasoline by “source” and type using the SIMCA method for near infrared (NIR) 

spectroscopy data.  These data sets used by Balabin et al. were based on refinery, process, and 

type, and correct classification rates of 86%, 70%, and 90%, respectively, were obtained (49).  

SIMCA has also been used to classify NIR data of tablets used in a clinical study.  In this study, 

De Maesschalck et al. examined the use of the Mahalanobis distance instead of the Euclidean 

distance for outlier detection.  It was found that the modified SIMCA method, utilizing the 

Mahalanobis distance, yielded better results than the original SIMCA method (62).  The Vanden 

Branden group proposed a robust procedure using both the Mahalanobis and Euclidean 

distances.  For data sets with outliers, this robust approach to SIMCA achieved higher correct 

classification rates than the original SIMCA method (58).   

 Soft independent modeling of class analogy is a supervised, soft classification technique 

which means that the model is built based on a set of training samples with known class 

assignments and that a sample may be assigned to a single class, multiple classes, or not assigned 

to any class.  The SIMCA method was first introduced in 1975 as a form of pattern recognition 

that modeled each class by a separate principal components model (65).  In this method, a new 

sample is projected into the principal components space of each class to determine if it belongs 

to that class (62).  The relationship of the projected sample to the class-model PCA space 
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determines if the sample is assigned to that class.  One measure of the relationship is referred to 

as the “orthogonal distance” and represents the Euclidean distance of the sample to the PCA 

subspace (58).  Equation 12 shows the projection of the sample into the PCA model of class i, 

where Pi represents the scores for class i.  The projected scores, ti, must then be back-

transformed to the original PCA space, Equation 13.  Equation 14 shows the calculation of the 

orthogonal distance for class i.   

      
 (    ) (12) 

  ̂          (13) 

 OD  ‖   ̂ ‖ (14) 

A “score distance” was later suggested to improve the original SIMCA method (58).  This is a 

robust version of the Mahalanobis distance and is also measured in the PCA subspace.  Equation 

15 shows the calculation of the score distance for class i, where ai represents the number of 

principal components retained and vim represents the eigenvalue for principal component m in 

class i.   
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A linear combination of the scaled orthogonal distance and score distance, referred to as the 

“score value”, is used to classify the new sample, j, Equation 16.  To scale the orthogonal and 

score distances, a cutoff value is used for each.  The calculations used for the cutoff values for 

the orthogonal distance,     , and score distance,     , are shown in Equations 17 and 18, 

respectively.  In Equation 17,      is calculated based on the 90% quantile of the standard 

normal distribution, denoted z0.90, and calculates the median and median absolute deviation 
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(MAD) of the orthogonal distance raised to the two-thirds power.  In Equation 18,     is 

calculated from the 90% quantile of a chi-squared distribution with a degrees of freedom (55).   
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Also included in the score value calculation is a tuning parameter, , which is a value between 

zero and one.  This can be optimized to give the orthogonal distance and score distance different 

weights.  For example, a  value of one would base the score value entirely on the orthogonal 

distance, and a  value of zero would base it entirely on the score distance.  A classification rule 

can then be made which defines when a sample is assigned to a class based on the score value 

(55, 58). 

In the research conducted under this award, the TIS of fire debris samples were classified 

using the SIMCA method.  Two data sets, one containing only the TIS for samples from the 

ILRC and Substrate databases (0% substrate contribution) and the other containing the TIS for 

samples with up to 20% substrate contribution, were used for model development (66).  Samples 

were assigned to the single class that had the minimum score value.  A cutoff value was used to 

determine when a sample would not be assigned to any class.  If the minimum score value was 

above the cutoff value, the sample would not be assigned to any class.  The multi-step 

classification scheme, previously described (66), was also utilized in this research. 

 

Hypothesis or Rationale for the Research   
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 Current methods of interpreting data from fire debris analysis in the United States relies 

primarily on ASTM E1618-11, which calls upon the analyst to perform visual pattern recognition 

aided by comparison with reference materials. This method is currently accepted in court but 

does not meet the Daubert requirement of a known or potential rate of error, and may be subject 

to a Daubert challenge in the future. A large number of studies have been conducted that apply 

various chemometric methods to the analysis of relatively small sets of ignitable liquid and fire 

debris data. These studies have demonstrated a potential for using chemometric methods for 

detecting the presence of a specific class of ignitable liquid in laboratory burn samples based on 

chromatographic data. An alternative approach, using the total ion spectrum (TIS) has been 

shown to provide specific and differentiable information on complex samples, such as 

commercial ignitable liquids and pyrolysis products. It is the hypothesis of this research that a 

combination of chemometric methods and TIS data for a large number of ignitable liquids and 

pyrolysis products can form the basis for a statistically reliable method of differentiating between 

fire debris samples that are positive and negative for ignitable liquid residue. The resulting 

methods will provide the basis for further developments of statistical methods of fire debris 

analysis that can withstand a future Daubert challenge. 

 

II.  Methods 

 

Experimental Methods  

 Gas chromatography – mass spectrometry data utilized in this study were obtained from 

three different National Center for Forensic Science sources.  Data of reference ignitable liquids 

were obtained from the Ignitable Liquids Reference Collection database and the data of reference 
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burned substrate materials were obtained from the Substrate database.  Data of laboratory 

generated and large scale fire debris samples were created under a previous NIJ award (2008-

DN-BX-K069).   

 Reference ignitable liquids in the database were typically prepared by diluting 20 µl of 

the ignitable liquids with 1 mL of carbon disulfide. Samples were analyzed following the 

protocol previously described (14).  Substrate materials were burned by employing a modified 

destructive distillation method based on a method developed by the State of Florida Bureau of 

Forensic Fire and Explosives Analysis.  Materials were placed upside down in un-lined metal 

quart paint cans in which the loosely fitted lids had nine 1 mm diameter holes.  Heat was applied 

to the bottom of the cans with a propane torch at a distance of 4 cm.  Once smoke appeared, heat 

continued to be applied for an additional two minutes before the heat was removed.  The lids 

were replaced with intact lids so that vapors would condense while the cans returned to room 

temperature.  The residues from the burned substrate materials were extracted following ASTM 

E1412-07(68).  Prior to sealing the lids, activated carbon strips (10mm x 22mm) were suspended 

into the headspace of the cans with paperclips and dental floss.  The sealed cans were heated for 

16 hours at 66°C.  Once cooled to room temperature, the activated carbon strips were removed 

and cut in half.  One half was archived and the other was placed into a vial with 500 µL of 

carbon disulfide for analysis. 

 Laboratory fire debris samples were created by depositing ignitable liquids, typically 0.5 

– 1.0 mL, onto substrate materials prior to heating.  Ignitable liquids and substrate materials such 

as building materials, flooring, and furniture were purchased from local home improvement and 

furniture stores.  Fire debris was created from these materials utilizing the previously described 

modified destructive distillation method.  Residues from the fire debris were extracted following 
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ASTM E1412-07 has previously described. Large scale burns were conducted at the Florida Fire 

College using four 2.4 x 2.4 x 6.1 m
3
 Konex shipping containers fabricated inside with sheetrock 

walls and ceilings to construct a two room structure.  Each container had a window and door 

which allowed limited control of air to support the fire.  Flooring, furniture and household items 

and clothing were placed inside the containers to resemble a bedroom and living room. The 

containers were re-fitted and re-furnished several times, for a total of twelve fires.  Five hundred 

milliliters of known ignitable liquid was poured throughout the containers by a firefighter who 

then set a torch to initiate the fire.  Duration of the fires was typically 5 – 15 minutes with 

temperatures reaching as high as 870 °C.  Extinguishment of the fires was performed by fire 

fighters with only water.  Upon cool down, 10 – 12 fire debris samples per fire were collected 

throughout the container and placed into metal paint cans.  The residues were extracted from the 

fire debris following ASTM E1412-07 as previously described.   

 

Statistical Methods  

Generation of the Data Sets  

Different data sets were generated for each of the statistical methods used in this 

research. The following sections give descriptions of the data used by each method and how the 

data sets were generated. 

 

Total Ion Spectra Comparison  

 The total ion chromatogram (TIC), extracted ion profiles (EIP), and total ion spectra 

(TIS) compared in this work were produced from Agilent GC-MS data files available in the 

Ignitable Liquids Reference Collection and Database. The TIC and EIP were generated using the 
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ChemStation (version D.02.00.275, Agilent Corp., Santa Clara, CA) software. The TIS were 

generated from the data matrix exported in the cdf format, by summing the ion intensities over 

all mass scans at each m/z ratio and normalized so the maximum spectral intensity was equal to 

one. The data set consisting of 620 IL samples and 88 SUB was obtained from the ILRC  and the 

Substrate Reference Database.  The IL samples comprised the following ASTM class (and 

subclass):  33 GAS, 22 NA, 18 NP, 99 OXY, 154 MISC, 42 ISO, 218 PD (31 LPD, 118 MPD, 

69 HPD), and 43 AR.  The TIS were generated for the 708 IL and SUB samples in the mass 

range of m/z 30-200, for a total of 171 ions.   

 In order to compare with the results of Grotch (9), the TIS of the 708 IL and SUB 

samples are binary encoded to one bit for each mass-to-charge ratio.  For each ion in every TIS, 

if the peak intensity was equal to or greater than a specified cut-off (transition level as a percent 

of the base peak) it was encoded as a 1; otherwise, the peak was encoded as a 0.  Four different 

transition levels were investigated:  0.0001, 0.001, 0.01, and 0.1.   

 

 

Cluster Analysis  

 The data set analyzed for cluster analysis consisted of TIS from 445 IL (436 unweathered 

IL and 9 weathered gasoline) samples and 88 SUB samples.  The TIS were calculated, according 

to previously published methods with a range of 30-200 m/z values (8).  The TIS is calculated by 

summing the intensities of each nominal mass across all retention times (i.e. scan range) with 

subsequent normalization and removal of any background/baseline contributing ions.  This is 

equivalent to calculating the average mass spectrum across the chromatographic profile.  In this 
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work, the major ion found in the baseline, m/z 32, was eliminated from the data.  The TIS were 

normalized to the base peak which corresponds to the most intense ion. 

 

Self-Organizing Feature Maps  

 The SOFM training data set consisted of extracted ion spectra (EIS) for liquids in the 

ILRC database, which were designated as GAS, AR, ISO, NA, NP, LPD, MPD, HPD and OXY 

ASTM classes.  The OXY samples used for training contained predominantly oxygenated 

compounds and did not have chemical characteristics of other ASTM classes.  Classification of 

the ignitable liquids in the ILRC was performed by a committee of practicing fire debris analysts.  

The training data set used in this work was comprised of 313 ignitable liquid samples including 

289 unweathered ignitable liquid samples as well as 24 weathered GAS samples.  The training 

samples designated as ISO were further sub-classified as light, medium, and heavy (LISO, 

MISO, and HISO, respectively) based on their carbon range.  AR samples were also further sub-

classified as light and medium (LAR and MAR) based on their carbon range.  The fire debris 

data set contained 116 EIS of ignitable liquid residues extracted from fire debris samples that 

were produced in laboratory and large-scale burns.  The samples were extracted following the 

ASTM E1412-07 method (4), and the ignitable liquid residue patterns were observed in the 

chromatograms.  The class designations for the fire debris samples corresponded to the ASTM 

class of the unweathered ignitable liquid used in the burn.  A third data set was compiled, where 

the samples had chemical characteristics of two ASTM classes.  This data set was comprised of 

33 MISC and seven OXY samples from the ILRC.  Sample preparation and instrumental analysis 

for all of the data sets are described in previous work (69).    
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The EIS for all data sets were comprised of 29 ions chosen as a subset from Table 2 of 

ASTM E1618-11 (6).  These ions represent compound types commonly observed in ignitable 

liquids within the seven major ASTM classes.  Each EIS was normalized to the base peak which 

corresponds to the most intense ion. 

 

Discriminant Analysis and SIMCA  

 For the discriminant analysis and SIMCA classification methods, duplicate or triplicate 

copies of the TIS of the weathered gasoline samples were included in the data set, which resulted 

in 15 additional IL samples added to this data set.  The total of number of IL samples was 460 

and there were 88 SUB samples in this data set.  Additional samples were created using the total 

ion spectral data of samples from the ILRC and substrate pyrolysis databases.   

An in-house MATLAB (R2011b, Mathworks, Natick, MA) code was used to generate 

mixed samples containing both IL and SUB contributions.  Due to unknown levels of substrate 

pyrolysis products present in an individual fire debris sample, a data set was created with an 

upper limit of substrate contribution set at 20%. Testing on data sets containing 50% and 90% 

substrate contribution yielded similar results by LDA and QDA (66).  Each user-generated mixed 

total ion spectrum contained a percentage of substrate contribution from two randomly selected 

SUB samples with the remaining percentage of the total ion spectrum composed of contribution 

from an IL.  The total fraction of substrate contribution was randomly selected from a uniform 

distribution on the interval of [0.01, upper limit].  Using this procedure, a total of 10 IL samples 

with substrate contribution were generated for each pure IL.  Mixed SUB total ion spectra were 

created using the same method by combining contributions from three substrate pyrolysis total 

ion spectra.  There were approximately five times as many IL samples used from the databases 
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as there were SUB samples.  In order to generate approximately the same total number of mixed 

SUB samples as IL samples, 50 mixed SUB total ion spectra were generated for each individual 

SUB in the library.  The IL samples with substrate contribution were designated as the class of 

the IL in the sample and the mixed SUB samples were designated as SUB.  The total data set 

contained total ion spectra from 460 pure IL, 4,600 IL samples with substrate contribution, 88 

individual SUB, and 4,400 mixed SUB samples.   

The data sets with and without substrate contribution included m/z 32 and were 

normalized by dividing the intensity of each m/z ratio by the summed intensity value for the 

sample, which will be referred to as the “summed to one” method.  Two additional data sets were 

created using the samples without substrate contribution.  These included m/z 32 and were 

normalized by the “base peak” and “unit vector” methods.  The “base peak” method is calculated 

by dividing the intensity of each m/z ratio by the intensity for the base peak of that sample.  With 

this method, the intensity for each m/z ratio is represented as a percentage of the base peak 

intensity.  The “unit vector” method involves dividing the intensity of each m/z ratio by the 

square root of the sum of squares for the sample.   

 

Fire Debris Samples  

 Laboratory fire debris samples were generated following the procedure previously 

described (66).  In this method, a specific volume of IL was added to a substrate or multiple 

substrates placed in an unlined paint can, covered with a vented lid, and placed above the flame 

of a propane torch.  Once smoke was observed to exit the can through the vent holes, the can was 

kept over the flame for an additional two minutes.  After removal from the flame, the vented lid 

was replaced with a solid lid, and the can was cooled.  The ignitable liquid residue was extracted 
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following the ASTM E1412-12 standard for adsorption onto activated charcoal strips (3).  The 

GC–MS method utilized for analysis of the samples has been previously described (8).  Substrate 

control samples were created following this same procedure, but without the presence of an IL. 

Large-scale burns were conducted in freight containers staged as a furnished two-room 

apartment (70, 71).  An IL of known ASTM E1618-10 class was used in each container and the 

location of the IL pour was recorded.  Fire debris samples were collected from various areas of 

the container both on and off the IL pour.  Two approaches were taken to assigning the “ground-

truth” classes to the fire debris samples.  In one approach, laboratory-burn samples were 

designated as the class of IL used in the burn, and the substrate control samples were designated 

as SUB.  The results using this method will be referred to as “fire debris – pour.” Using this 

approach for the large-scale burns, samples were designated as the class of IL used in the burn if 

they were collected from the pour, and designated as SUB if they were collected off the pour.  

The laboratory-burn data set consisted of 69 samples designated as IL and five multiple-substrate 

control samples designated as SUB.  The large-scale burn data set contained 89 samples 

designated as IL and 40 designated as SUB.  Sample designation using this approach considers 

the pre-burn sample composition and may not account for the loss of IL during the fire.  The 

second approach to assigning the ground-truth classes to fire debris samples, takes into account 

these potential losses.  In the second approach, the data of both the laboratory and large-scale fire 

debris samples were examined by an analyst
1
 with prior knowledge of the ignitable liquid used in 

the burn.  It should also be noted that the analyst had access to the TIC for the unevaporated 

liquid.  Following ASTM E1618-10 protocols (72), the analyst determined whether or not an IL 

residue was present in each sample.  If evidence of IL residue was observed, the sample was 

                                                 
1
 Co-author, M. Williams,holds an MS in Forensic Science, has developed a large online database of ignitable liquid 

forensic data over the past 12 years, and works closely with the SWGFEX Ignitable Liquids Reference Collection 

and Database committee to analyze and classify database entries according to ASTM E1618.   
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designated as the class of IL used in that burn.  If no evidence was observed, the sample was 

designated as SUB.  It should be noted that validation of the statistical models must be made in 

comparison to the “ground truth”, which requires a definitive knowledge of whether samples 

contain ignitable liquid residue. Validation is not achieved by comparison to the performance of 

a trained fire debris analyst. The results using this method will be referred to as “fire debris – 

analyst.” Using this approach for the laboratory burns, 69 samples were designated at IL and five 

samples were designated as SUB.  It should be noted all laboratory burn samples that had an IL 

added, also had evidence of IL residue.  For the large-scale burns, this approach resulted in 54 

samples designated as IL and 75 designated as SUB.  Prior knowledge of the IL chromatographic 

patterns and target compounds makes data analysis less subjective and more accurate.   

The designations of the laboratory burn samples did not change when considering the 

analyst’s examination of the data instead of the pre-burn conditions.  Since the designations of 

the large-scale burn samples were affected by these approaches, the fire debris data will be 

described as having designations based on the proximity to the pour or based on the analyst’s 

examination of the data.  The total fire debris data set consisted of the TIS for 158 samples 

designated as IL and 45 samples designated as SUB, for a total of 203 fire debris samples, when 

using designations based on the proximity to the pour.  The analyst’s examination of the data 

resulted in 123 samples designated as IL and 80 samples designated as SUB.  Correct 

classification rates using both methods of assigning the ground truth will be discussed. 

The TIS of the fire debris samples were normalized using the same methods that were 

employed for the model data sets. 

 

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



 

38 

 

Computational Details 

 

Total Ion Spectra Comparisons 

 Total ion spectra comparison calculations were performed in RStudio version 0.97.312 

(RStudio Inc., Boston, MA) using code written in-house.  Comparisons of binary encoded 

spectra were made on a pairwise basis for all unique TIS pairs. The number of disagreeing ions 

was recorded for each comparison and the average number of disagreements and the distribution 

of disagreements were calculated. 

As the ability to discriminate between ion intensities increases, the number of disagreeing 

ions in a spectral comparison will increase and the number of failures to discriminate in a series 

of comparisons will decrease. In order to investigate the magnitude of this trend, discriminations 

and the number of disagreeing ions were determined for comparisons of TIS that had not been 

binary encoded. A 0.01 transition level for peak detection was implemented and two ions were 

considered to exhibit a disagreement if the relative standard deviation (RSD) for a comparison 

was greater than or equal to a specified limit. For each pairwise comparison of ion intensities, the 

relative standard deviation was calculated as the ratio of the population standard deviation to the 

average of the two intensities of the ion being compared. The population standard deviation is 

used because in each comparison (i.e., comparison of m/z 91 in TIS-1with m/z 91 in TIS-2) there 

are only two ions to compare. Comparison of an intensity of 0 and an intensity of 1, as for binary 

encoded spectra, corresponds to a RSD of 1 (i.e., a %RSD of 100). The number of disagreeing 

ions in a spectral comparison and the number of discriminations between spectra were calculated 

at a series of relative standard deviations. 
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Cluster Analysis 

 Hierarchical cluster analysis was performed using a variety of distance and linkage 

combinations where the cophenetic correlation coefficient was calculated for each combination.  

The cophenetic correlation coefficient corresponds to how well the resulting clustered data 

matrix reflects the original data matrix.  The clustering solution most accurately reflects the 

original data when the cophenetic correlation coefficient is equal to one (20).  The distance-

linkage combination with the largest cophenetic correlation coefficient and chemically 

meaningful groups was chosen for further analysis.  Optimal leaf ordering was subsequently 

performed which “maximizes the sum of the similarities of adjacent leaves” in the dendrogram, 

to allow samples that are highly similar to be arranged in the center of a cluster (73).  The leaves 

on the dendrogram correspond to individual samples.  Calculations were performed in R (74) 

with the following packages available on the Comprehensive R Archive Network (CRAN):   the 

amap package (75) for the distance calculations and the cba package  for optimally ordering the 

dendrogram leaves.  The stats package (74), used for hierarchical clustering and cophenetic 

correlation coefficient calculations, is normally loaded as part of the basic R software. 

 Similarities were calculated from the distance metric selected for clustering and a 

similarity matrix, consisting of the similarity values for each pairwise comparison of the 

samples, was generated.  The similarity matrix was exported in a comma-separated format and 

read into Excel (Microsoft Corporation, Redmond, WA) for further analysis.  A heat map can be 

created by assigning a color gradient to the range of similarity values within the similarity 

matrix.  The color gradient was assigned using the conditional formatting option in Excel.  The 

selected condition applied white to the cells with the lowest similarity values, gray to cells at the 

75
th

 percentile, and black to the cells with the highest similarity values. 
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 Figure 1 shows an example heat map created from the similarity matrix.  In Figure 1, 

pairwise comparisons were made between samples to create the similarity matrix.  The lowest 

similarity value was 0.454 and shaded white, while the values with the highest similarity (1.000) 

are along the diagonal and shaded black.  Cells with values between 0.454 and 1.000 are various 

shades of gray.  From the example in Figure 1, samples labeled SRN 320 and 298 are easily 

observed to be highly similar to one another, as well as SRN 46 to 107. 

 

Figure 1:  Generation of a heat map by applying conditional formatting to a similarity matrix.  SRN represents the 

sample reference number used to identify the ignitable liquid in the ILRC database.  The lowest similarity values (0.4) are 

shaded white, the highest similarity values (1.0) are shaded black, and gray is used for the midpoint values.  A color 

gradient was applied to the cells with similarity values between 0.4 and 1.0. 

 

 

Self-Organizing Feature Maps (SOFM)   

 SOFM calculations were performed using the Neural Network Toolbox
TM

 7 with 

MATLAB R2011b (MathWorks, Natick, MA, USA).  Several hexagonal grid sizes were 

investigated.  The 15x15 unit hexagonal grid resulted in the minimal number of neurons being 
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associated with more than one ASTM class.  A total of 112,500 epochs, 500 times the number of 

neurons were calculated, where the ordering phase of learning consisted of 1,000 epochs and an 

initial neighborhood size of 13 (26).  Therefore, in the first epoch of the ordering phase, the 

winning neuron and the neurons within a 13 neuron radius from the winning neuron had their 

weight vectors adjusted.  The neighborhood size decreased from 13 to one as the number of 

epochs in the ordering approached 1,000.  The subsequent tuning phase had a neighborhood size 

of one, so only the weight vector of the winning neuron was adjusted.  The default batch training 

method in the Matlab Neural Network Toolbox
TM

 7 was used, where for each epoch, the whole 

data set was presented to the network.  The winning neuron for each input vector was 

determined, and the weight vectors were moved to the average position of all input vectors for 

which the weight vector was a winner or in the neighborhood of a winner (30).  In the batch 

training mode, a learning-rate parameter was not used (25). 

 The EIS for the fire debris data set were projected onto the trained SOFM by calculating 

the distances between the final weight vector for each neuron and the variable vector of each 

sample.  The sample was assigned to the neuron for which its weight vector had the smallest 

distance.  The assigned neuron may have been associated with a training sample or may be an 

empty neuron (55).  Select ignitable liquid samples from the ILRC database designated to the 

OXY class or MISC category were also projected onto the SOFM.   

 

Discriminant Analysis Methods  

 MATLAB was used to perform PCA, LDA, QDA, and SIMCA.  To reduce the 

dimensionality of the data, PCA, a multivariate analysis method, was performed on each data set 

comprised of the total ion spectrum from each sample.  Factorization of the data matrix was 

accomplished by singular value decomposition.  The rank of the data matrix was reduced based 
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on the number of principal components retained to reproduce 50%, 70%, 90%, or 95% of 

variance in the data.  The number of principal components retained was varied in order to 

optimize the percentage of samples classified correctly.  The scores for the retained principal 

components were used for the development of linear and quadratic discriminant functions. 

In the application of LDA and QDA to the data, the assumption is made that the prior 

probabilities of encountering each class are equal.  The problem is reduced to a set of two-class 

comparisons and the prior probability of each class is set to 0.5.  Scores, derived from the PCA 

of the set of total ion spectra for the two classes being modeled, were used as variables for the 

development of the LDA and QDA models.  The fraction of variance retained in the final LDA 

or QDA model was based on the optimized correct classification rate.  Discriminant functions, 

given by either the quadratic or linear combination of the PCA scores for each class, were based 

on Equations 10 and 11, respectively.  The sample’s classification is predicted by the class which 

has the largest quadratic or linear discriminant score (55). 

 

Multi-Step Classification Procedure  

 Classification by LDA or QDA could theoretically be implemented wherein a sample is 

assigned to one of the ASTM classes or the SUB class in a single step; however, in practice, a 

problem arises with implementing the QDA method.  The QDA model requires a larger number 

of adjustable parameters than LDA, due to the larger number of covariance matrices (i.e., the 

covariance matrices for all classes are not assumed equal), which can lead to a small sample size 

problem (76).  The small sample size problem arises when the number of training samples is less 

than or comparable to the sample space dimensionality.  This problem was encountered for some 

of the ASTM classes with smaller representation in the training data set (i.e., NA and NP).  The 
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small sample size problem was obviated by a multi-step classification approach where two 

classes were considered in each step.  

In the multi-step classification procedure, the first step discriminates between samples 

that contain an ignitable liquid residue and those that only contain substrate pyrolysis products, 

as depicted in Figure 2.  In the second step, samples designated as containing ignitable liquid 

residue are further classified as containing residues from the combined AR and GAS class 

(denoted AR/GAS) or as one of the remaining ASTM classes that contain predominantly 

aliphatic (denoted ALI) compounds.  In the next level of discrimination, as reflected in Figure 2, 

the samples designated as AR/GAS are further classified as AR or GAS, and ALI samples are 

further classified as containing ignitable liquid residue from the ASTM classes in the ISO/NA set 

or the ASTM classes in the PD/NP set.  Samples designated as either the PD/NP set or ISO/NA 

set are further classified as one of the constituent ASTM classes.  Finally, the data for fire debris 

samples classified into the AR, GAS, PD, NP, ISO, or NA classes should be examined to 

determine if they should be reclassified into the OXY class or MISC category.  Under ASTM 

E1618-10, an ignitable liquid from any of the other classes can be assigned to the OXY class if it 

contains a significant oxygenated component as indicated by the major ions, 31 and 45 m/z (i.e., 

a PD containing methyl ethyl ketone would be classified as an OXY).  Notably, the oxygenated 

components are frequently low boiling and easily lost due to weathering.  The miscellaneous 

category does not possess class characteristics and, therefore, is a “catch-all” designation of last 

resort for ignitable liquids that do not belong to the other ASTM E1618-defined classes.  

Because LDA and QDA are hard classification techniques, samples that contain mixed ignitable 

liquids will be classified as the ASTM class the spectral data most resembles; however, the 
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correct assignment for this type of sample is actually to the miscellaneous category since it is 

composed of a mixture of ignitable liquids.   

In the model development for the multi-step classification procedure, samples used in the 

first step (IL/SUB discrimination) are from all seven IL classes and the MISC category.  In all 

subsequent steps, the samples designated as OXY or MISC samples are removed from the model 

data sets.   

 

Figure 2:  Multi-step classification scheme used for model development.  Correct classification rates for each step of this 

classification scheme are independent of the previous step. 

 

To determine the error rate for each step of the multi-step classification procedure, a 

MATLAB code that applied cross-validation and discriminant analysis to the data were written 

in-house.  On each of the 100 iterations conducted, 20% of model data were randomly selected 
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and held out as a test set and the remaining 80% was used for LDA or QDA model development.  

The correct classification rates were based on the classifications of the test set.   

 A fire debris data set, described above, was used to test the LDA and QDA models.  The 

fire debris data set was projected into the model PCA space and the projected scores were used 

to classify the fire debris samples by the LDA and QDA models.  

 

Likelihood Ratio Test   

 As previously discussed, LDA is a simplified case of QDA in which the covariance 

matrices are assumed to be equivalent.  If the covariance matrices are determined to be 

statistically different, QDA is the more appropriate method of analysis (77).  The likelihood ratio 

was used to compare the covariance matrices for the two classes used in each step of the 

classification scheme (78).   

 

Evaluation of Classifier Performance  

 For the two-class comparison of ignitable liquids or ignitable liquid residue-containing 

samples (collectively IL) and substrate-only samples (SUB), the false positive, true positive, 

false negative, and true negative rates were calculated for each of the data sets.  The false 

positive rate is defined as SUB samples classified as IL.  The true positive rate is defined as IL 

samples classified as IL (79).  In the forensic application, a low false positive rate is important.  

The false negative rate represents IL samples that were incorrectly classified as SUB, while the 

true negative rate represents SUB samples that were correctly classified as SUB.  The false 

negative rate can be calculated as one minus the true positive rate.  Similarly, the true negative 

rate can be calculated as one minus the false positive rate.   

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



 

46 

 

 

SIMCA  

 Prior to model development, the PCA scores were used to identify outliers and leverage 

points within the data.  PCA was performed on the data set for each individual class in the given 

step of the classification scheme (i.e. samples designated as IL were separated from those 

designated as SUB prior to performing PCA).  The orthogonal distance, Equation 14, and score 

distance, Equation 15, were calculated for each sample in each class.  These values were then 

compared to the cutoff values for the orthogonal distance and score distance calculated for each 

class, Equations 17 and 18, respectively.  Orthogonal outliers, defined as having an orthogonal 

distance greater than     , but a score distance less than     , were excluded from the data sets.  

Bad leverage points, defined as having an orthogonal distance greater than      and a score 

distance greater than     , were also removed from the data sets.  These points are far from the 

class mean when projected into the PCA space.  Good leverage points were retained for model 

development and stabilize the estimation of the PCA space.  Good leverage points have a score 

distance greater than     , but an orthogonal distance less than     .  Samples with an orthogonal 

distance and score distance below the respective cutoff values were also used for model 

development (55, 58).  

MATLAB code was written in-house to perform outlier removal, PCA, and the SIMCA 

method with cross-validation.  For cross-validation, a model was developed for each class in the 

given step of the classification scheme.  Orthogonal outliers and bad leverage points were 

removed from the data set prior to model development.  On each of the 100 cross-validation 

iterations, 20% of model data were randomly selected and held out as test samples, while the 

remaining 80% was used for model development.  The data used for model development was 
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analyzed by PCA, and the scores and eigenvalues for the retained principal components were 

used in the calculation of “score values” (  
 ( ) from Equation 16) for sample classification.  

The TIS for test samples were assigned to the class with the minimum score value; however, if 

the minimum was greater than a value of one, they were not assigned to a class.  Test samples 

were not assigned to multiple classes.  Correct classification rates for cross-validation were based 

on the classifications of the test set.   

The fire debris data set, described previously, was used to test the models.  The TIS of 

fire debris samples were projected into the model PCA space and the projected scores were used 

for classification.  The TIS of the sample was assigned to the class with the minimum score 

value; however, if the minimum was greater than a value of one, it was not assigned to a class.  

Samples were not assigned to multiple classes.  The value of gamma was optimized for each step 

of the classification scheme and the optimal value was selected based on the highest correct 

classification rates for the cross-validation test samples.   

Classifier performance metrics were also calculated for the results obtained using 

SIMCA. 

Training 
The QDA method, described above, was trained to two groups of fire debris analysts by both 

online and face-to-face training. The online and face-to-face training required a maximum of 

eight hours to complete. The online material was delivered using a popular learning management 

system and students had one week to complete the training. The face-to-face material was 

delivered over an eight hour period in a single day. A summative assessment was performed to 

evaluate student comprehension. The summative assessment consisted of a multiple choice exam 

composed of questions that examined the student’s understanding of the theoretical basis for the 

statistical methods and their ability to complete a practical examination of data from real fire 
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debris using the software provided during the training. An outline of the training content is given 

in Appendix I at the end of this report.  

 

III.  Results   

Comparison of Total Ion Spectra 

Figure 3 shows the comparisons made between the TICs and TIS for the GAS, NA, PD 

and MISC IL samples analyzed on the same in-house instrument.  Consider the TICs and TIS 

corresponding to the GAS and NA classes; while the TICs are visually quite different within a 

class, the TIS are very similar.  However, more similar patterns of ions are observed when 

comparing the TIS for samples in the NA and ISO class (not shown).  Large variations in both 

the TICs and TIS are observed for samples within the MISC category, which is not unexpected 

given that these samples may have characteristics of more than one ASTM class.   
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Figure 3:  IL TIC (left) and TIS (right) Grouped by ASTM Class 

 

The TIS for the 708 IL and SUB samples were binary encoded based on the four different 

transition levels.  The information content for transition levels 0.0001, 0.001, 0.01, and 0.1 were 

calculated, using Equation 7, to be:  114.2, 125.1, 121.9, and 56.53 bits, respectively.  These 

results are consistent with those found by Grotch for approximately 3,000 organic compounds 

(9).  The number of disagreeing ions between each of the 250,278 unique pairwise comparisons 

of the 708 IL and SUB samples was determined, and the frequencies are shown for each of the 

transition levels in Figure 4.  The average observed number of disagreeing ions for transition 
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levels 0.0001, 0.001, 0.01, and 0.1 are:  52.61, 58.16, 56.08, and 23.69 ions, respectively.  The 

results at the one percent (0.01) transition level are consistent with previous analyses of 440 IL 

samples binary encoded at the same level for TIS with m/z 30-350, which were found to have an 

average of 50 differing ions per comparisons for 96,580 unique pairwise comparisons (8). The 

notable drop in the number of disagreeing ions and information content as the transition level is 

increased from 0.01 to 0.1 indicates a significant portion of the discriminating ions are within 

this relative intensity range.  Out of the 250,278 unique pairwise comparisons of the 708 IL and 

SUB samples at the 0.01 transition level, only 20 comparisons resulted in zero ion disagreements 

(approximately 8 x 10
-3 

%, which extrapolates to approximately 80 indistinguishable spectra in 

10
6
 comparisons). Grotch found six indistinguishable spectra in 10

6
 comparisons for pure 

organic compounds (9). Each of the 20 indistinguishable comparisons in this work occurred 

between IL samples with the same ASTM class (or subclass).  One of these pairwise 

comparisons occurred between two NP samples and another between two OXY samples.  Three 

indistinguishable pairwise comparisons occurred between MISC samples, one comparison for 

LPD samples, 10 comparisons for samples designated as MPD, three comparisons for HAR 

samples, and one comparison between two MAR samples. Grotch found that approximately three 

perfectly matched spectra occurred per 10
6
 comparisons of low resolution mass spectra of 

organic compounds, where the matched spectra corresponded to isomers.  These results 

demonstrate that even when binary encoded at the transition levels studied in this work, the 

“mass spectrum is a very specific chemical signature” (9), and while 80 indistinguishable pairs 

of spectra for each 10
6
 comparisons is significantly larger than three indistinguishable pairs, the 

binary encoded TIS comprise a significantly unique signature for complex mixtures, such as 

ignitable liquids. 
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Figure 4:  Frequency of Number of Disagreeing Ions for 708 IL and SUB Samples for Varying Transition Levels. 

 

The average observed numbers of disagreeing ions in pairwise comparisons of binary 

encoded TIS were then calculated, at the one percent transition level, for pairwise comparisons 

of samples with the same and differing class designations.  The resulting averages are shown as a 

matrix in Table 1, where smaller averages are shaded lighter and larger averages have darker 

shading. Pairwise comparisons of samples with the same designation are given along the 

diagonal, while pairwise comparisons of samples with different designations are given off the 

diagonal. For the 620 IL-designated samples, an average of 54.6 disagreeing ions was found for 

191,890 pairwise comparisons.  Similarly, the 88 SUB samples with 3,828 unique pairwise 

comparisons had an average of 56.0 disagreeing ions.  When considering the 54,560 unique 

pairwise comparisons that occur between samples designated as IL and SUB, an average of 61.3 
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disagreeing ions was observed. The largest average number of disagreeing ions in pairwise 

comparisons was between the HPD and OXY classes (98.6), which reflect the significant 

difference in chemical composition and molecular weight range between these two classes. The 

smallest average number of disagreeing ions was found between ISO and NA classes (16.8), 

which reflect the similar MS fragmentation behavior of the chemical components of these two 

classes. 

 

Table 1:  Average number of differing ions for comparisons of binary encoded TIS between differing ASTM ignitable 

liquid classes. 

 

 

The results given here compare favorably with those presented by Grotch (9), but show 

that the binary encoded TIS to lead to an extrapolated larger number of failures to discriminate in 

10
6
 comparisons of complex mixtures, such as ignitable liquids. When the TIS are encoded to a 

higher degree of accuracy, the average number of disagreeing ions per pairwise comparison is 

expected to increase and the numbers of failures to discriminate are expected to decline. To test 

this assertion and to gain a better estimate of the performance of the TIS, a set of pairwise 

comparisons was made of spectra that had not been binary encoded.  Disagreeing ions were 

determined at RSD of 0.05, 0.1, 0.2 and 0.4, as described in the Materials and Methods section. 

The average numbers of disagreeing ions per comparison were found to be 92, 89, 83 and 74 

IL GAS NA NP OXY MISC ISO LPD MPD HPD AR SUB

IL 54.6

GAS 25.3

NA 54.3 8.8

NP 70.3 55.0 23.4

OXY 53.5 46.7 75.2 47.3

MISC 49.3 51.0 54.6 59.3 52.0

ISO 51.6 16.8 57.3 43.3 50.7 14.2

LPD 46.7 27.9 55.5 47.1 47.7 28.9 25.7

MPD 48.5 38.7 38.6 59.1 44.6 40.8 38.8 22.5

HPD 78.6 85.4 44.3 98.6 70.4 89.8 82.7 59.5 30.3

AR 44.5 63.7 84.5 52.9 61.3 57.6 58.5 65.6 97.7 34.8

SUB 61.3 52.6 66.3 60.5 67.7 58.7 66.1 60.4 53.7 68.4 66.7 56.0
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respectively. Recall that 56 disagreeing ions were found for binary encoded TIS with a 0.1 

transition level, which corresponds to an RSD of 1. These results are shown graphically in Figure 

5. A set of five repeat injections of a standard mix of aliphatic and aromatic hydrocarbons was 

determined to have an RSD of 0.1 for the TIS generated with a 0.01 peak detection transition 

level. The TIS comparison at an RSD of 0.1 resulted in three failures to discriminate in 250,278 

comparisons. Two of the failures to discriminate were between ignitable liquids of the MPD 

class and the remaining failure to discriminate was between ignitable liquids of the HPD class.     

 

Figure 5:  The average number of disagreeing ions per TIS comparison is plotted versus the relative standard deviation 

cutoff for TIS having a 0.01 peak transition level. The RSD=1 point corresponds to the comparison of binary encoded 

spectra at a 0.01 peak transition level. 
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Grouping of Ignitable Liquids 

Cluster Analysis   

 The correlation distance, d, was selected for this research and is equivalent to 1-r, where r 

is the Pearson correlation coefficient.  The Pearson correlation coefficient ranges from -1 to 1; 

therefore, the distance values range from 0 to 2.  Similarity values were calculated by 1-(d/2) and 

can range from 0 to 1.  Samples with the smallest distance will, therefore, have the largest 

similarity.  The similarity matrix for 445 IL samples and 88 SUB samples was converted to a 

heat map, as previously described, and is shown in Figure 6.  The samples were arranged based 

on ASTM class designations found in the ILRC database .  Within each class, the samples were 

arbitrarily ordered; therefore, the most similar samples may not be adjacent to one another.  

 

Figure 6:  A heat map for all 445 IL and 88 SUB samples.  The samples are sorted by ASTM classes but are arbitrarily 

ordered within the classes. 
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 A high degree of similarity is observed between IL within some ASTM classes, but not 

within others. Variation in the similarity values within the SUB, MISC, and OXY groups is 

reflected in the shading of the lower right corner of Figure 6.  Samples in the MISC category and 

OXY class are expected to have significant variation based on the criteria for assignment to these 

classes, outlined in ASTM E1618-11.  When ILs do not meet the criteria of an ASTM class or 

when they possess characteristics of multiple ASTM classes, they are assigned to the MISC 

category.  Assignment to the OXY class occurs when the IL contains a significant oxygenated 

component with an abundance at least one magnitude greater than the matrix peaks of the 

chromatogram and mixtures of oxygenated compounds and other compounds may be present (6).  

The remaining ASTM classes (ISO, NA, NP, PD, GAS, and AR) possess characteristics which 

allow for better defined classification criteria. 

 

Figure 7:  Box plots for the similarities within each ASTM class.  The horizontal lines outside of the box represent the 

minimum and maximum similarity values.  The median similarity value is indicated by the thick, dark horizontal line and 

the box is constructed using the 25th and 75th quartiles.  The notch represents the confidence interval around the median 

(± (1.57 × "IQR" )/√n, where IQR is the interquartile range and n is the number of samples). 
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 The variation of similarity values within the ASTM classes is demonstrated by the box 

plots in Figure 7.  The similarity between TIS within an ASTM class represents consistency in 

chemical composition and MS fragmentation patterns. For example, the box plot for NA samples 

in Figure 7 shows a small range and high median value of similarities, which reflect a high 

consistency in chemical composition and MS fragmentation patterns. The NA class contains 

liquids with normal alkanes in a high carbon range. The AR class exhibits a broader variance and 

lower median similarity value, which reflect the variation in MS fragmentation between 

alkylbenzenes and alkylnaphthalenes, and the variation in chemical composition within the class.      

 

Figure 8:  Box plots for between-class similarity comparisons.  The horizontal lines outside of the box represent the 

minimum and maximum similarity values.  The median similarity value is indicated by the thick, dark horizontal line and 

the box is constructed using the 25th and 75th quartiles.  The notch represents the confidence interval around the median 

(± (1.57 × "IQR" )/√n, where IQR is the interquartile range and n is the number of samples). 
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 Similarity values between groups of classes are demonstrated by the box plots in Figure 

8.  Classes in group ALI are ISO, NA, NP, HPD, LPD, and MPD because these classes 

predominantly contain aliphatic compounds.  Classes in group ARG are GAS and AR, because 

these classes predominantly contain aromatic compounds.  In Figure 8, MISC, OXY, and SUB 

samples are observed to be more similar to the aliphatic group (ISO, NA, NP, and PD classes) 

than to the aromatic group (GAS and AR classes).  Comparison of the aliphatic group to the 

MISC, OXY, and SUB classes resulted in decreasing median similarity values, respectively.  The 

low median similarity value between the aliphatic and aromatic groups indicates the difference in 

chemical composition of samples within these groups. 

  

 

Figure 9:  A heat map using only those 282 IL samples classified as ISO, NA, NP, PD, GAS, or AR.  The samples are 

sorted by ASTM class, but are arbitrarily ordered within the classes. 
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Classes that have the least within-class variation (ISO, NA, NP, PD, GAS, and AR) in 

Figure 7 are well-defined by ASTM and were considered for further analysis (note that 

subclasses of AR have more characteristics TIS than other classes, see discussion on pg 55).   

The 282 samples that comprise these classes were re-plotted in Figure 9 and remain in the same 

order as Figure 6.  As can be seen in Figure 9, there are two distinct groups:  aliphatic and 

aromatic.  The darkest shading reflects same sample comparisons which can be seen along the 

diagonal of the heat map.  Shading around the diagonal indicates higher similarity values for 

samples within the same class compared to lighter shading of the between-class samples, shown 

on the off-diagonal. 

  

 

Figure 10:  A dendrogram and associated heat map for the 282 IL samples classified as ISO, NA, NP, PD, GAS, or AR.  

The samples are sorted based on the order of the dendrogram obtained from cluster analysis. 
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 Clustering was performed on the same data set used in Figure 9.  The heat map and 

resulting dendrogram, obtained using the correlation distance and average linkage for cluster 

analysis, is shown in Figure 10.  In this heat map, the samples were reordered based on the 

clustering results.  The sample order is the same for the heat map and the dendrogram in Figure 

10 and the location of the samples in the heat map is directly below their location in the 

dendrogram.  The color gradient, which illustrates the degree of similarity, can be observed for 

the clustered samples.  The reordered heat map and the dendrogram indicate two distinct clusters 

which correspond to the aliphatic and aromatic groups, as previously described.  These clusters 

will be referred to as the Aliphatic and Aromatic Clusters.  Labels were assigned to the 

dendrogram to assist in discussing the clusters.    

  

 

Figure 11:  The portion of the dendrogram corresponding to the Aliphatic Cluster of samples.  The labels were added to 

aid with discussion of each cluster.  Subcluster D of Cluster 3 was subsequently divided with the dashed lines to indicate 

the left, middle, and right portions. 
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Table 2:  A summary of compounds found within each subcluster of the aliphatic cluster.  Carbon ranges are given in 

brackets. 

 

  

 The portion of the dendrogram in Figure 10 corresponding to the Aliphatic Cluster is 

shown in Figure 11 and can be further divided into four clusters.  Table 2 summarizes the 

compounds present in each cluster and the carbon ranges shown encompass the lowest and 

highest carbon number among all samples in the clusters.  In Table 2, samples in Cluster 1 

contains normal alkanes, cycloalkanes, and isoalkanes within the C5-C9 carbon range.  Cluster 2 

can be split into five subclusters where A-C are isoalkanes with light, medium, and heavy carbon 

ranges, respectively.  Subcluster D contains only normal alkanes.  Subcluster E also contains 

isoalkanes; however, these are predominantly trimethylhexanes which have a molecular weight 

of 128.  Therefore, the spectra contain m/z 128 which is indicative of polynuclear aromatics even 

though these liquids do not contain polynuclear aromatic compounds.  Liquids in Cluster 2 

correspond to the ISO and NA classes of the ASTM classification scheme.  Cluster 3 contains 
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five subclusters where A is comprised of normal alkanes, cycloalkanes, isoalkanes, and 

aromatics in the carbon range of C6-C10.  Subclusters B and C include the same compounds as A, 

where the alkane-to-aromatic ratio is 2:1 and polynuclear aromatics are also present.  The ratios 

were calculated using the summed intensities for ions based on Table 2 of ASTM E1618-11 for 

alkanes (m/z 57, 71, 85, and 99) and aromatics (m/z 91, 105, 119, and 134).  The left and middle 

portions of subcluster D are separated based on carbon ranges, but both contain the same 

compounds as B and C.  An additional distinction for samples in these portions of subcluster D is 

the alkane-to-aromatic ratio which is at least 4:1.  The right portion of subcluster D contains only 

cycloalkanes and isoalkanes and corresponds to the NP ASTM class.  Subclusters A-D, with the 

exception of the right portion of D, corresponds to the PD ASTM class.  Subcluster E contains 

cycloalkanes, normal alkanes, and aromatics in the carbon range of C7-C12. The sample labeled 

as Cluster 4, a 99% weathered gasoline, contains methyl naphthalenes with heavy normal 

alkanes. 

  

 

Figure 12:  The portion of the dendrogram corresponding to the Aromatic Cluster of samples.  The labels were added to 

aid with discussion of each cluster. 
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Table 3:  A summary of compounds found within each subcluster of the aromatic cluster.  Carbon ranges are given in 

brackets. 

 

 Figure 12 shows the portion of the dendrogram corresponding to the Aromatic Cluster.  

This can be further divided into five clusters.  Table 3 provides a summary of the types of 

compounds present in each cluster.  The carbon ranges shown in Table 3 encompass the lowest 

and highest carbon number among all samples in the clusters.  In Table 3, samples in Cluster 1 

contain aliphatic compounds with carbon ranges of C6-C9 (normal alkanes, isoalkanes, 

cyclopentanes, and cyclohexanes) and aromatic compounds in the range of C7-C13 (toluene, C2-, 

C3-, and C4-alkylbenzenes, and methyl naphthalenes).  All samples corresponding to the GAS 

ASTM class were placed in Cluster 1, with the exception of three highly weathered gasolines 

that were placed in other clusters.  Cluster 2 has a carbon range of C8-C12 and includes C2- and 

C3-alkylbenzenes.  Samples in Cluster 3 have a carbon range of C8-C14 and contain C4-

alkylbenzenes and methyl naphthalenes.  The left portion of Cluster 4 contains only C2-

alkylbenzenes, with a carbon range of C8-C9.  All samples in the right portion of Cluster 4 have a 

carbon range of C7-C11 and contain toluene; C2-alkylbenzenes are also present in some samples.  

The sample labeled as Cluster 5 consists of aromatic compounds with permethrin (an 

insecticide).  Clusters 2-5 correspond to the AR ASTM class and also include two highly 

weathered gasolines. 
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 Hierarchical cluster analysis, an unsupervised learning method, was applied to IL TIS 

data from all ASTM classes other than the OXY class and MISC category. This technique 

resulted in clusters based on the chemical composition of the liquids. The clusters 

were found to be consistent with the classes outlined in ASTM E1618-11, where visual pattern 

recognition of the TIC is predominantly utilized. The TIS is conducive for development of 

multivariate statistical methods, automated search routines, and allows for interlaboratory 

comparisons that are not easily implemented based on the TIC.  

Self-Organizing Feature Maps   
 

 The trained SOFM is shown in Figure 13a.  The neurons are color-coded according to the 

ASTM designation(s) of the samples for which each neuron is the winning neuron (see color 

legend beside Figure 13b).  For example, the neuron in the bottom left corner is shaded dark 

green to reflect it is the winning neuron for nine ignitable liquid samples all designated as MAR.  

This neuron will be referred to as one associated with the MAR (or more generally the AR) class.  

If samples of different ASTM class designations have the same winning neuron, the neuron is 

colored to reflect the fraction of samples for each class.  For instance, the neuron in the upper left 

corner is colored to reflect that half of the two samples assigned to this neuron are designated as 

MISO and the other half as HISO.  This neuron is associated with both the MISO and HISO (or 

more generally the ISO) classes.  A neuron shaded with the same gray as the background of the 

figure is not associated with a training sample, and therefore no ASTM class is assigned to the 

neuron.  This is referred to as an empty neuron.  
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Figure 13:  (a) The trained self-organizing feature map, where the neurons are colored according to their ASTM class 

associations.  See the color-legend in Figure 1b.  (b)  Color-legend and U-matrix demonstrating relative distances between 

neurons in the trained map.  The darker shaded areas between neurons indicate larger distances and the lighter shaded 

areas indicate shorter distances.  The neurons are colored according to their ASTM class associations.  (c)  Component 

planes for ions in the extracted ion spectra.  The component planes are grouped according to their common ion type.  The 

lighter shaded neurons indicate high weight components while the darker shaded neurons indicate low weight 

components.   

  

Figure 13a shows general grouping of neurons corresponding to ASTM class 

designations (GAS and AR, OXY, ISO, NA, NP and PD).  However, when subclasses based on 

carbon range are considered, these subclasses are observed to be separated into different groups 

of neurons (i.e. two groups of MPD neurons).  The cluster structure of the high-dimensional 

input data may be visualized in a two-dimensional unified distance matrix (or U-matrix) which 

shows the normalized distances between the weight vector of each neuron and neighboring 

neurons (80).  The U-matrix for the calculated SOFM is shown in Figure 13b, where neurons are 

small hexagons with the same color-coding as Figure 13a.  The lines illustrate the connections 
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between neurons, and the shaded regions surrounding each line indicate the normalized distance 

between the neurons.  The darker regions correspond to the larger distances; whereas, lighter 

areas represent shorter distances where the neuron weight vectors are more similar.  The darker 

shaded regions in Figure 13b indicate cluster borders which separate the cluster of neurons 

associated with AR, GAS, and OXY classes from those of ISO, NA, NP, and PD.  The dark 

shaded areas around the OXY neurons demonstrate that not all of the OXY samples are 

spectrally similar to one another.  A separation is also observed for the neurons associated with 

ISO and NA classes from those of PD and NP.   

The groupings of neurons by ASTM class designations are further explored through 

visual analysis of the component planes, where each plane represents a relative comparison of an 

individual weight vector component for each neuron in the SOFM (27).  The component planes 

for each of the input variables (Table 4) are shown in Figure 13c and are grouped according to 

the type of compound which typically produces the ion in EI mass spectra.  The neurons in the 

component planes that are shaded with the brighter colors indicate a high weight while those 

shaded a darker color indicate a low weight.  Relationships between classes of samples and their 

variables (ions) may be found by comparing the colors of the neurons in the component planes.  

Component planes with similar relative weights indicate the variables are correlated (81), as 

observed for each compound type in Figure 13c.   
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Table 4:  Compound Type with Associated Ions Commonly Observed in Ignitable Liquids 

 

 

  The EIS corresponding to GAS and AR samples are clustered in the lower left corner of 

the SOFM, except for the triplicate analyses of 99% weathered GAS samples.  The separation of 

this cluster from the other ASTM class associated neurons is reflected throughout the alkane and 

aromatic component planes.  It is clear that GAS and AR associated neurons have higher 

aromatic ion weights and lower alkane ion weights compared to the SOFM neurons associated 

with the other ASTM classes.  According to ASTM E1618-11, GAS samples in the United States 

generally have a higher concentration of aromatic compounds compared to alkanes, and samples 

in the AR class are almost exclusively comprised of aromatic compounds (6).  Twenty-four of 

the 38 GAS samples included in the training data set were weathered from a range of 25% to 

99%.  A GAS sample was analyzed at 0% (unweathered), 50%, 75%, and 90% weathered.  The 

EIS of the unweathered GAS sample and the EIS of the 50% weathered sample are assigned to 

the same neuron, demonstrating that their EIS are similar.  The EIS for the 75% and 90% 

weathered GAS samples are each assigned to two separate neurons.  The neuron associated with 

GAS in the upper right-hand corner of the SOFM is associated with a 99% weathered gasoline, 

and shows high component weights for alkanes (m/z 57 and 99), indanes (m/z 118), and each of 

the condensed ring aromatics (m/z 128, m/z 142, m/z 156, and m/z 170).  Twenty-four AR 
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samples (16 MAR and 8 LAR) are separated in the SOFM based on their carbon range, and the 

16 MAR samples are assigned to different neurons based on the presence or absence of 

naphthalenes.   

Located above the GAS and AR associated neurons in the SOFM are the OXY associated 

neurons.  The 16 samples designated as OXY in the training data set are associated with nine 

neurons, and one of those samples containing a significant toluene peak is assigned to a neuron 

primarily associated with LAR.  High weights in the component planes for alcohols and ketones 

are observed for those OXY associated neurons.  One of these component planes is m/z 43 which 

also corresponds to alkane compounds, as shown in Figure 13c.  Samples containing 

predominantly alcohols were assigned to different neurons than those containing ketones; 

however, the neurons do not appear to be clustered in the SOFM according to these trends.   

The 35 ISO training samples (7 HISO, 20 MISO, and 8 LISO) are assigned to neurons in the 

upper left corner of the SOFM.  ISO samples contain almost exclusively branched chain aliphatic 

compounds (6), which is reflected in the high weights of the alkane component planes.   

Seventeen NA samples, comprised exclusively of n-alkanes (6), are assigned to five 

neurons with high weights in the alkane component planes.  The NA neuron located slightly 

apart from the others is associated with NA samples having slightly lower EIS intensities for m/z 

71 and m/z 85 when compared to the other NA samples.   

 Petroleum distillate samples contain alkanes, cycloalkanes, aromatics, and may contain 

condensed ring aromatic compounds, where alkanes are the most abundant (6).  The SOFM 

neurons associated with the PD class have higher component plane weights for the ions 

associated with alkanes, cycloalkanes, and n-cyclohexanes compared to neurons associated with 

the ISO, NA, and NP classes.  The component planes also indicate the presence of aromatics in 
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some of the PD associated neurons.  A group of neurons is observed for the 48 samples 

designated as HPD, which divides the MPD associated neurons into two groups.  Of the 94 MPD 

samples in the training set, those with a higher concentration of aromatic compounds (traditional 

distillates (6)) are assigned to a group of neurons located above the HPD group, while those with 

a lower concentration of aromatics (de-aromatized (6)) are located below the HPD associated 

neurons.  The traditional distillate and de-aromatized MPD groups can be distinguished from one 

another by comparing the component planes for the indanes, condensed ring aromatics, and 

aromatic compound types.  The 25 samples designated as LPD are assigned to two groups of 

neurons in the SOFM.  The cycloalkane and alkene component planes reflect the differences 

between the two groups as heavier weights are observed for the group located near the bottom of 

the SOFM.   

The final ASTM class is NP, comprised of cyclic and branched alkanes (6), which is 

demonstrated in the weight components of the n-alkylcyclohexanes and cycloalkane compound 

types.  Of the 16 designated NP samples in the data set, one (SRN 395) is assigned to a neuron 

surrounded by HPD associated neurons, and its EIS is observed to have a higher intensity of 

aromatic associated ions than the remaining NP samples. This liquid has a consensus 

classification of NP in the ILRC. The liquid contains a small quantity of 1,2,4-trimethylbenzene, 

which is allowed under the ASTM E1618 guidelines.   Nine of the NP samples are assigned to 

four neurons which are clustered together, while the remaining samples are assigned to neurons 

also associated with HPD or MPD classes.  The EIS data for the samples associated with these 

neurons are similar. 

Auto-scaling the EIS before SOFM calculations did not improve the results described in 

the previous paragraphs.  Clustering results from the SOFM which rely on a subset of ions in a 
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total ion spectrum were similar to results obtained by hierarchical cluster analysis (HCA) of 

ignitable liquids using total ion spectra.  Hierarchical cluster analysis of ignitable liquid TIS 

resulted in clusters based on the chemical composition of the liquids (8).  The SOFM study used 

fewer ions, attempted to cluster ignitable liquids with multiple ASTM class characteristics, and 

provided an enhanced representation of the class relationships compared to the HCA study. 

The EIS for 116 fire debris samples were projected onto the SOFM.  The winning 

neurons are numbered in Figure 13a, and the results are summarized in Table 5.  Three sample 

neuron association types are observed:  “match”, “empty-adjacent”, and “mis-match”.  When the 

ASTM class designation for the fire debris sample is the same as the ASTM class associated with 

the neuron where the fire debris sample was projected, the projection is identified as a “match”.  

This indicates that the variables (ions) for the fire debris sample are similar to those of the 

ignitable liquid sample(s) assigned to that neuron during training.  For example, two of the fire 

debris samples designated as LISO were projected to the neuron labeled as 29, which was 

associated with the LISO class during training.  When the winning neuron is empty and adjacent 

to a neuron with the same class association as the fire debris sample and the two neurons have 

similar component weights, this is identified as “empty-adjacent”.  For example, 21 fire debris 

GAS samples were assigned to empty neurons labeled 2, 6, 8, 9, and 13, which are adjacent to 

GAS associated neurons. Neurons labeled 2, 9 and 13 are also adjacent to aromatic-associated 

neurons, which is expected given the aromatic content of gasoline.  Analysis of the component 

planes in Figure 13c show that these “empty-adjacent” neurons have many similar component 

weights as those associated with GAS samples; however, the assignment of the fire debris 

sample to an empty neuron indicates a variation in the EIS data compared to those gasoline 

samples in the training data set.  Seven of the 116 fire debris samples are projected to neurons 
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with a different class association, and these are identified as a “mis-match”.  For instance, two 

samples designated as HPD are projected to the neuron labeled as 36, which was associated with 

the 99% weathered GAS.  This neuron does share many similar component weights as other 

HPD associated neurons. 

 

Table 5:  Comparison of Sample Designations and Assigned Neuron Associations for Fire Debris Samples Projected into 

the SOFM 

 

 

Finally, the EIS for select ignitable liquid samples designated as OXY or MISC are 

projected onto the SOFM.  The 33 samples designated as MISC, have spectral characteristics of 

multiple ASTM classes (i.e.  HPD+AR, LPD+MPD, or NP+NA).  Of these samples, 22 are 

projected to neurons that are associated with one of the ASTM classes or to empty neurons that 
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are adjacent to a neuron associated with one of the classes.  The winning neurons of six samples 

are empty and are not adjacent to neurons associated with one of the classes; while, five samples 

are projected into neurons associated with other classes than those of the liquid.  Seven samples 

designated as OXY, which contain mixtures of non-oxygenated compounds with ASTM class 

characteristics (i.e. LPD+acetone), are projected onto the SOFM.  Projection of these samples 

onto the SOFM results in four of the samples being assigned to a neuron associated with the non-

oxygenated class, while one sample (LPD+acetone) is assigned to an empty neuron adjacent to 

both OXY and LPD associated neurons.  Two of the samples are assigned to empty neurons that 

are not adjacent to neurons associated with either the OXY or the non-oxygenated classes. 

 

Discriminant Analysis 

LDA and QDA 
 

 Retaining a minimum of 95% of the variance within the data were found to yield the 

highest correct classification percentages.  The number of principal components retained for 

model development was based on this value. 

 For each step of the classification scheme, the covariance matrices were determined to be 

statistically different, indicating QDA is the more appropriate analysis method.  Results for the 

less appropriate LDA method will be compared to those using QDA to understand the influence 

of the model (LDA or QDA) on the correct classification rates.  The same multi-step process and 

data sets were used for testing both the LDA and QDA models.  The results discussed below are 

for the data set that was normalized so that each sample’s intensities summed to one. 
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 The true positive rate and false positive rate are shown in Table 6 for the first step of the 

multi-step scheme (classification into the IL and SUB classes).  The values in parentheses 

represent the metrics for the data set with 20% substrate contribution.  The level of substrate 

contribution is uncontrolled in the fire debris samples containing an ignitable liquid; therefore, 

the error rates under the “Fire Debris” heading reflect errors based on using models constructed 

with data having an upper limit of 20% substrate contribution.  The false positive rate should 

ideally be kept low and this important rate may dictate the choice of the best model.  The QDA 

model produced the lowest false positive rate in cross-validation data sets, Table 6.  Similarly, 

QDA gave the lowest false positive rate for the fire debris samples as well; however, the false 

positive rate increased when the fire debris sample designations were based on the analyst.  The 

cross-validation results demonstrate that the QDA model can maintain low false positive rate for 

data sets that resemble the data used to create the model.  The fire debris results, with 

designations based on the pour, demonstrate a lower false positive rate than when the 

designations were based on the analyst.   

 The different behavior for the models applied to the cross-validation and fire debris data 

can be understood in terms of the Mahalanobis distance.  When the substrate contribution of the 

training data is increased, the model adjusts to classify samples with high levels of substrate 

contribution into the IL class.  Increased classification into the IL class for a given sample occurs 

because the multivariate probability ellipsoid for the IL class increases in size and results in a 

reduced Mahalanobis distance between a test sample and the IL class, while the size of the 

probability ellipsoid for the SUB class is unchanged.  Models based on data sets containing 

smaller substrate contribution will result in an IL class with a smaller probability ellipsoid.  Test 

samples falling between the IL and SUB probability ellipsoids will be classified based on the 
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smallest Mahalanobis distance to the IL or SUB class.  For this reason, a model with some 

substrate contribution may show improved classification performance; however, if the 

contribution is too large, model classification performance will decrease.   

   

Table 6:  Classifier Performance Metrics for LDA and QDA 

 

 

0% Substrate Contribution 

 The LDA and QDA results are shown in confusion matrices for the cumulative cross-

validation test set, Figure 14, and the fire debris samples with designations based on the 

proximity to the pour and the analyst, Figure 15 and Figure 16, respectively.  The QDA values 

are shown in parentheses.  The first column in Figure 14 represents the designated class and the 

column headings represent the class assigned by the model.  The entries in the table give the 

number of cross validation samples assigned to each class.  For example, out of 9,200 ignitable 

liquid cross-validation samples (i.e. 460 IL * 20%/iteration*100 iterations=9200), 8,784 were 

correctly assigned to IL, while 416 cross-validation samples were incorrectly assigned to SUB 

using LDA.  This represents the true positive rate of 95.5% (LDA) in Table 6 for the 0% 

substrate contribution cross-validation.  The fire debris results in Figure 15 reflect a drop in the 

true positive rate to 81.0% (LDA).  This drop in true positive rate may be attributed to the loss of 
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ignitable liquid residue during the burning process.  The LDA false positive rate drops from 

24.5% (cross-validation) to 15.6% (fire debris), while the QDA false positive rate remains at 9-

10% for both cross-validation and fire debris samples.   

 

Figure 14:  Cumulative results for cross-validation using the data set with 0% substrate contribution.  The QDA results 

are shown in parentheses.  The total number of samples used for LDA and QDA was the same. 

 

 In Figure 15, confusion matrices are given for LDA and QDA classification of the fire 

debris samples, with designations based on the proximity to the pour.  The QDA values are 

shown in parentheses.  These results were obtained using the 0% SUB contribution data set as 

the model.  As with the previous confusion matrices, the row headings indicate the designated 

class, and the column headings give the class assigned by the model.   

IL SUB Total %Correct

IL 8,784 (7,480) 416 (1,720) 9,200 95.5 (81.3)

SUB 441 (178) 1,359 (1,622) 1,800 75.5 (90.1)

Total 9,225 (7,658) 1,775 (3,342) 11,000 92.2 (82.7)

ALI ARG Total %Correct

ALI 4,700 (4,664) 0 (36) 4,700 100.0 (99.2)

ARG 62 (53) 1,138 (1,147) 1,200 94.8 (95.6)

Total 4,762 (4,717) 1,138 (1,183) 5,900 98.9 (98.5)

AR GAS Total %Correct

AR 393 (495) 107 (5) 500 78.6 (99.0)

GAS 104 (17) 696 (783) 800 87.0 (97.9)

Total 497 (512) 803 (788) 1,300 83.8 (98.3)

ISO/NA PD/NP Total %Correct

ISO/NA 942 (956) 58 (44) 1,000 94.2 (95.6)

PD/NP 8 (79) 3,692 (3,621) 3,700 99.8 (97.9)

Total 950 (1,035) 3,750 (3,665) 4,700 98.6 (97.4)

ISO NA Total %Correct

ISO 572 (663) 128 (37) 700 81.7 (94.7)

NA 13 (24) 287 (276) 300 95.7 (92.0)

Total 585 (687) 415 (313) 1,000 85.9 (93.9)

PD NP Total %Correct

PD 2,520 (3,051) 780 (249) 3,300 76.4 (92.5)

NP 3 (24) 297 (276) 300 99.0 (92.0)

Total 2,523 (3,075) 1,077 (525) 3,600 78.3 (92.4)
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Figure 15:  Confusion matrices for fire debris samples based on models using 0% substrate contribution. Designations for 

the fire debris samples are based on the proximity to the pour. 

 

 Figure 16 shows the confusion matrices for the LDA and QDA classifications of the fire 

debris samples with designations based on the analyst.  The procedure for assigning designations 

based on the analyst was previously discussed.  The QDA results are given in parentheses.  The 

correct classification rates obtained for these samples are very similar to those obtained for the 

samples with designations based on the proximity to the pour.  The first two steps of the 

classification scheme reflect a higher correct classification rate using designations based on the 

analyst.  As expected, this designation method reduces the number of false negatives; however, 

the false positive rate increased.  This indicates that the classification model associates 

components in these samples with ILs even though the analyst did not identify an IL profile in 

the sample data.   

 

IL SUB Total %Correct

IL 128 (112) 30 (46) 158 81.0 (70.9)

SUB 7 (4) 38 (41) 45 84.4 (91.1)

Total 135 (116) 68 (87) 203 81.8 (75.4)

ALI ARG Total %Correct

ALI 55 (39) 11 (27) 66 83.3 (59.1)

ARG 5 (0) 77 (82) 82 93.9 (100.0)

Total 60 (39) 88 (109) 148 89.2 (81.8)

AR GAS Total %Correct

AR 8 (9) 1 (0) 9 88.9 (100.0)

GAS 16 (7) 57 (66) 73 78.1 (90.4)

Total 24 (16) 58 (66) 82 79.3 (91.5)

ISO/NA PD/NP Total %Correct

ISO/NA 13 (8) 6 (11) 19 68.4 (42.1)

PD/NP 0 (0) 47 (47) 47 100.0 (100.0)

Total 13 (8) 53 (58) 66 90.9 (83.3)

ISO NA Total %Correct

ISO 9 (12) 3 (0) 12 75.0 (100.0)

NA 5 (7) 2 (0) 7 28.6 (0.0)

Total 14 (19) 5 (0) 19 57.9 (63.2)

PD NP Total %Correct

PD 33 (34) 3 (2) 36 91.7 (94.4)

NP 4 (6) 7 (5) 11 63.6 (45.5)

Total 37 (40) 10 (7) 47 85.1 (83.0)
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Figure 16:  Confusion matrices for fire debris samples based on models using 0% substrate contribution. Designations for 

the fire debris samples are based on the analyst's review of the post-burn data. 

 

 When LDA was applied to the cross-validation test set for IL/SUB discrimination, there 

was a total correct classification rate of 92.2% for a total of 11,000 samples.  QDA was applied 

to the same size data set and a correct classification rate of 82.7% was observed.  The cross-

validation calculation was repeated 100 times, as described earlier, and each of the 100 iterations 

in the cross-validation utilized a different model data set and consequently resulted in a slightly 

different set of scores and latent variables from PCA.  Retention of 95% of the variance in the 

model data required approximately 10 principal components.  The first three principal 

components contained approximately 75% of the variance.  PCA maximizes the fraction of the 

variance retained in each latent variable and the resulting scores may not necessarily provide a 

graphical visualization of class separation.  The LDA results from the confusion matrices in 

Figure 14 and Figure 15 can be visualized by projection onto the single canonical variate 

IL SUB Total %Correct

IL 119 (104) 4 (19) 123 96.7 (84.6)

SUB 16 (12) 64 (68) 80 80.0 (85.0)

Total 135 (116) 68 (87) 203 90.1 (84.7)

ALI ARG Total %Correct

ALI 49 (39) 1 (11) 50 98.0 (78.0)

ARG 0 (0) 66 (66) 66 100.0 (100.0)

Total 49 (39) 67 (77) 116 99.1 (90.5)

AR GAS Total %Correct

AR 8 (9) 1 (0) 9 88.9 (100.0)

GAS 16 (7) 41 (50) 57 71.9 (87.7)

Total 24 (16) 42 (50) 66 74.2 (89.4)

ISO/NA PD/NP Total %Correct

ISO/NA 13 (8) 5 (10) 18 72.2 (44.4)

PD/NP 0 (0) 32 (32) 32 100.0 (100.0)

Total 13 (8) 37 (42) 50 90.0 (80.0)

ISO NA Total %Correct

ISO 8 (11) 3 (0) 11 72.7 (100.0)

NA 5 (7) 2 (0) 7 28.6 (0.0)

Total 13 (18) 5 (0) 18 55.6 (61.1)

PD NP Total %Correct

PD 21 (22) 3 (2) 24 87.5 (91.7)

NP 3 (3) 7 (5) 8 87.5 (62.5)

Total 22 (40) 10 (7) 32 87.5 (84.4)
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obtained from Fisher discriminant analysis of the data from the two classes.  In Figure 17, each 

step of the classification scheme is represented graphically.  The Gaussian curves in each figure 

represent the distributions of the projected training data from the two classes, while the symbols 

below the graph shows the distribution of the projected fire debris data, with designations based 

on proximity to the pour.  The filled symbols correspond to the solid curve and the open symbols 

correspond to the dashed curve.  The vertical lines in the fire debris distribution plots correspond 

to the crossing point for the two Gaussian curves. Points on either side of the vertical line are 

placed in the class of the overlying curve.  For example, in Figure 17a, the solid curve and circle 

symbols correspond to the IL class and the dashed curve and triangle symbols correspond to the 

SUB class. 
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Figure 17:  The Gaussian curves in a – f  represent the distributions of the projected LDA training data from the two 

classes for each of the respective tables in Figure 2, while the symbols below the graph show the distributions of the 

projected fire debris data from the tables in Figure 3.  Thecircle symbols correspond to the solid curve and the triangle 

symbols correspond to the dashed curve.  The solid curve and filled symbols, and the dashed curve and open symbols 

correspond to (a) IL and SUB, (b) ALI and ARG, (c) AR and GAS, (d) ISO/NA and PD/NP, (e) ISO and NA, (f) NP and 

PD.  See text for abbreviation definitions. 
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 When the models were tested on the fire debris samples, with designations based on the 

proximity to the pour, LDA gave a correct classification rate of 81.8%, 30 ignitable liquids 

misclassified as substrates, and seven substrate samples misclassified as ignitable liquids. The 

misclassification of IL as SUB may be attributed to total evaporation of the IL and demonstrates 

the need to know the ground truth in evaluating the accuracy of the method.  Using QDA 

resulted in a correct classification rate of 75.4%, 46 ignitable liquids misclassified as substrates, 

and four substrates misclassified as ignitable liquids.  When the designations for the fire debris 

samples were based on the analyst’s review of the post-burn data, a correct classification rate of 

90.1% was observed.  The increase in correct classification rate is attributed to the analyst’s 

conservative approach, requiring a stronger IL residue to determine a sample positive for IL.  

The stronger IL contribution results in a higher percent correct classification rate.   

 The next step was to classify an ignitable liquid sample as either an ARG or ALI sample.  

Correct classification rates of 98.9% for the cross-validation test set and 89.2% for the fire debris 

samples, with designations based on proximity to the pour, were obtained using LDA.  When the 

designations were based on the analyst’s review of the data, a correct classification rate of 99.1% 

was achieved.  Using QDA, 98.5% of samples selected for the cross-validation test set classified 

correctly.  The fire debris samples resulted in correct classification rates of 81.8% and 90.5% 

with designations based on the proximity to the pour and the analyst’s review of the post-burn 

data, respectively. 

 The ARG samples were further classified into the ASTM E1618-10 AR or GAS classes.  

Using LDA, 83.8% of samples selected for the cross-validation test set and 79.3% of fire debris 

samples, with designations based on the pour, correctly classified.  Using the designations based 
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on the analyst, a correct classification rate of 74.2% was obtained.  Correct classification rates of 

98.3% for the cross-validation test set and 91.5% for the fire debris samples, with designations 

based on the proximity to the pour, were obtained with QDA.  When the designations were based 

on the analyst, 89.4% of fire debris samples classified correctly.  Using QDA, all nine AR fire 

debris samples, for both designations, classified correctly, while a number of GAS samples 

misclassified as aromatics.  This may be attributed to the heat of the fire causing evaporation of 

the lighter components in the gasoline samples.  The post-burn profile will change significantly 

due to the remaining heavier aromatic compounds; therefore, caution should be used when trying 

to classify a post-burn ARG sample into its respective ASTM classification. 

 ALI samples were then classified as belonging to the combined ISO/ NA class or the 

combined PD/NP class.  Cross-validation for this step had high correct classification rates of 

98.6% using LDA and 97.4% using QDA when predicting classifications of 4,700 samples.  The 

fire debris samples, with designations based on the proximity to the pour, had correct 

classification rates of 90.9% for LDA and 83.3% for QDA.  Using the designations based on the 

analyst, the fire debris samples had correct classification rates of 90.0% and 80.0% for LDA and 

QDA, respectively. 

 Next, samples belonging to the ISO/NA or PD/NP combined classes were separated into 

their respective ASTM E1618-10 classes.  The classification of the cross-validation test set into 

ISO or NA resulted in 85.9% correct classification when using LDA and 93.9% correct when 

using QDA.  Significant limitations were seen in separating fire debris samples into the ISO or 

NA ASTM classes.  For fire debris samples with designations based on the proximity to the pour, 

LDA gave a correct classification rate of 57.9% while QDA was at 63.2%.  Using the 

designations based on the analyst, correct classification rates of 55.6% and 66.1% were obtained 

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



 

81 

 

for LDA and QDA, respectively.  Classifying cross-validation samples into PD or NP using LDA 

gave a correct classification rate of 78.3%, while QDA gave 92.4% correct.  The fire debris 

samples, with designations based on the proximity to the pour, had correct classification rates of 

85.1% and 83.0% for LDA and QDA, respectively.  When the designations for the fire debris 

samples were based on the analyst, a correct classification rate of 87.5% was obtained for LDA, 

while for QDA it was 84.4%. 

 

20% Substrate Contribution 

 Confusion matrices show the LDA and QDA results for the cumulative cross-validation 

test set, Figure 18, and the fire debris samples with designations based on the proximity to the 

pour and the analyst’s review of the post-burn data in Figure 19 and Figure 20, respectively.  

Projection of the LDA results onto the canonical variate is not shown for the data set with an 

upper limit of 20% substrate contribution. 

 

Figure 18:  Cumulative results for cross-validation using the data set with an upper limit of 20% substrate contribution.  

The QDA results are shown in parentheses.  The total number of samples used for LDA and QDA was the same. 

IL SUB Total %Correct

IL 95,149 (87,518) 6,051 (13,682) 101,200 94.0 (86.5)

SUB 10,822 (5,351) 78,918 (84,449) 89,800 87.9 (94.0)

Total 106,031 (92,869) 84,969 (98,131) 191,000 91.1 (90.0)

ALI ARG Total %Correct

ALI 51,700 (51,500) 0 (200) 51,700 100.0 (99.6)

ARG 642 (524) 12,958 (13,076) 13,600 95.3 (96.1)

Total 52,342 (52,024) 12,958 (13,276) 65,300 99.0 (98.9)

AR GAS Total %Correct

AR 4,525 (5,300) 775 (0) 5,300 85.4 (100.0)

GAS 590 (34) 7,810 (8,366) 8,400 93.0 (99.6)

Total 5,115 (5,334) 8,585 (8,366) 13,700 90.0 (99.8)

ISO/NA PD/NP Total %Correct

ISO/NA 10,777 (11,269) 623 (131) 11,400 94.5 (98.9)

PD/NP 0 (898) 40,300 (39,402) 40,300 100.0 (97.8)

Total 10,777 (12,167) 40,923 (39,533) 51,700 98.8 (98.0)

ISO NA Total %Correct

ISO 6,589 (7,649) 1,111 (51) 7,700 85.6 (99.3)

NA 25 (22) 3,675 (3,678) 3,700 99.3 (99.4)

Total 6,614 (7,671) 4,786 (3,729) 11,400 90.0 (99.4)

PD NP Total %Correct

PD 27,861 (33,011) 8,839 (3,689) 36,700 75.9 (89.9)

NP 39 (146) 3,461 (3,354) 3,500 98.9 (95.8)

Total 27,900 (33,157) 12,300 (7,043) 40,200 77.9 (90.5)
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Figure 19:  Confusion matrices for fire debris samples based on models using an upper limit of 20% substrate 

contribution. Designations for the fire debris samples are based on the proximity to the pour. 

 

IL SUB Total %Correct

IL 129 (128) 29 (30) 158 81.6 (81.0)

SUB 8 (8) 37 (37) 45 82.2 (82.2)

Total 137 (136) 66 (67) 203 81.8 (81.3)

ALI ARG Total %Correct

ALI 54 (44) 12 (22) 66 81.8 (66.7)

ARG 5 (1) 77 (81) 82 93.9 (98.8)

Total 59 (45) 89 (103) 148 88.5 (84.5)

AR GAS Total %Correct

AR 9 (9) 0 (0) 9 100.0 (100.0)

GAS 26 (9) 47 (64) 73 64.4 (87.7)

Total 35 (18) 47 (64) 82 68.3 (89.0)

ISO/NA PD/NP Total %Correct

ISO/NA 15 (14) 4 (5) 19 78.9 (73.7)

PD/NP 0 (0) 47 (47) 47 100.0 (100.0)

Total 15 (14) 51 (52) 66 93.9 (92.4)

ISO NA Total %Correct

ISO 8 (10) 4 (2) 12 66.7 (83.3)

NA 4 (5) 3 (2) 7 42.9 (28.6)

Total 12 (15) 7 (4) 19 57.9 (63.2)

PD NP Total %Correct

PD 30 (33) 6 (3) 36 83.3 (91.7)

NP 4 (5) 7 (6) 11 63.6 (54.5)

Total 34 (38) 13 (9) 47 78.7 (83.0)
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Figure 20:  Confusion matrices for fire debris samples based on models using an upper limit of 20% substrate 

contribution. Designations for the fire debris samples are based on the analyst's review of the post-burn data. 

 

 For the first step of the classification scheme, a total correct classification rate of 

approximately 91.1% for 191,000 samples was observed for the cross-validation test set when 

using LDA.  A correct classification rate of 90.0% was observed for the same size data set when 

using QDA.   

 A correct classification rate of 81.8% was observed when testing the LDA model with 

fire debris samples, with designations based on proximity to the pour, 29 ignitable liquids 

misclassified as substrates, and eight substrate samples misclassified as ignitable liquids.  Using 

the QDA model, a correct classification percentage of 81.3% was obtained, 30 ignitable liquids 

misclassified as substrates, and eight substrates misclassified as ignitable liquids.  When the 

designations for the fire debris samples were based on the analyst’s examination of the post-burn 

data, a correct classification rate of 86.2% was obtained with LDA.  There were seven IL 

IL SUB Total %Correct

IL 116 (116) 7 (7) 123 94.3 (94.3)

SUB 21 (20) 59 (60) 80 73.8 (75.0)

Total 137 (136) 66 (67) 203 86.2 (86.7)

ALI ARG Total %Correct

ALI 48 (41) 2 (9) 50 96.0 (82.0)

ARG 0 (0) 66 (66) 66 100.0 (100.0)

Total 48 (41) 68 (75) 116 98.3 (92.2)

AR GAS Total %Correct

AR 9 (9) 0 (0) 9 100.0 (100.0)

GAS 26 (9) 31 (48) 57 54.4 (84.2)

Total 35 (18) 31 (48) 66 60.6 (86.4)

ISO/NA PD/NP Total %Correct

ISO/NA 15 (14) 3 (4) 18 83.3 (77.8)

PD/NP 0 (0) 32 (32) 32 100.0 (100.0)

Total 15 (14) 35 (36) 50 94.0 (92.0)

ISO NA Total %Correct

ISO 7 (9) 4 (2) 11 63.6 (81.8)

NA 4 (5) 3 (2) 7 42.9 (28.6)

Total 11 (14) 7 (4) 18 55.6 (61.1)

PD NP Total %Correct

PD 18 (21) 6 (3) 24 75.0 (87.5)

NP 1 (2) 7 (6) 8 87.5 (75.0)

Total 19 (23) 13 (9) 32 78.1 (84.4)
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samples that misclassified as SUB, and 21 SUB samples that misclassified as IL.  Using QDA, a 

correct classification rate of 86.7% was achieved.  There were seven IL samples that 

misclassified as SUB, and 20 SUB samples that misclassified as IL. 

 For classifying ignitable liquid samples as belonging to the ALI or ARG classes, 99.0% 

of the samples in the cross-validation test set were correctly classified, and 88.5% of the fire 

debris samples, with designations based on the pour, were correctly classified when using LDA.  

Correct classification rates of 98.9% of the samples selected for the cross-validation test set and 

84.5% of the fire debris samples, with designations based on the pour, were observed when using 

QDA.  When the designations were based on the analyst’s review of the post-burn data, correct 

classification rates of 98.3% and 92.2% were obtained for LDA and QDA, respectively. 

 When the ARG samples were classified into their individual classes, LDA gave correct 

classification rates of 90.0% for the cross-validation test set and 68.3% for the fire debris 

samples, with designations based on the pour.  The fire debris samples with designations based 

on the analyst achieved a correct classification rate of 60.6%.  Using QDA gave correct 

classification rates of 99.8% for the cross-validation test set and 89.0% for the fire debris 

samples, with designations based on the pour.  When the designations were based on the analyst, 

a correct classification rate of 86.4% was obtained.  For both designations, all nine aromatic fire 

debris samples classified correctly using LDA and QDA, while a number of gasoline samples 

misclassified as aromatics.  This can be attributed to reasons previously discussed for the model 

developed with 0% substrate contribution. 

 Next, ALI samples were classified as ISO/ NA or PD/NP.  Cross-validation using both 

LDA and QDA for this step had high correct classification rates of approximately 98% when 

predicting classifications of 51,700 samples.  The fire debris samples, with designations based on 
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the pour, had correct classification rates of 93.9% and 92.4% for LDA and QDA, respectively.  

Using the designations based on the analyst, correct classification rates of 94.0% and 92.0% 

were achieved for LDA and QDA, respectively.  

 The classification of the cross-validation test set into ISO or NA resulted in 90.0% 

correct classification when using LDA and 99.4% correct when using QDA.  As was also 

observed for the model developed with 0% substrate contribution, separating fire debris samples 

designated as ISO/ NA showed significant limitations.  For fire debris samples, with designations 

based on the pour, LDA gave a correct classification rate of 57.9% while QDA was at 63.2%.  

The fire debris samples with designations based on the analyst resulted in correct classification 

rates of 55.6% and 61.1% for LDA and QDA, respectively.  Classifying cross-validation samples 

into PD or NP using LDA gave a correct classification rate of 77.9%, while QDA gave 90.5% 

correct.  The fire debris samples, with designations based on the pour, had correct classification 

rates of 78.7% and 83.0% for LDA and QDA, respectively.  When the designations were based 

on the analyst, correct classification rates of 78.1% and 84.4% were obtained for LDA and QDA, 

respectively. 

 

SIMCA   

 

 Prior to cross-validation, PCA was performed on each class of the data set used in the 

given step of the classification scheme and outliers were identified and removed if they exceeded 

the 97.5 percentile of either the score distance or orthogonal distance distributions.  For the data 

set with 0% substrate contribution, nine orthogonal outliers were removed from the IL class in 

the first step, and one orthogonal outlier was removed from the ALI group in the second step.  
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The data set developed with 20% substrate contribution had 86 orthogonal outliers removed from 

the IL class in the first step, six orthogonal outliers removed from the ALI group in step two, and 

eight orthogonal outliers removed from the ARG group in step two.  One additional IL outlier 

(with 0% substrate contribution), was removed from the 20% substrate contribution data set but 

not removed from the 0% substrate contribution data set.  The remaining 76 outliers removed 

from the 20% substrate contribution data set were electronically generated from those IL records 

that were also removed.   

 For each step of the multi-step classification scheme, the value of gamma was optimized.  

The optimized values, shown in columns one and two of Table 7 for the 0% and 20% substrate 

contribution models, were chosen based on the highest correct classification rates for the cross-

validation test samples.  For both data sets, the steps which classify a sample into a single ASTM 

class (AR, GAS, ISO, NA, PD, and NP) required a gamma value of 1 for optimal results.  This 

indicates that the orthogonal distance is more important for correct classification in steps where 

the TIS for the classes are similar.  The optimized  is smaller for classification steps where the 

TIS for the classes are less similar (i.e., IL versus SUB and ALI versus ARG), reflecting an 

increased importance of the score distance.  The optimization of gamma for the ISO/NA versus 

PD/NP classification step was insensitive to the magnitude of  (range 98% - 99% correct).  

Given the similarity of the TIS for the combined ISO/NA and PD/NP groups, a  of 0.8 was 

selected for this classification step. 
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Table 7:  Values of  used in the SIMCA method.  The rows are labeled with the specific step of the classification scheme, 

while the middle and right columns show the  values used. 

 

 

 As discussed above, in the first step of the classification scheme, samples were 

determined to be “positive” if IL was present and “negative” if IL was not present.  This allows 

the designation of true positive, false positive, true negative and false negative rates for the first 

classification step.  Table 8 shows the true positive rate (TPR), false positive rate (FPR), 

precision and accuracy values for the first step of the multi-step scheme, which involves 

classification into the IL and SUB classes.  Table 8 entries represent results for the model 

developed with 0% substrate contribution and the numbers given in parentheses represent the 

values determined from the model developed with 20% substrate contribution.  SIMCA based on 

the 20% substrate contribution data set gave very good results, with a 94.2% TPR and 5.1% FPR 

with greater than 94% precision and accuracy.  The level of substrate contribution and the 

amount of remaining ignitable liquid are uncontrolled in fire debris samples containing an 

ignitable liquid.  In order to account for these uncontrolled factors, the ”Fire Debris” 

performance metrics are given for fire debris class designations based on the sample’s proximity 

to the pour and the analyst’s examination of the data, as discussed in the preceding sections.  

SIMCA detection of the presence of IL trace was in good agreement with the analyst, showing 

greater than 95% TPR; however, the FPR also increased to approximately 15%.  This result 
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means that the analyst is slightly more conservative than SIMCA in determining a sample to be 

positive for IL residue.  Nonetheless, given the extremely complicated nature of the problem, 

SIMCA performs well on the important step of determining if a sample is positive for IL residue.  

 

Table 8:  Performance metrics, shown as percentages, for the cross-validation test set and fire debris samples using 

SIMCA.  Values for the 0% substrate contribution data set are shown and the 20% substrate contribution data set values 

are given in parentheses. 

 

 

0% Substrate Contribution  
 

 Figure 21 shows confusion matrices of the classification results for the model developed 

with 0% substrate contribution.  Results are shown for the TIS of cross-validation test samples 

and fire debris with class designations based on proximity to the pour.  Each row is labeled with 

the designated class and the column headings represent the class assigned by the model.  The 

entries in the table give the number of TIS assigned to each class.  For example, out of 9,000 IL 

TIS, 8,454 were correctly assigned to IL, 543 were incorrectly assigned to SUB, and 3 were not 

assigned by the model.  This gives a correct classification rate of 94.0% (corresponding to the 

true positive rate of 94.0% in Table 8).  This same process is used to interpret the values in each 

confusion matrix in Figure 22.   
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Figure 21:  Multi-step classification scheme with SIMCA cumulative results for cross-validation using 0% substrate 

contribution.  The results for the fire debris samples, based on proximity to the pour, are shown in parentheses. 

 

 

Figure 22:  Confusion matrices for fire debris samples based on models with 0% substrate contribution. Designations for 

the fire debris samples are based on the analyst's review of the post-burn data. 
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 For the cross-validation test samples, a total correct classification rate of 92.1% was 

observed for a total of 10,800 IL/SUB TIS.  When the model was tested on the TIS of fire debris 

samples, with class designations based on proximity to the pour, a correct classification rate of 

83.3% was observed with the TIS of 30 IL-designated samples misclassifying as SUB.  The TIS 

of four SUB-designated samples misclassified as IL and examination of the data did not reveal 

any clear reason for the error.  When the fire debris designations were based on the analyst’s 

examination of the data, a correct classification rate of 91.6% was observed.  The increase in 

correct classification rate is attributed to the analyst’s conservative approach, requiring a stronger 

IL residue to determine a sample positive for IL.  The stronger IL contribution results in a higher 

percent correct classification rate using SIMCA.   

 The next step, classifying the TIS of an IL-designated sample as either ARG or ALI, gave 

a correct classification rate of 99.3% for the cross-validation test samples and 81.8% for fire 

debris with designations based on the proximity to the pour.  A correct classification rate of 

90.5% was observed when using the class designations based on the analyst’s examination of the 

data.   

 Samples designated as ARG were further classified into their respective ASTM E1618-10 

classes.  The TIS for cross-validation test samples reflected a 96.6% correct classification rate, 

while the TIS for fire debris with designations based on proximity to the pour, performed much 

worse with an overall correct classification rate of 49.2%, which is somewhat misleading.  All 

AR fire debris samples were correctly classified, while 60% of GAS fire debris samples assigned 

were misclassified as AR.  This may be attributed to evaporation of the lighter, primarily 

aliphatic, gasoline components in the sample leaving the heavier, primarily aromatic, 

components.  The post-burn TIS profile for gasoline samples changes significantly from the TIS 
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for fresh gasoline, leading to the misclassifications.  Caution would be required when trying to 

classify a fire debris AR or GAS sample into the correct ASTM class using the SIMCA approach 

investigated here.  When using designations for fire debris based on the analyst’s examination of 

the data, a correct classification rate of 47.4% was observed.  The AR samples were correctly 

assigned, while 63% of those GAS samples assigned were misclassified as AR.  Notably, in a 

previous report, classification using QDA and LDA did not suffer from this difficulty (66). 

 The next step of the classification scheme assigns the TIS of samples designated as ALI 

to either the combined ISO/NA group or the combined PD/NP group.  Cross-validation test 

samples for this step had high correct classification rates of 98.3% when predicting 

classifications of 4,700 TIS.  Using class designations based on proximity to the pour for fire 

debris, a correct classification rate of 92.5% was observed.  The correct classification rate was 

also 92.5% when class designations were based on the analyst’s examination of the data. 

 The TIS for samples designated as members of the ISO/NA or PD/NP groups were 

separated into their respective ASTM classes.  Classification of the TIS for cross-validation test 

samples into ISO or NA resulted in a correct classification rate of 100%, while fire debris, with 

designations based on proximity to the pour, was 87.5% correct.  In the data set, seven of 12 ISO 

samples were assigned and all classified correctly, while one NA sample was incorrectly 

assigned, and the remaining six NA samples were unassigned.  When using the designations 

based on the analyst’s examination of the fire debris data, a correct classification rate of 87.5% 

was also observed.  The pattern of correct classification was the same as described for class 

designation based on proximity to the pour.  When assigning a sample to the PD or NP class, 

correct classification rates were 95.5% for the TIS of cross-validation test samples and 72.0% for 

fire debris, with designations based on proximity to the pour.  In the data set, 18 of 36 PD 
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samples were assigned and all classified correctly, while seven NP samples were incorrectly 

assigned, and four were unassigned.  A correct classification rate of 72.0% was also obtained 

when using the designations based on the analyst’s examination of the data for fire debris.  The 

pattern of correct classification was the same as described for class designation based on 

proximity to the pour.   

 

20% Substrate Contribution 
 

 Figure 23 shows confusion matrices for classifications based on the model developed 

with up to 20% substrate contribution.  Results are given for the TIS of cross-validation test 

samples and fire debris samples.  For the first step of the classification scheme, a total correct 

classification rate of 94.5% was observed for the TIS of 189,300 cross-validation test samples, 

while the TIS of 203 fire debris samples, with designations based on the proximity to the pour, 

resulted in a correct classification rate of 81.8%.  Classification of the fire debris samples 

resulted in the TIS of 33 IL-designated samples being misclassified as SUB.  The TIS of four 

SUB-designated samples misclassified as IL; these four samples were also observed to 

misclassify when using the model developed with 0% substrate contribution.  Using designations 

based on the analyst’s examination of the fire debris data, a correct classification rate of 91.1% 

was observed.  Including substrate contribution into the model data set did not significantly 

improve or decrease the rates of correctly classifying a sample as positive for IL residue.   
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Figure 23:  Multi-step classification scheme with SIMCA cumulative results for cross-validation using 20% substrate 

contribution.  The results for the fire debris samples, based on proximity to the pour, are shown in parentheses. 

 

 

Figure 24:  Confusion matrices for fire debris samples based on models with an upper limit of 20% substrate 

contribution. Designations for the fire debris samples are based on the analyst's review of the post-burn data. 
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 The next step classified IL-designated samples as belonging to the ALI or ARG group.  

For the TIS of cross-validation test samples, 99.4% classified correctly.  The TIS of fire debris 

samples, with designations based on proximity to the pour, resulted in a correct classification rate 

of 83.1%.  When designations based on the analyst’s examination of the fire debris data were 

used, a correct classification rate of 92.2% was obtained.  Including substrate contribution in the 

model data set did not significantly change the correct classification rates for this step in the 

classification scheme, and similar comments hold for the other steps in the classification, as 

discussed below. 

 When samples designated as ARG were assigned to their individual classes, a correct 

classification rate of 99.0% was observed for the TIS of the cross-validation test samples.  The 

correct classification rate for the TIS of fire debris samples was 38.3%, with all AR samples 

classifying correctly and 73% of GAS samples that were assigned misclassified as AR.  This can 

also be attributed to weathering as previously discussed for the data set with 0% substrate 

contribution.  Using the designations based on the analyst’s examination of the fire debris data, 

the correct classification rate was 35.1%. 

 Samples designated as ALI were separated into the combined ISO/NA group and the 

combined PD/NP group.  When predicting the classification of the TIS of 51,700 cross-

validation test samples, a correct classification rate of 99.7% was obtained.  For the TIS of fire 

debris samples, with designations based on proximity to the pour, the correct classification rate 

was 94.1%.  A correct classification rate of 93.0% was obtained when using the designations 

based on the analyst’s examination of the fire debris data. 

 The classification of the TIS of cross-validation test samples into the ISO or NA classes 

resulted in a correct classification rate of 100.0%.  The TIS of fire debris samples, with 
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designations based on proximity to the pour, had a correct classification rate of 85.7%.  In the 

data set, nine of 12 ISO samples were assigned and all classified correctly, while three NA 

samples were correctly assigned, two were incorrectly assigned, and two were unassigned.  A 

correct classification rate of 84.6% was obtained when the designations were based on the 

analyst’s examination of the fire debris data.  The pattern of correct classification was similar to 

that described for class designation based on proximity to the pour.  When assigning the TIS of 

cross-validation test samples to either the PD or NP class, a correct classification rate of 96.6% 

was observed.  The TIS of fire debris samples, with designations based on proximity to the pour, 

gave a correct classification rate of 69.7%.  In the data set, 22 of 36 PD samples were assigned 

and all classified correctly, while 10 of the 11 NP samples were incorrectly assigned.  A correct 

classification rate of 71.4% was obtained when using the designations based on the analyst.  The 

pattern of correct classification was similar to that described for class designation based on 

proximity to the pour.   

 

Results for Different Normalization Methods 

 

Summed to One 

Figure 25 gives the summarized results for LDA, QDA, and SIMCA using the “summed to one” 

normalization method.  Each leg of the graph represents the percent correct classification for 

each step in the classification scheme.  The cross-validation test set results are shown as blue, 

filled diamonds connected by a solid line and the fire debris results, with designations based on 

the proximity to the pour, are represented by green, filled squares and a broken line.  The fire 

debris samples with designations based on the analyst’s review of the post-burn data are shown 
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as red, filled triangles connected by a broken line.  A perfect classification system would be 

reflected in a graph with both the cross-validation and fire debris points at 100% correct (i.e., all 

points on the outermost periphery of the graph).  These same guidelines can be used to interpret 

the graphs in Figure 26 and Figure 27.  In Figure 25, SIMCA is observed to perform better than 

LDA and QDA for cross validation, but not for fire debris data.  The lowest correct classification 

rates for the LDA and QDA models occur when discriminating between the ISO and NA fire 

debris samples.  For the SIMCA model, the lowest correct classification rates were obtained 

when discriminating between the AR and GAS fire debris samples. This normalization is a linear 

transformation of the intensities of each sample. In samples with fewer chromatographic peaks, 

noise and baseline contributions will have a greater influence on inter-TIS comparisons.  

 

 

 

Figure 25:  Correct classification rates - "summed to one" normalization method. 
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Base Peak 

 The summarized results using the “base peak” normalization method are given in Figure 

26.  The SIMCA method is again observed to perform the best overall.  Compared to the 

previous normalization method, the fire debris samples showed a dramatic increase in correct 

classification rates.  The results were nearly perfect for all steps except the steps which 

discriminate the fire debris samples in the IL and SUB classes and the PD and NP classes.  

Increased correct classification rates are observed because the fire debris samples that previously 

misclassified, primarily the GAS-designated samples, were not assigned using this normalization 

method and set of   values.  This data normalization method results in more conservative 

assignments by the SIMCA classification method. This normalization method is also a linear 

transformation, but inter-TIS comparisons for samples containing a small number of 

chromatographic peaks are less influenced by baseline and noise. This normalization is 

commonly used for mass spectral normalization.  

 

 

Figure 26:  Correct classification rates - "base peak" normalization method. 
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Unit Vector 

 The results obtained for the “unit vector” normalization are shown in Figure 27.  Again, 

SIMCA performed the best overall, and very high correct classification rates were obtained for 

the fire debris samples.  As discussed for the results with the “base peak” normalization, the 

majority of the fire debris samples were not assigned; therefore, this data normalization method 

also resulted in more conservative assignments by the SIMCA method.  Although class 

information is not provided for the samples that are unassigned, which could be seen as a 

potential downfall of the SIMCA method, a misclassification is also prevented.  Similar results 

observed for the “base peak” and “unit vector” normalization methods indicate that the increase 

in correct classification rate is based on the set of   values or normalization method.  The same   

values were investigated for the “summed to one” normalization methods, but the correct 

classification rates did not improve. This normalization is a linear transformation that converts 

each TIS into a vector of unit length. In this normalization, the baseline and noise also influence 

the inter-TIS comparisons, but this influence is less than for the sum-to-one method and greater 

than the base-peak method.  
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Figure 27:  Correct classification rates - "unit vector" normalization method. 

 

 The results demonstrate that the correct classifications rates are influenced by the 

normalization methods used. For the fire debris samples, low correct classification rates were 

observed when assigning samples to the PD or NP classes using all three normalization methods.  

The low rates were due to the NP-designated samples misclassifying as PD.  When the data were 

examined, it was determined that the TIS for samples in these classes are very similar.  The 

TICs, however, are not as similar and could be used to determine the sample’s class assignment.   

 The true positive and false positive rates are designated as TPR and FPR, respectively, in 

Table 9.  The precision associated with each data set is given as well.  These values are 

expressed as percentages, and the precision represents the number of IL-designated samples that 

was assigned to the IL class out of the total number of samples assigned to the IL class.  These 

metrics were calculated for each normalization method using each classification method.  For 

example, the “summed to one” normalization method and LDA classification method resulted in 

a 95.5% true positive rate for the cross-validation test set.   
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Table 9:  Classifier Performance Metrics for Data Normalization Methods 

 

 

 Classification by the SIMCA method and normalization by the “base peak” method 

resulted in the highest true positive rates and lowest false positive rates for the cross-validation 

test set.  These methods did not perform as well for the fire debris samples and reflected a false 

positive rate that was nearly double the rate obtained using the “summed to one” method.  When 

considering the QDA classification method, low false positive rates were obtained for the model 

and fire debris samples when using the “base peak” method.  The true positive rate was also low 

using these methods on the fire debris samples with designations based on the proximity to the 

pour; however, the rates were improved when using the designations based on the analyst.  High 

precision values for both fire debris data sets indicate that the misclassifications resulted from 

IL-designated samples assigning to the SUB class.  When considering the fire debris data set 

with designations based on the analyst, the true positive rates and overall correct classification 

rate improved.  This results due to the more-conservative designations made by the analyst in 
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determining if an IL was present in the post-burn sample.  When LDA was used for 

classification, the lowest false positive rates were obtained with “unit vector” normalization of 

the data.  The false positive rates were higher for the cross-validation test set than for the fire 

debris samples. 

 

Training Results 
An international group of 35 fire debris analysts volunteered for the course and only 25 (71%)  

participants (9 U.S. and 16 European) finished the course online. A second group of 15 U.S. fire 

debris analysts enrolled to participate in the face-to-face training. A total of 14 (93%) of the 15 

participants were actually trained face-to-face.   This difference in completion rates (71% versus 

93%, an effect size of 0.61) is not statistically significant (=0.13) at a power of 0.8, which is 

often considered satisfactory for a small sample size. The average score on the final examination 

in the course was 92% for the online participants and 90% for the face-to-face participants. This 

difference is not statistically significant and an indication that the methods can be trained either 

online or face-to-face. The demographic data for both sets of participants (online and face-to-

face were fairly comparable (see Appendix II at the end of this report), with the most significant 

differences being that the face-to-face participants were older, self-reported to be more proficient 

in English and had more years of experience in fire debris analysis. 

 

IV. Conclusions 

Discussion of Findings   

The findings from this research demonstrate that it is possible to develop chemometric methods 

that provide reliable error rates for fire debris analysis and that it is possible to transition these 
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methods to operational forensic laboratories by online training. The challenge of inter-laboratory 

variability of chromatographic retention time was overcome by the use of the total ion spectrum, 

or TIS. The TIS was further investigated and shown to provide a high degree of discrimination 

between individual ignitable liquids and classes of ignitable liquids as defined under ASTM 

E1618 for well-characterized classes. In some cases, the mass spectral data alone cannot provide 

a high degree of discrimination between ASTM classes (i.e., PD vs. NP and NA vs. ISO). 

Furthermore, the miscellaneous category, which is devoid of any true class characteristic is 

problematic. 

The methods of LDA, QDA and SIMCA were shown to provide relatively good discrimination 

of ignitable liquid and pyrolysis samples in cross validation and when applied to the analysis of 

fire debris samples. The best overall performance was observed for QDA classification using the 

“base peak” method. In subsequent steps of the classification into ASTM classes for those 

samples that were classified as positive for ILR, the LDA and QDA performance was varied 

depending on the data normalization method applied prior to model development. Nonetheless 

the results for most classifications were greater than 80%, with some problems observed for 

discrimination between highly similar ASTM classes (i.e., PD vs. NP and NA vs. ISO). The 

results of these classifications are considered less important forensically than the classification of 

a sample as positive or negative for ILR. The correct classification rates for samples that were 

positive or negative for ILR are encouraging and reflect the possibilities for introducing 

statistical methods into the analysis of fire debris in order to bring this area of forensic analysis 

into closer alignment with the Daubert standard. 

Finally, this research demonstrates that it is possible to transfer basic research methods to 

operational laboratories through training. One difficulty is in knowing when to transfer the 

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



 

103 

 

methods. Certainly the methods should not be transferred or trained until they have been 

published under peer-review. Once published, the methods should be trained to operational 

laboratory personnel; otherwise, the methods will remain in the literature and unused, never 

achieving general acceptance.    

Implications for Policy and Practice   

The results of this research provide the first large-scale demonstration of statistically reliable 

classification rates for fire debris as positive or negative for ignitable liquid residue. Fire debris 

analysis methods with known error rates meet the Daubert requirements and may someday be 

required under existing rules of evidence. We believe that future research will result in methods 

that provide better correct classification rates, nonetheless, the current study provides a basis for 

future work and demonstrates that statistical methods may be applied to system as complex as 

fire debris analysis, resulting in known and defensible error rates. The research will help to drive 

policy change to improve forensic fire debris analysis. The methods have been transferred to 

operational laboratories by both online and face-to-face training. Successfully training these 

methods online sets precedence for future research and demonstrates one route to influencing 

laboratory practice.  

Implications for Further Research   

Although the results of this research are viewed to make a positive step forward in the search for 

reliable methods for assessing fire debris as positive or negative for the presence of ignitable 

liquid residue, additional research is needed. Of particular importance are (1) the need for a 

greater sampling of substrate pyrolysis samples, (2) the need to examine statistical methods that 

are less dependent on normal distributions of the data sets, (3) methods for incorporating both the 

chromatographic and mass spectral data in the statistical assessment, and (4) new Bayesian 
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statistical approaches that calculate likelihood ratios (i.e., the probability that a sample contains 

ignitable liquid residue relative to the probability that it does not).  
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Appendices 
 

Appendix I: Training Outline 
 

Section 1: AMDIS Students are guided through the process of downloading and installing 

AMDIS on their computer. AMDIS is gas chromatography-mass spectrometry analysis software 

provided free of charge. The software allows students to read data from most commercial 

instruments. Students in this course were taught to use AMDIS to load example data files and 

extract the TIS for further analysis. 
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Section 2: R The statistical methods developed under this research were produced using 

statistical software from the R Project. This is open-source software that can be downloaded free 

of charge from the internet. The use of R allows students in operational laboratories to 

implement the methods developed without the added expense of many commercial software 

packages. Students were taught to download and install R on their computers. They were also 

taught to install computational packages need to complete the training. 

Section 3: TIS Students were given a refresher or introduction to the total ion spectrum (TIS) 

and the utility of the TIS for laboratory-independent representation of GC-MS data from fire 

debris, ignitable liquids and other complex systems. Students were taught to calculate and save 

the TIS from example data sets. 

Section 4: Discriminant Analysis Students were taught the basic background information on 

data dimension reduction by principal components analysis (PCA) and the use of linear and 

quadratic discriminant analysis (LDA and QDA) to discriminate between classes using the PCA 

scores.  

Section 5: Putting it All Together Students were taught to download and install an R package 

to calculate a QDA model for IL and SUB TIS data incorporated in the package. They were then 

taught to open GC-MS data sets with AMDIS, extract the TIS and save it to their local computer. 

The saved TIS file was then projected into the PCA space and the scores projected into the QDA 

model to provide a classification of the sample as positive or negative for ignitable liquid 

residue. The cross-validation classification errors were provided to the student in a confusion 

matrix and the student was taught to interpret the results.  

Final Exam Students were given a final exam to assess their comprehension of the materials 

presented in the course. The exam included both theoretical and practical problems. 

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



 

112 

 

End of Course Survey Students were given an end-of-course survey to collect their feedback 

on the course. 

 

Appendix II: Demographic data for online and face-to-face applicants for the 
training  
 

Thirty-five applicants for the online training and 17 requested face-to-face training. All 

participants were required to return a questionnaire containing 10 questions. The following 

graphs compare the online and face-to-face participants as self-reported in their questionnaire 

responses.  

The online applicants were 57% European and 43% American. The face-to-face applicants were 

all Americans. Consequently we see a slightly higher self-reported English proficiency in the 

face-to-face participants. The face-to-face applicants were decidedly older than the online 

applicants. The face-to-face applicants had a slightly higher number of years of experience as a 

fire debris analyst. In all other areas, the groups were fairly well matched. 
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Appendix III: Face-to-Face Training Course Agenda  
 

  

 

Training course in determining the probability for the presence of an 

ignitable liquid residue in fire debris by discriminant analysis 

Agenda 

8:00 AM – 8:30 AM Introductions 

8:30 AM – 9:15 AM AMDIS Lesson 

Learn to download and install AMDIS, mass spectral software onto 

the computer.  Learn to open a file, create a total ion spectrum and 

then save the total ion spectrum. 

9:15 AM – 10:00 AM R Lesson 

Learn to download and install R, a statistical software package onto 

the computer. 

10:00 AM – 10:15 AM Break 

10:15 AM – 10:45 AM TIS Lesson 

Learn about the origins of the total ion spectrum, appreciating the 

information content within the total ion spectrum, and recognizing 

theadvantages of utilizing the total ion spectrum for statistical data 

analysis methods. 

10:45 AM – 11:30 AM Discriminant Analysis Lesson 

Learn concepts of principal components analysis, linear discriminant 

analysis, and quadratic discriminant analysis. 

11:30 AM – 1:00 PM Lunch (on your own) 

1:00 PM – 2:15 PM Continue with Discriminant Analysis Lesson 

2:15 PM – 3:00 PM Putting It Altogether Lesson 

Apply the concepts learned to determine the probability for the 

presence of an ignitable liquid in fire debris. 

3:00 PM – 3:15 PM Break 

3:15 PM – 4:00 PM Continue with Putting it All Together Lesson 

4:00 PM – 5:30 PM Final Exam 
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