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Executive Summary 
The goal of this project is construct a 

quantitative representation of the information 
content in fingerprints. Such a representation 
has two benefits. First, it can reveal those 
areas that experts consider most diagnostic, 
which might help trainees or jurors decide the 
value of different regions. Second, it can help 
guide an expert as to how diagnostic a region 
may be if this diagnosticity differs from their 
expectations. For example, there are regions 
known as force pattern areas in which the 
collision of multiple ridges can create several 
minutiae that might appear similar in another 
print. 

This quantitative approach takes on more 
importance as computer-based searches 
become more available and database sizes 
grow. If a print is developed based on 
evidence from a detective or informant, high 
similarity between a latent print and an 
exemplar from a suspect becomes very 
valuable evidence. However, if the suspect is 
developed through a database search using a 
system such as the Automated Fingerprint 
Information System (AFIS), high similarity 
between the latent and a candidate from AFIS 
should be viewed with skepticism. This is 
because AFIS, by design, must return similar 
looking prints (Busey, Silapiruti, & 
Vanderkolk, under review; Dror & Mnookin, 
2010). Thus a quantitative representation of 
the information content in fingerprints would 
help address the issue of which regions are 

most diagnostic, given the statistics of the 
entire database. 

The challenge is to discover a feature 
representation that will allow statistical or 
quantitative analyses. The traditional approach 
has been to rely on the locations and 
orientations of minutiae, possibly including 
details such as the number of intervening 
ridges. This approach has proven to be quite 
promising, and produced statistical likelihood 
estimations that help identify the evidentiary 
value of a particular print (Egli, Champod, & 
Margot, 2007; Neumann et al., 2007). 

Other approaches rely on computing the 
statistics of individual minutiae at locations 
relative to a standard landmark such as the 
core region. This allows for a generative 
model of fingerprint information that 
characterizes the distribution of minutiae 
across the fingerprint (Srihari & Su, 2008; Su 
& Srihari, 2008). 

One limitation of the reliance on 
minutiae is that examiners report using 
features other than y-branchings and ridge 
endings. For example, they rely on overall 
pattern shape, ridge curvature, and even the 
shapes of individual pore elements that make 
up the ridges. However, defining what a 
feature is has proven extremely difficult, in 
part because much of perception is below the 
level of conscious awareness and is difficult to 
verbalize (Snodgrass, Bernat, & Shevrin, 
2004; Vanselst & Merikle, 1993). This is self-
evident by looking at a perceptual illusion. 
Despite the fact that the observer knows that 
their percept deviates from the actual image, 
they cannot use this knowledge to veridically 
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perceive the illusion. Thus we cannot simply 
ask examiners what information they rely on 
and expect to receive a complete answer, 
although in some instances talk-aloud 
procedures can and do provide useful 
information. 

Because of the difficulty with 
verbalization of perceptual data, our approach 
collects eye gaze data from latent print 
examiners. We will use this gaze data to infer 
what regions or sources of information they 
consider most diagnostic or distinctive. These 
results will then be used to develop 
quantitative metrics that characterize the 
information available in latent prints. We will 
in fact describe two approaches that serve 
complimentary purposes, but each of which is 
validated against expert eye gaze data. 

In this technical report we describe the 
nature of the eye tracking data collected from 
experts and novices, how we use this to train a 
set of intermediate-level descriptors known as 
basis functions, and how we can use the 
activations of these basis functions to provide 
a quantitative description of the information 
contained in friction ridge impressions. 

This report is organized as follows. First, 
a major contribution of this project is the 
development of robust eye tracking methods 
that allow us to collect eye gaze data in the 
field as examiners conduct tasks that are 
similar to casework. Thus we will discuss the 
development of the tools that allow this data 
collection. 

Second, we discuss how we construct an 
intermediate level feature representation that 
provides a means to represent image detail 
from both trained and novel fingerprint 
images. This intermediate representation is 
similar to an alphabet in language, in the sense 
that it contains elemental features that can be 
combined together to build more complex 
objects. We will use principled approaches to 
the construction of the basis set, which reflects 
the natural scene statistics of fingerprint 

images as well as those regions that experts 
consider most important. 

Third, we will use the temporal 
information contained in the eye gaze data to 
explore how experts knit together different 
regions into larger constructs, which they term 
‘target groups’.  

Finally, we describe extensions to the 
basis function modeling approach that learns 
the covariance among the activations. This is 
similar to second stage of visual processing in 
visual system (V2/V3) and therefore has a 
measure of both biological and computational 
plausibility. 

Together the analyses provide estimates 
of the rarity of individual features, and do so 
by using the statistics of fingerprint 
impressions rather than a hand-picked set of 
features. This provides access to potentially a 
larger set of visual features than individual 
minutiae.  

A. Eye tracking data collection 
and analysis 
How can we access the information that 

experts use when the expert may not be 
consciously aware of what they rely on? How 
can we implement a quantitative approach 
(e.g. a cognitive model and/or a computer 
program) to extracting features that we don’t 
know? Our solution is to rely on collecting 
fine-grained behavioral data from experts in 
combination with tailored experiments and 
computational modeling to infer the set of 
features that characterize the information 
content in friction ridge impressions. 

Although commercial eye trackers are 
available, they are closed source and at the 
onset of the project were not very portable. 
We took advantage of the fact that small high-
resolution cameras became available and thus 
we built our own eye tracker and software. 
Because this is open source and made cheaply 
from readily-available parts, these techniques 
can be duplicated by other researchers who are 
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interested in collecting eye tracking data in 
forensic disciplines. 

The eyetracker is illustrated in Figure 1. 
One camera records the position of the eye 
relative to the head, and the other camera 
records the position of the head relative to the 
computer monitor that presents the 
fingerprints. As part of this project we 
developed the ExpertEyes software 
(http://code.google.com/p/experteyes/), which 
allows us to align the two video streams in 
time and establish a set of correspondences 
between the eye position and the scene 
camera. The output of this eye tracker is an 
estimate of the gaze location on each video 
frame captured during the experiment. Our 
latest eye tracker is very high definition and 
provides a resolution of 1280x720 pixels at 
60hz, as shown in Figure 2. 

The eye gaze data allows us to infer, at 
each point in time, the visual features that the 
expert considers to be diagnostic for the 
fingerprint examination task. 

We have collected data from several 
different sets of images. Typically we record 
for about 20 minutes for each subject, and 
they do 30-39 trials during that period. Each 
trial consists of a latent print and an inked 
print shown side by side. We sometimes 
create simulated latent prints by adding noise 
to an inked print, as shown in Figure 3. This 
gives us access to the ground truth image 
detail while still asking the participant to 
conduct a procedure that is similar to latent 
print work. 

Each experiment consists of at least 12 
novices and 12 experts, and the eye gaze 
record consists of over 500,000 datapoints. 

A.1. Hardware and recording 
devices 

Our eye tracker consists of a set of 
cameras mounted on a set of safety glasses 
(see Figure 1). This set of cameras records the 
position of the head and eye at 30 frames per 

second, which is suitable for a task in which 
most of the fixations are fairly stable. 

A.2. Pupil and corneal reflection 
extraction 

To illuminate the eye, we shine an 
infrared LED on the eye from a position near 
the eye camera, which is pointed at the eye. 
This results in a bright spot appearing on the 
cornea, called the corneal reflection. The 
relation between this spot and the pupil varies 
systematically as the eye changes orientation. 
The first step is to identify the pupil and 
corneal reflection. While a variety of 
techniques have been proposed, we created a 
novel procedure in which a forward eye model 
is created by drawing dark and light ovals 
over the eye image and adjusting the position 
of the two to find the best match. Figure 4 
demonstrates the software that fits the forward 
eye model. 

A.3. Calibration with the scene 
view 

To make the link between the scene 
camera and the eye camera, we ask 
participants to look at black dots on a white 
screen. These appear for about 5 seconds and 
then move to another location. The 
ExpertEyes software contains a module that 
allows us to link an eye position with a 
position in the scene camera. The user selects 
a frame where the participant is assumed to be 
looking at the black dot, and then indicates the 
location of the dot in the scene camera. The 
computer then finds this dot in several 
subsequent frames to reduce noise.  

We then fit a two-dimensional 
polynomial function that relates the u-v 
location of the pupil to an x-y location on the 
scene camera. 

A.4. Monitor corner detection and 
rectification 

The second stage of analysis requires 
that we identify the location of the monitor in 
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the scene camera. We apply a barrel distortion 
correction algorithm to each scene camera 
image and then have the user click on each of 
the four corners of the monitor in a 
thresholded scene image. We then use Gabor 
jets, which are an adaptive template match 
algorithm, to identify the corners in the rest of 
the images.  Figure 5 demonstrates how we 
correct for the barrel distortions that all 
cameras induce,  

Once we know where the eye is in the 
scene view for a particular frame, as well as 
where the corners of the monitor are in the 
scene view, we can then interpolate the eye 
position back into the coordinates of the 
monitor. This gives us the position of the eye 
on the images that contain fingerprints.  

These procedures provide the final goal 
of the eye tracker: the position of the eye on 
the fingerprint ridge detail. We can then tell, 
with accuracy that is about the size of the 
fovea, which information the expert is using 
when performing examinations. 

A.5. Trial and event extraction 
To obtain enough information about the 

diagnosticity of different kinds of information, 
we often conduct experiments with 30-40 
images, each shown for 20-30 seconds to 
encourage the examiners to focus on only the 
most diagnostic features. The ExpertEyes 
software contains a module that automatically 
extracts event information and allows human 
verification and correction. 

A.6. Data cleaning and export 
Eyetracking data invariably has some 

missing data, usually when the participant 
moves their head enough so that a corner of 
the monitor moves off the edge of the scene 
camera. Figure 6 illustrates the procedures that 
allow the user to identify and mark regions of 
the data that are bad. We typically throw out 
less than 5% of our data. 

A.7. Fixation finding 
The final step in the analysis process is 

to find fixations. The eye tends to move 
ballistically from one location to another on 
static images, with dwell times that average 
about 300 ms in duration. During this dwell 
period the eye experiences micro-saccades, 
tiny movements that prevent the visual world 
from fading. However, these micro-saccades 
are typically not meaningful from an analysis 
standpoint, and there is also jitter from error in 
the estimation procedures. Thus to smooth the 
data we rely on fixation finding routines that 
perform a cluster analysis that groups similar 
eye gaze locations into fixations and saccades. 

Figure 7 shows the raw eye trace along 
with the results of the fixation finding 
algorithm.  

A.8. Calibration verification and 
quantification 

An all-important task is to identify 
whether our calibration procedures accurately 
measure eye position. To ensure this, we ask 
our participants to perform an additional 
calibration procedure at the end of the 
experiment. We ask them to look at known 
locations on the monitor and then verify 
whether we can accurately track their gaze. 
We typically find that our calibration accuracy 
is quite high, comparable to commercial 
systems. In many respects our system is 
superior to commercial systems because we 
are able to go back and re-fit the eye model if 
the parameters are incorrectly specified. If we 
were recording live from the field we would 
simply not be able to use that data. Given how 
valuable the data is from experts, we are 
fortunate in that we are able to make full use 
of almost all of the data we gather from 
examiners. 
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B. Intermediate Feature Level 
Descriptions- Basis 
Functions 
Eye tracking data tells you where the 

subject moved their eyes, but not necessarily 
what features or visual information they rely 
on. Some of this information is even below the 
level of visual awareness and is difficult to 
verbalize (Snodgrass et al., 2004; Vanselst & 
Merikle, 1993). As a result, we must use 
computational techniques to infer the nature of 
the visual information used by human experts. 
We do this by borrowing from the known 
computational properties of the visual system, 
which tends to break up the visual scene into 
individual components and then build back up 
to a larger, more complete, representation of 
an object or scene. This requires using a set of 
elemental features called basis functions, 
which are analogous to phonemes or 
morphemes in language as described next.  

B.1 Analogies from spoken 
language 

The basic premise behind dimensionality 
reduction and machine classification is to 
derive the basic building blocks or features 
that are used in the perception and matching 
of latent prints. Consider spoken language as 
an analogy. Words are made up of smaller 
units called phonemes, which from the Greek 
means "a sound uttered." The /k/ in kit is one 
example, although the [k] in skill is a different 
sound despite being the same letter. There are 
a little over 40 of these phonemes in the 
English language, and all words are produced 
by combinations of these phonemes. 

What is surprising about phonemes is 
that even as young children, humans have a 
remarkable ability to differentiate different 
phonemes, and more importantly recognize 
that two identical phonemes spoken by 
different talkers are really the same speech 
sound and therefore convey the same 
meaning. A process called categorical 

perception enables this form of speaker-
independent. Once the categories for 
phonemes are formed, the phoneme can be 
recognized in noisy environments and from 
different speakers. 

The downside to categorical perception 
is that the phoneme structure can be difficult 
to alter. This produces the common problem 
that native Japanese speakers have difficulty 
initially distinguishing between the /r/ and /l/ 
phonemes. This can be overcome with 
practice, which serves to reorganize the 
category boundaries between /r/ and /l/ so they 
no longer map to the same perceptual 
category. 

B.2. Applications to visual 
perception 

The same processes that allow the 
formation of categories in spoken language 
may also be at work in visual perception. 
Studies of the neural anatomy of the visual 
system suggest that the visual world is broken 
down in to small pieces by the early stages of 
the visual system, and more complicated 
structures are then constructed from these 
simple building blocks. Importantly, the 
process of learning to see, perceive and 
interpret the visual world depends on learning 
the relation between these parts, as well as the 
likelihood of perceiving one feature given the 
presence of a related feature. For example, if 
you perceive the left half of a face, your 
experience tells you that you are extremely 
likely to see an eye on the right side of the 
face. In fact, not seeing an eye on the right 
side violates your expectation in such a way 
that your brain can often interpret this as 
damage, which forms the basis of many horror 
imagery. We internalize this missing eye as a 
result of imagery and seek to avoid this 
happening to us. 

We infer the initial building blocks of 
visual perception by acquiring small pixel 
patches of fingerprint images that are centered 
on the eye fixations of experts and novice 

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



Final Technical Report  Busey, T., PI 
 

Page 6 of 64 

subjects. Our working dataset contains about 
22,000 fixations per subject group, which 
gives us about 44,000 pixel patches that are 
small, 38x38 pixel crops from the larger 
fingerprint images. These contain between 3 
to 8 ridges depending on the scale of the 
images. This process is shown in Figure 8. 
These images represent the type of features 
that experts and novices fixate, and we will 
use dimensionality reduction procedures to 
find commonalities between the features.  

Figure 9 illustrates example features 
extracted from experts, as well as features that 
come from random locations that still contain 
a majority of ridge detail. What is common 
among these features on the left that is 
different from those on the right? We start 
with the assumption that there is a common 
set of features that experts look at. These 
features may be decomposable into an even 
simpler feature set that provides regularities 
that can be discovered with the right 
algorithm. This is analogous to phonemes in 
spoken language described previously. 

We will use a procedure called 
independent components analysis (ICA) to 
discover these elemental features, called the 
basis set. This will eventually provide a 
dimensionality for machine classification as a 
means to test whether our basis set is 
meaningful. 

A basis set is simply a linear 
combination of pixel locations. It tells you 
how important each pixel is to that latent 
component. Typically there are fewer basis 
functions than pixels (we have 1444 pixels in 
each patch). 

ICA has two general properties. It looks 
for a basis set that: 

1) minimizes the mutual information 
between individual components, such that the 
information that one basis image tells you 
about the feature is independent from the 
information from other basis images. 

2) maximizes the non-Gaussianity of the 
transformed (projected) data. 

The central limit theory says that as you 
add non-Gaussian sources (like uniform or 
sparse distributions), the resulting signal looks 
more and more Gaussian. 

ICA essentially reverses this to look for 
decompositions that provide signals that are as 
non-Gaussian as possible. These could be the 
original signals that were added together. 

 
Applied to vision, you get two amazing 

facts for free: 
1) The resulting components look very 

much like the receptive fields in the early 
visual system 

2) The ICA components are sparse, just 
like neurons in the brain, in that a given 
stimulus tends to activate a relatively few 
neurons to a large degree, while the rest are 
not activated at all. 

When we apply ICA to the image 
patches from experts and random patches, we 
obtain a basis set that looks like those shown 
in Figure 10. This basis set resembles 
fingerprint fragments, and while these 
individually do not contain features such as 
bifurcations or ridge endings, they can easily 
be combined to reproduce the original  
features (with some error) as shown in Figure 
11. As such, these represent a reasonable 
starting point for a basis set that is designed to 
represent the common elements of expertise 
among experts. The relatively good 
reconstruction also illustrates that although we 
are reducing the dimensionality of the images, 
we still maintain enough information in the 
reduced representation to allow a fairly 
accurate reconstruction. 

C. Region Clustering 
The first step to evaluating our basis 

functions is to perform clustering on the 
activations.  
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C.1. Automatic Feature 
Segmentation of Fingerprints 

Once a basis set has been selected and 
derived (similar to that shown in Figure 10), 
the basis set can then be applied to a new 
fingerprint and the activations of each basis 
function can be computed for each pixel 
location in the fingerprint. Essentially this is 
done by convolving the basis function with the 
image at each location. Each basis function in 
the basis set will then produce an activation at 
that location. Thus for an image of size 
1024x768 and a basis set of size 16, the output 
is a 1024x768x16 matrix that contains all of 
the activations for each basis function at each 
location. 

These basis activations are not random, 
but instead reflect the regularity of the image 
information. Each pixel is represented as a 
feature vector, which the value of the ICA 
activations filling the vector. So for a basis set 
of size 16, there will be 16 numbers for each 
pixel. This places the pixel in a 16-
dimensional space. The locations of these 
pixels in this 16-dimenional space is not 
uniform or random, but reflects the image 
data, and we would like to cluster similar 
regions based on the fact that they produce 
similar patterns of activity via the ICA basis 
functions.  

We are using an approach called 
Expectation Maximization (EM) which 
attempts to cluster the data based on 
multidimensional Gaussian functions that are 
designed to cover the locations of the pixel 
values in ICA activation space. We specify a 
number of Gaussians (typically between 25 
and 100) and cluster the feature vectors 
according to their Euclidean distance. To 
allow for generalization, we combine the data 
across almost 40 images, sampling only 2% of 
the image data from each fingerprint to allow 
the clustering solution to converge. 

The output of this function is a set of 
labels associated with each pixel that assigns 
the most probable cluster to that pixel. We 

visualize these clusters by changing the color 
of the pixel, as shown in Figure 12.  

What is remarkable about this clustering 
solution is that it tends to find very contiguous 
regions despite not knowing anything explicit 
about space. It is somewhat sensitive to ridge 
orientation, which tends to co-vary with the 
different regions. However, it also accurately 
captures the core and delta areas which do not 
have well-defined orientations. 

This clustering algorithm generalizes to 
other fingerprints as well. Figure 13 shows the 
same clustering solution applied to 6 different 
fingerprints. Although the location of the core 
and delta vary from print to print, it still 
accurately finds these regions in a totally 
automated procedure. This demonstrates that 
the clustering approach based on ICA weights 
can detect equivalent regions in different 
fingerprint impressions. 

The clustering approach is also 
surprisingly accurate at detecting 
corresponding regions in two fingerprints 
from the same finger. Figure 14 illustrates the 
clustering algorithm applied to two 
impressions from the same fingerprint. The 
contours of the clustering indicate that the 
solution finds very similar regions and 
therefore has good generality to novel 
instances of the same finger. 

Together, these examples illustrate the 
robustness of the clustering approach based on 
ICA activations. The next step is to condition 
our measure of feature rarity based on the 
region that contains the feature. This will 
introduce a context dependency that will 
measure the feature rarity given a particular 
location. 

D. Initial Classification Attempts 
Based on ICA Basis 
Activations 
As a starting point we used the raw 

activations of the basis function to try to 
separate experts from novices. We should say 
up front that while this is a traditional 
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approach in classification research, it will not 
produce good generalization performance and 
we therefore use the failure of this approach to 
motivate two new approaches that use 
combinations of different feature activations 
to produce maps of diagnosticity that provide 
much stronger classification and 
generalization performance. 

Each region that is fixated by an expert 
can be processed by a basis set to produce a 
set of activations. The set of activations 
visited by experts may be different than that of 
random activations or novices. We used a 
support vector machine (SVM) classifier to 
classify regions visited by experts from 
randomly-chosen regions based on the ICA 
activations at each patch. The friction ridge 
image detail centered at a fixation are cross-
correlated against the basis functions to 
produce a set of activations that places each 
image patch in a high-dimensional space. The 
classifier is then asked to find a hyper plane 
(possibly using a non-linear kernel 
transformation) that separates the expert from 
random fixations.  

We separated the image patches into a 
training set and a held-out testing set that 
came from novel images. The SVM was able 
to accurately classify 77% of the training 
image patches. Although this classification 
results in fairly accurate separation of the 
training sets, it does less well when 
generalizing to a new testing set. It only 
classifies approximately 57% of the novel 
image patches that make up the testing set. 
Given that chance performance is 
approximately 50%, this represents only a 
modest level of performance, and limits the 
utility of this approach to generalize to novel 
prints. 

The high dimensional nature of the 
activations (up to 400 dimensions) may limit 
the ability of the classifier to find an 
appropriate transformation that doesn’t over-
fit the training set. This may have produced 
the spuriously-high training results and poor 

generalization performance. Thus we need a 
more principled way to reduce the 
dimensionality. In the next section we explore 
one transformation that not only combines 
across the different dimensions in a principled 
way, but also provides statistics about feature 
rarity and diagnosticity. In a later section 
(Section G), we explore an even more 
promising model that uses the image statistics 
of friction ridge impressions to combine 
across dimensions. 

E. Self-Information Metric 
The goal of the self-information metric 

described below is to develop a quantitative 
metric of the information content in 
fingerprints using extensions from 
Information Theory. We will use the feature 
set described previously to estimate the 
likelihood of observing individual features. 
This will provide a measure of the 
diagnosticity of the ridge detail for purposes 
of individualization (in the sense that it 
identifies which regions are most rare given a 
data set of images). This measure is 
independent of human examiners, with the 
exception that we will combine across 
different spatial scales and basis set sizes 
using feedback from experts. However, 
individual diagnosticity maps are a function 
solely of the statistics of the data set. 

We will use the data from experts to 
assess whether the self-information metric 
identifies regions that experts also fixate. This 
would be the case if experts have determined, 
either individually or as a field, which regions 
tend to be the most diagnostic. While 
individual self-information calculations based 
on one set of basis functions and pixel patch 
size are entirely parameter free, we have 
several choices for the pixel patch size and 
basis set size. We will bootstrap our way out 
of this problem by using data from experts to 
select which basis set size and pixel patch size 
is most appropriate. 

Here are the inference steps:  
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Experts are very accurate at this task. 
The self-information metric is a 

statistical property of the fingerprints. 
The self-information metric produces 

rarity maps that (as we will demonstrate) 
agree with experts eye gaze.  

If experts can distinguish between 
matching and nonmatching prints, and they 
rely on similar features that the model 
considers to be diagnostic,  

This analysis will produce a quantitative 
representation of the information content in 
friction ridge impressions that is based 
primarily on the statistical properties of ridge 
detail, guided somewhat by the use of expert 
data to determine the best parameterization of 
the self-information metric. 

Our eye gaze data for this particular 
validation set was collected from 24 expert 
examiners with at least 2 years of 
unsupervised casework experience (median is 
6.3 years of experience). Examiners viewed 
pairs of images, one of which was combined 
with visual noise to create the impression of a 
latent print. Of the 39 image pairs, 5 were 
non-matching prints. Experts were told to 
conduct a task similar to a traditional latent 
print comparison, with the option to say 
“match”, “non-match” or “too soon to tell” 
which we typically interpret as 
“inconclusive.” Recording was typically 
limited to about 20 minutes to avoid lengthy 
IR exposure from the eyetracker on the eye. 

E.1. Constructing Feature Rarity 
Maps 

The failure of the classification approach 
using raw ICA activations suggests that the 
activation levels of several features might be 
important to distinguish between important 
and less important regions. 

In the approach described below, we 
detail a technique that uses Shannon 
Information Theory along with the statistics of 
fingerprint ridge detail to provide a measure of 
feature rarity. Because the rarest features are 

the most diagnostic, we will argue that this 
approach is a measure of feature diagnosticity. 
It is important to point out at the onset that 
this measure is an independent of human 
experts. It does not depend on where experts 
move their eyes, with the exception that the 
data from experts was used to train the feature 
set (and in fact these feature sets do not 
depend critically on the training data in that 
feature sets look similar between experts, 
novices and random input image patch sets). 
Once the diagnosticity of each region is 
determined, it can then be compared against 
the eye fixations of experts. Because we 
determine the diagnosticity first and then 
compare against the fixations of experts, there 
is no circularity involved in our analyses. 

Latent print examinations are an 
individualization task, and as such they benefit 
from the presence of rare features. Rare 
features have much more value when it comes 
to individualization (and therefore carry more 
information in an information theoretic sense). 
Rarity is defined relative to the global set of 
features, which has been acknowledged by the 
fingerprint field on web sites devoted to 
unusual prints.  

An examiner’s eye has an intuitive sense 
for what is rare or common. This is based on 
experience with large numbers of prints, and 
would have to be repeated for any new skin 
surface such as palms, lips or elbows. The 
human expert has a general-purpose visual 
system that can adapt to these new domains in 
part because the neurons in the earliest stages 
of the visual system show response profiles 
that are very similar to the ICA basis functions 
in Figure 15 and Figure 16 (Olshausen & 
Field, 1997). Thus the ICA activations that are 
learned on the basis of the fingerprint patches 
at the fixation points of experts are mimicking 
the behavior of the earliest stages of the visual 
system. 

The next step is to use the activations of 
these basis sets to determine whether a given 
patch of friction ridge skin is rare or common. 
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This requires three steps when applied to a 
new fingerprint, which are described below 
and summarized in Figure 17. 

First, we determine the activation of each 
basis function at each location in the 
fingerprint. This is done through a process of 
convolution, and essentially determines how 
much a given patch of fingerprint resembles 
each basis function. Fingerprint patches that 
are similar to a given basis function produce 
high activations at that location. The output of 
this step is a value at each pixel location in the 
fingerprint that determines how active a given 
basis function is at that location. This is 
repeated for all basis functions in the basis set. 

Second, we repeat this process for many 
fingerprints (we currently do this for over one 
hundred prints, but eventually plan several 
thousand). This allows estimation of the 
activation distribution for each basis function. 
Most of the time the activation will be close to 
zero, while occasionally it will be quite high 
or quite low if the basis function is a very 
close visual match to a particular patch of 
friction ridge skin. 

Third, we use these activation 
distribution to determine the rarity of a 
particular region of friction ridge skin. Work 
by Bruce and Tsotsos (2009) demonstrated 
with visual search tasks that the self-
information of a region could be used to 
estimate the rarity or diagnosticity of that 
region. The self-information is computed as 
follows. A given location in the friction ridge 
impression produces a set of activations across 
all of the basis images (essentially how well 
each basis function matches the patch of skin 
at that location). We can determine how likely 
it is to encounter an activation value for a 
given basis function by looking at the 
activation distribution estimated from the 
entire dataset.  

Mathematically, this is the Shannon self-
information measure (Shannon, 1997): 

-log(p(x)) 

where p(x) is the probability of 
observing an activation value for that 
particular basis function. The nature of ICA 
basis function are such that they tend to be 
highly active only rarely. The smaller p(x), the 
larger (in absolute terms) -log(p(x)) will be.  

These -log(p(x)) values are summed up 
over all of the different basis function 
activations. Common features will produce 
very high values of p(x) and therefore very 
low values of –log(p(x)). However, rare 
features will produce activation values that 
fall in a range that are almost never 
encountered, and therefore will have a low 
p(x) value. It is this relation that links self-
information with feature rarity. 

To visualize the self-information 
computed at each pixel, we have constructed 
masks that overlay the images. As shown in 
Figure 18 through Figure 22, visible regions 
are those that are considered to have high self-
information and therefore be diagnostic with 
respect to feature rarity and individualization. 
Each of these figures are describe below. 

E.2. Feature Rarity Maps 
Figure 18 is perhaps our best example of 

how the self-information metric reveals what a 
human eye would consider as diagnostic 
features. The metric reveals the core and delta, 
but also minutia, breaks in the ridges and 
regions of high curvature. Straight regions 
without much minutia or other interesting 
activity have much less self-information by 
this metric (see the upper-right portion of the 
tip). Similar findings are shown for a second 
print in Figure 19, where straight regions 
without much variations are down weighted, 
which regions with curvature or breaks are 
considered more informative. This figure does 
reveal one limitation that will have to be 
addressed, which is that ridges with breaks 
between pore elements are considered more 
interesting, which may have be addressed 
using thinning and a threshold procedure. 
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Expanding the size of the basis set seems 
to lead to subtle but noticeable improvement 
in the diagnosticity maps. Figure 20 illustrates 
a self-information map that has the same patch 
size as previous figures, but a larger basis set 
of 360 (vs. 150 in Figure 18). The contrast 
between diagnostic and non-diagnostic 
regions appears even stronger, making this 
basis set perhaps the most useful of all we 
have tested. 

The choice of basis set may prove 
critical. The next two figures, Figure 21 and 
Figure 22 illustrate two cases that do not seem 
to produce results that are consistent with 
what a human would label as interesting or 
rare. The large, 128x128 basis images used in 
Figure 21 are not revealing interesting features 
beyond the region above the core, while the 
small, 16x16 pixel basis images used in Figure 
22 reveal little more than the edges of the 
ridges. These illustrate that our particular 
metric is sensitive to the underlying basis set, 
which gives us confidence that it is working 
appropriately when given the correct input 
information.  

E.3. Validation of Information 
Measure against Expert Eye Gaze Data 

The visualizations shown in Figure 18 
through Figure 22 represent our initial foray 
into self-information analyses. The results for 
particular combinations of patch size and basis 
set size look quite promising. However, to 
validate these results (which are currently on-
going) can compare the regions considered to 
be most diagnostic against the fixations from 
experts. 

Figure 24 illustrates how close the 
correspondence between the self-information 
and eye fixations can be. The dark regions are 
those the model considers most diagnostic, 
and the red dots are the fixations from experts. 
The experts tend to cluster their fixations in 
those regions the self-information metric 
deems most diagnostic. 

The image pair in Figure 25 show a 
similar close correspondence between 
fixations and regions of high diagnosticity. 
Likewise, the self-information metric 
illustrated in Figure 26 shows close 
correspondence when a smaller ICA basis set 
is used, suggesting that self-information might 
have to be combined across different spatial 
scales and levels of redundancy reduction. We 
explore this below. 

The self-information metric is based 
solely on the image data of prints and is 
therefore a measure of the natural image 
statistics inherent to fingerprints. To train the 
model, we seed it with image patches derived 
from human examiners, collected using eye 
tracking methods.  By holding some images 
out of this training process, we can use the 
remaining eyetracking data to evaluate the 
metric on novel images.  

To evaluate the metric, we use the eye 
gaze data from 30 novel images and measure 
the self-information computed at each 
fixation. We then compare that to the self-
information from an equivalent number of 
image patches that were not fixated by 
experts. Rather than use a test set of fixations 
taken from the same images that were used for 
training, we held out a randomly-selected 30% 
of our images for testing. This allows us to 
argue that our classification results generalize 
to novel images rather than just to novel 
fixations from the training images. 

We expect that the self-information of 
regions fixated by experts will be higher than 
those regions not fixated by experts. We are 
limited, however, by the fact that we must 
select an ICA basis set first before computing 
the self-information. As illustrated by Figure 
23, ICA basis functions produced by image 
patches of different sizes tend to highlight 
different levels of ridge detail. Thus we do not 
know which level of detail the examiners are 
relying on. 

The solution to this problem is to use the 
self-information metric from a variety of basis 
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functions and use a machine learning 
procedure (logistic regression) to discover 
which basis function contribute the most to the 
decision to fixate a particular location. The 
classification accuracy for individual ICA 
basis set are found in Figure 27. Individual 
ICA basis functions give classification 
accuracies in the range of 58-70%, while 
combining several sets together gives a 
classification accuracy of 75% with no loss of 
generalization to the testing set. Thus we are 
not over-fitting the training data and suggests 
that, as with the examiners, the optimal 
solution combines information across different 
spatial scales. 

Based on this technique, we can correctly 
classify approximately 75% of the fixations 
made by experts, with very little loss of 
generality to novel prints. This is much higher 
than we saw with the raw ICA activations, and 
we have good correspondence between the 
fixations and rarity visualizations in Figure 24 
through Figure 26.  

This finding represents one of the central 
points of this research, and is worth 
summarizing. The activation values from the 
basis functions are used to identify those 
regions that are most diagnostic, using 
principles derived from Information Theory 
applied to the statistics of the fingerprint 
activations. These diagnosticity maps are then 
compared with the fixations of experts to see 
if they correspond. The only aspect of human 
expertise that enters the model is during the 
construction of the feature set, which is fairly 
generic, and when the different saliency maps 
are combined to allow information at different 
spatial scales to impact overall diagnosticity. 
The essential elements that determine 
diagnosticity of individual feature maps such 
as those shown in Figure 17 through Figure 26 
is the statistical distribution of individual 
feature activations in fingerprints. 

 
A limiting factor on accuracy is the 

inherent noise in eye gaze data (some fixations 

are more meaningful than others, and the 
classifier is forced to classify all fixations with 
equal weight) and we address this in Section F 
below. 

F. Temporal Dependencies From 
Automatic Translation 
One way to characterize the important 

regions is to include temporal information. It 
is likely that human expertise includes a 
temporal element: it matters in which order 
you visit particular regions, not just that you 
visit them. The human visual system has a 
high capacity visual buffer, which lasts for 
less than a second before it fades. Matching 
one complex image patch to another requires 
moving the eyes back and forth to determine 
whether two regions are similar, and this must 
be done before the contents of visual memory 
fade. 

To identify whether the temporal 
sequence is a factor in human expertise, we 
used procedures derived from machine 
translation, as illustrated in Figure 28. This 
requires four steps: 1) temporal fixation 
finding: reducing the continuous time series of 
raw gaze data into a sequence of eye fixations 
defined mostly by the speed of eye 
movements over time; 2) spatial clustering to 
calculate Regions of Interests (ROIs): 
clustering (x,y) gaze data points into several 
clusters/ROIs based on the spatial distribution 
of gaze data on the prints; 3) alignment: 
segmenting the ROI sequences into ink-latent 
fixation pairs based on temporal proximity; 4) 
using a machine translation method to 
compute the correspondences between ROIs 
in the inked and latent prints. As a result, we 
extract the patterns of which corresponding 
areas that experts examine back and forth 
between two prints and which areas that 
novices pay attention to when conducting the 
same matching task.  

The machine translation algorithm works 
as follows. Our goal is to calculate 
correspondences between gazed regions in one 
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image with gazed regions in the other image 
as participants conducted the matching task. 
To do so, we view this task as similar to 
machine translation in natural language 
processing. The general idea of machine 
translation is this: assume that we have 
parallel texts from two languages, for 
example, “Harry Potter and the Order of the 
Phoenix” in both English and French, the goal 
of machine translation is to infer which two 
words in the two languages correspond. This 
inference can be done based on statistical 
information, such as how frequent “egg” in 
English and “oeuf” in French co-occur 
together and how frequent “egg” appears 
without “oeuf”. Intuitively, if a word in 
English always co-occurs with another word 
in French and that word in English appears 
only when the other word in French appears, 
then those two words are likely to correspond 
to each other. Most often an assumption in 
machine translation is a sentence-level 
assignment – which sentence in English maps 
to which one in French is known. Say it in 
other way, we have sentence pairs from two 
languages and use this data to infer word 
correspondences.  

In the fingerprint-matching task, we 
conceptualize ROIs from one image as words 
in English, and ROIs on another print as 
words in French. Based on this 
conceptualization, the aim here is to find 
which gazed region in one print maps to 
which gazed region in the other print.  To 
achieve this, we also need to segment continue 
gaze data generated by participants into 
“sentence” pairs. This is done based on the 
observation that participants may generate a 
few fixations on one image, switch to examine 
another image with more fixations to search 
for corresponding areas on the other image. In 
light of this, and as showed at the bottom of 
Figure 28, we first divided a whole sequence 
into several subsequences using the visual 
attention switches between two prints as 
breaking points, and then grouped those 

subsequences into several pairs based on 
temporal proximity.  

The outcome of this procedure is a set of 
fixation sequence pairs from which we further 
calculated which fixated areas in one image 
map to what fixated area in the other image in 
the next step. We call each pair of two fixation 
subsequences on two prints a searching 
instance as we assume that participants were 
comparing and matching regions between two 
prints through those eye fixations on both 
prints. Figure 29 and Figure 30 illustrate 
instances extracted from a continuous ROI 
sequence. To the degree to which experts will 
find matching features in both prints we will 
be able to discover these through machine 
translation, and in each case the machine 
translation algorithm found more 
correspondences for the expert than the 
novice. 

The results of the machine translation 
analysis applied to all experts and novices are 
very clear. In implementation, our method 
produced all of the possible ROI-ROI 
mappings between fixations on the two 
images. We chose two criteria to select 
reliable ROI-ROI pairs. First, the co-occurring 
frequency is at least 2, meaning that a 
participant at least looked at one region in one 
image and subsequently look at another region 
in the other image, and repeated this again. 
Second, the overall mapping probability needs 
to be greater than 0.4. We use two criteria 
because with one visit between the two ROIs 
the link strength will be artificially high at 1.0, 
but trivially high.  

Based on this selection, the experts have 
an average of 17.1 reliable mappings/links 
found, while the novices have an average of 
7.1 links found (t(34)=-6.73; p <0.001, sd = 
8.84) from a dataset of latent/inked prints. For 
a dataset with clean prints, we found a similar 
result. The machine translation found an 
average of 11.1 links for experts and 8.3 links 
for novices   (t(29)=-3.18; p <0.01, sd = 4.59). 
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The results of this analysis demonstrate 
that one element of human expertise resides in 
the order in which different locations are 
visited. This suggests that temporal 
information is an important component of 
human abilities.  

The correspondences revealed by 
machine translation are quite accurate despite 
the fact that the algorithm knows nothing 
about space directly. The average deviation 
between the corresponding location found by 
machine translation and the actual matching 
location as determined by a human experts is 
quite small: The deviation is about 1 degree of 
visual angle which for our images corresponds 
to about 2 ridge widths in distance. This is 
perhaps a surprisingly small number given 
that the machine translation algorithm does 
not know about space directly. 

This modeling approach demonstrates 
that the temporal search processes of human 
experts reveals not only the process by which 
they identify regions in the two prints, but 
may also demonstrate important dependencies 
between regions in friction ridge impressions. 
Typical models of ridge information make 
independence assumptions, but the temporal 
aspect of human expert search may reveal 
important dependencies between regions. We 
discuss possible future extensions the 
modeling in Section H.1.2. In the section 
below, we explore dependencies between the 
ICA activations for patches that come from 
similar regions as another way to account for 
dependencies that might play an important 
role in representing image detail. 

G. The CoVar Model- Modeling 
Covariance Among 
Activations 
The ICA weights used with the self-

information metric produced reasonably high 
classification accuracy for our data, especially 
if the different scales are combined together to 
reflect the fact that examiners likely use 
information at different spatial scales.  

However, central to the self-information 
metric is the idea that individual basis 
functions are independent. This allows for the 
multiplication of probabilities that underlies 
the self-information computation and gives a 
statistical measure of feature rarity. This 
assumption is justified by the fact that the 
independent component analysis algorithm is 
designed to find components that have 
independent activations across the entire 
dataset. 

One limitation of this approach is that 
although basis functions are independent 
across the entire dataset, they are likely not 
independent for smaller regions, because 
individual features may strongly activate 
several different basis functions. Thus there 
may be important correlations in the basis 
function activations within similar regions of 
an image. 

This fact was recognized by Karklin and 
Lewicki (2009) during an investigation of 
natural scene statistics. They point out that the 
earliest stages of the visual system act much 
like the ICA basis decomposition, with 
individual neurons sensitive to different 
orientations and spatial frequency patches at 
particular locations. However, the visual 
system must be able to achieve a measure of 
positional invariance by pooling across similar 
detectors positioned at slightly different 
locations. This implies recognizing that 
different detectors at slightly different spatial 
positions are all processing similar features 
(i.e. same orientation and spatial frequency). 
This can be done by a second level of artificial 
neurons that learns a set of weights on the ICA 
basis functions to process the correlations 
between the individual basis function 
activations.  

Karklin and Lewicki (2009) proposed a 
model, called the CoVar model, that could not 
only discover a set of weights that learned the 
correlations among the outputs of the basis 
functions, but also achieved positional and 
contrast invariance while remaining very 
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sensitive to orientation. This network could 
have a large number of basis functions 
(around 500) but have relatively few high-
level latent neurons (around 25) that could 
represent more abstract features by selectively 
weighting the activations from the input layer. 
Essentially, the weights on the connections 
between the input layer (the basis functions) 
and the latent layer (the high-level neurons) 
learn a subspace decomposition of the high-
level ICA activations that meaningfully 
represented the natural scene statistics of their 
images. 

This particular model seems well-suited 
to the application to fingerprints, because the 
model naturally represents variations in 
texture appearance, orientation and spacing. 
This model is also a natural progression of the 
previous ICA approach, because the first layer 
of the CoVar model is very similar to the ICA 
decomposition. However, rather that assuming 
independence between the ICA activations as 
the Self-Information metric does, the model 
explicitly models these correlations in local 
subregions. This model is likely to reflect the 
behavior of human experts more closely, 
because it shares computational principles 
with the early stages of the visual system. 
However, it may not provide the feature rarity 
statistics of the self-information metric, and so 
in some ways the two approaches are 
complementary and could be used in different 
settings for different purposes. 

G.1 CoVar Model Training 
We trained the CoVar model using 

similar procedures as the ICA decomposition. 
We cropped out regions of clear fingerprints 
near where experts fixated, and used these 
image patches to train the model. The CoVar 
model is computationally very expensive, and 
to make the training tractable we limited the 
patches to 24x24 pixels (about 3 ridge 
widths). However, in recognition of the 
observation that spatial scale is an important 
element of the detail in friction ridges, we 

used integer multiples of this patch size when 
extracting patches from our fingerprints, such 
that we used actual crops ranging from 48x48 
pixels to 216x216 pixels. As with the 
ICA/Self-Information analysis, different 
spatial scales will likely represent different 
sources of information. This may range from 
level 3 detail such as idiosyncratic pore 
shapes, to level 1 configural information such 
as pattern type.  

To evaluate the success of the model, we 
relied on similar procedures as described for 
the ICA/Self-Information metric. We 
computed the activation of the 25 latent 
neurons at each fixation from the experts. This 
places each fixation as a point in a 25 
dimensional space. We then chose random 
points on the print that were not near expert 
fixations and computed the activations of the 
25 latent neurons for each random fixation. 
We then submitted both sets of activations to a 
logistic regression classifier and a support 
vector machine, using a held-back test set of 
fixations from a separate set of images.  

G.2 Classification Results 
These analyses can be related to the Self-

Information metric. The logistic regression 
classification achieved classification 
performance around 60-70% accuracy for 
individual Self-Information maps, and about 
75% accuracy when all the maps are 
combined (see Figure 27). 

Logistic modeling of the CoVar 
activations using the same expert/random 
comparison as with the self-information 
metric produces an improvement in the 
classification accuracy. Different spatial scales 
produce different classification accuracy, and 
these are summarized in Figure 31. 
Classification results for individual spatial 
scales are now in the low 80% range with 
strong generalization to novel prints (labeled 
Testing Data). This suggests that the latent 
layer of the model is capturing important 
covariance information that reflects how 
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humans perceive texture patterns. We are still 
exploring extensions to the classification 
procedures that combine across the individual 
scales, and we expect classification 
performance to improve even further as it did 
in Figure 27. 

The classification results should be 
viewed in the context of the fact that 
eyetracking data is inherently noisy, not only 
from the perspective of the mechanisms of eye 
gaze collection (with accuracies in the 1-2° of 
visual angle, or about 3-5 ridge widths) but 
also in terms of where the experts choose to 
send their eyes. Some fixations are 
undoubtedly more informative than others, 
and the current approach treats all fixations 
equivalently. Given these sources of noise, it 
is unlikely that we would see classification 
accuracy above 90%. 

These results suggest that the CoVar 
model represents an important tool to discover 
those features that experts rely on for 
comparing friction ridge impressions. In the 
next section we explore a set of visualizations 
that allow us to assess the adequacy of the 
model, as well as demonstrate how the CoVar 
model could be used to provide novice users 
or trainees an opportunity to view a novel 
latent print as if it was examined by an expert. 

G.3 Saliency Visualization 
The logistic regression analysis provides 

an opportunity to visualize those regions that 
experts consider to be diagnostic, even for 
prints that they have never seen before. To 
visualize the saliency of different regions for 
purposes of identification, we first compute 
the activations of the CoVar model at each 
point in the fingerprint image. This is 
somewhat computationally expensive, so we 
instead compute the activations in a grid of 
every 10th pixel and interpolate between the 
values. Explorations at finer scales revealed 
equivalent results at a cost of much more 
processing time.  

Once we have these activations for a 
particular model and spatial scale, we can then 
multiply the activations by the weights from 
the logistic regression and sum up the 
weighted activations. This weighted sum 
computes the degree to which an examiner 
would consider that location particularly 
diagnostic (at least enough to warrant a 
fixation).  

Example images are shown in Figure 32 
through Figure 34 for training images (those 
that were used to train the logistic regression). 
Darker regions in the print are those deemed 
by the classifier to be more likely to be visited 
by human experts. The close correspondence 
between the distribution of fixations (red dots) 
and the darker regions illustrates how accurate 
the classifier can be when fitting human eye 
gaze data. The images shown in Figure 33 
illustrate how reliable the classifier predictions 
can be across different exemplars of the same 
image. 

As with the Self-Information metric, 
sometimes multiple spatial scales may be 
necessary to represent all of the information 
that examiners attend to. An example of this 
with the CoVar model is shown in Figure 35. 
The left panel is with a small scale, while the 
right side is with a large scale. Both capture 
fixations, but we may need a combined 
representation to fully account for human 
expert performance. We discuss this in a 
future section. 

The logistic regression classifier’s 
performance on the training data is 
impressive, but in order to be generally useful, 
it must generalize to new images. During the 
training portion of the logistic regression 
classifier we held back some of our images. 
This is the best test of generalization: can the 
classifier accurately predict where experts will 
send their eye gaze on images that were not 
used for training?  

The images shown in Figure 36 through 
Figure 38 illustrate saliency predictions for the 
model on novel images. These demonstrate 
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that the model can readily generalize to novel 
images and accurately reflect the fixations for 
human experts. 

Together the classification performance 
and the saliency maps in Figure 32 through 
Figure 38 illustrate that the CoVar model 
accurately reflects much of the perceptual 
mechanisms in human experts that drives their 
visual performance. Tools based on this 
algorithm can provide valuable information 
about human expertise to trainees and even 
suggest regions that one expert may not have 
seen but the model identifies as something that 
experts might look for. 

In the next section we discuss 
applications of these approaches, to extend 
this basic science work into an applied 
domain. 

H. Conclusions and Implications 
for policy and practice 
Previous attempts to characterize the 

information in friction ridge impressions have 
relied primarily on Level 2 minutiae such as 
ridge endings, y-branchings and dots. The 
current approach is more agnostic about the 
nature of the features, and instead builds up a 
set of basis functions that represents a much 
larger set of visual details, including 
individual ridge shapes as well as global 
configural information. 

We explored multiple spatial scales as 
well as the degree of redundancy reduction as 
expressed in the size of the basis set. This 
creates a set of tuned filters that are sensitive 
to the natural statistics of friction ridge 
impressions and also reflect those regions that 
experts consider most important. 

The activations produced by the basis 
functions at each locations can be used to 
create a measure of the overall probability of 
observing that particular pattern in the entire 
database. This is relevant for feature 
diagnosticity computations, because the most 
informative features are the most rare. 

These diagnosticity computations, 
computed via the self-information metric, 
were validated against the fixations from 
experts, which suggested that a combination 
of spatial scales was necessary to fully 
account for the behavior of experts. The 
validation procedure has a bootstrap nature, 
because there is no way to determine whether 
experts always look at the most diagnostic 
regions. However, the basis set that results 
from human eye fixations is fairly generic, 
and once it is specified the self-information 
metric follows directly. As with all measures 
of feature rarity, the computations depend on 
the initial representation, and the fact that we 
have strong correspondence with expert data 
suggests that we are tapping those features 
that experts also agree with. A particular 
strength of this analysis is that the self-
information metric was able to generalize to 
new prints that were not part of the training 
set. This suggests that the representation 
consists of set of dimensions that 
meaningfully captures feature diagnosticity as 
understood by human experts. However, it is 
important to point out that this computation of 
feature diagnosticity is independent of the 
human data, and the computation would stand 
regardless of where humans sent their gaze. 
The fact that we see such close 
correspondence between the two suggests that 
we have an appropriate featural representation 
in the basis set, the self-information metric is 
the appropriate statistic to  compute, and that 
humans have an intuitive sense of which 
features are most diagnostic. 

It will be of particular interest to test 
regions that the self-information metric 
considers diagnostic but the experts have not 
yet looked at. We may find that experts realize 
that other regions they might not have 
considered are also worthy of inspection. 

Two other extensions to the self-
information metric were explored. First, we 
applied the CoVar model, which learns the 
covariance structure of the activations of the 
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individual basis functions. This allows the 
model to perform a subspace decomposition 
of the activations that best reflect the structure 
of individual patterns. This approach takes 
advantage that all patterns in a particular 
region are similar, and look dissimilar from 
patterns in other regions. For example, the 
core area has lots of circular structure, and 
each patch in this region will all contain this 
circular structure. This is different than the tip, 
where the ridges tend to have gentle concave 
ridges.  

This model produces activations that 
were more diagnostic with respect to where 
the examiners send their gaze than the Self-
Information metric. Part of this may come 
from the fact that the CoVar machine learning 
training uses the expert data along with the 
image features to develop the classification 
solution, while the Self-Information metric 
only uses the feature rarity statistics to 
determine which is most diagnostic. Part of 
the reason for the differences might be that 
experts may not look at the most diagnostic 
regions (as revealed by the Self-Information 
metric), or they may chain together several 
common features to compute a measure of 
feature rarity. 

The CoVar approach is particularly 
useful for training applications, because it can 
be applied to a novel print and used to 
illustrate to a trainee where an expert would 
likely look if they were inspecting this print. 

The second application we proposed uses 
temporal information in the eye gaze to 
determine which regions tend to correspond. 
We use extensions from Machine Translation 
to identify regions and correspondences 
between matching prints. This approach 
suggests that the temporal information, as well 
as which features are visited, is an important 
part of the human investigation. This also 
suggests that there are spatial dependencies 
between features in the latent print, which is 
something that present models may not 
account for. Below we explore extensions to 

this approach that might account for spatial 
dependencies. 

H.1. Extensions to Other 
Computations 

The primary goal of the present proposal 
was to develop and validate a quantitative 
representation of the information content of 
friction ridge skin. The ICA basis functions 
and, the CoVar model extension, provide this 
quantitative representation because for any 
given image patch we can compute statistics 
such as its rarity and diagnosticity. We are 
also building this representation based on the 
statistics of friction ridge impressions and 
validating it against human expert data. 

The quantitative representation afforded 
by the basis function approach is quite 
powerful, and in this section we will explore 
ways to extend this approach to other 
applications. 

H.1.1. Discriminative Value of 
Particular Patches 

The self-information metric tells us how 
likely it is to observe a particular pattern in a 
database given the image statistics of the 
images in that database. As such it constitutes 
a measure of feature rarity, and we saw close 
correspondence between feature rarity and the 
eye gaze of experts. However, there are  
additional statistics that might also be useful. 
For example, suppose that a particular pattern 
type was fairly rare, but that there were two 
prints in the database that were quite similar? 
This is known as the ‘close call’ situation 
among practitioners, and it would be useful to 
know the overall discriminative value of a 
feature relative to individual prints in the 
database. That is, there could be a very rare 
feature that has two strong matches in the 
database, and this might be distinguished from 
the case where a feature was rare and had only 
one close match in the database. 

There are several approaches to 
computing the discriminative value of 
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individual patches, and there are lots of 
assumptions that would have to be worked 
out. For example, a spatial prior is likely an 
important assumption, because if the strong 
match is in a different location relative to 
some landmark such as the core, this strong 
match should probably be discounted. 

One approach that seems promising is to 
compute the probability of a given feature 
being present in a particular exemplar print. 
Work by Ullman, Vidal-Naquet, and Sali 
(2002) suggests that fragments of intermediate 
size can be used to compute the probability of 
a fragment from a latent print coming from an 
exemplar inked print. It would also produce a 
measure of the discriminability of the feature 
given a particular database, because it would 
not only compute the likelihood of the latent 
and exemplar sharing a common source, but 
also the likelihood of having a similar print in 
the database. This would address the issue of 
having identical twins in the database who 
might have similar prints, or close non-
matches that can occur in large database 
searches. 

H.1.2. Temporal and Spatial Network 
Statistics 

One current project that is in progress 
uses network statistics applied to the spatial 
and temporal dependencies in the expert eye 
gaze record. Human experts often describe 
creating ‘target groups’ by combining 
individual features into a group that 
presumably has higher discriminative value 
than individual features. This ignores possible 
dependencies between features, but likely 
increases the value of individual features for 
purposes of identification. 

The creation of a target group likely 
represents an eye fixation to a central feature 
such as the core or a salient target, and then 
repeated saccades to nearby features, 
possibility with return saccades to the central 
feature. Once this set of features is placed into 
working memory, the examiner then looks to 

the corresponding region in the other print to 
search for correspondences in image detail. 
The gaze behavior of experts supports this 
mechanism, because experts make many more 
within-image saccades than novices do, which 
is consistent with the idea of building up 
target groups with small saccades to nearby 
features. 

The goal is to represent both the 
temporal information as well as spatial regions 
in a model that will allow us to compute 
network statistics to discover the ‘hub’ regions 
that likely underlie a target group. Figure 39 
illustrates conceptually how we construct a 
Hidden Markov Model with a fixed number of 
hidden nodes (say 30, or 15 on each image of 
an image pair). The emission matrix of each 
hidden node is essentially a set of means and 
variances of Gaussian functions in the 
activation space, so with 20 ICA activations 
we have 20 sets of means and variances. 
These Gaussian functions determine the 
probability that the activation set of each 
fixation ‘belongs’ to a hidden node. 

The model takes in the raw set of 
fixation locations, computes the ICA 
activations based on the image detail, and then 
fits both the transition probability matrix and 
the emission matrix to produce a 
representation of how experts search through 
the activation space. An example visualization 
of this process is shown in Figure 40. The 
different colors represent those fixations from 
experts that are identified with each hidden 
node (that is, they are most likely to have been 
produced by the hidden node). The blue and 
green traces show the strength of the 
probabilities in the transition probability 
matrix. The centroid of the clusters are 
determined by taking the median x-y locations 
of the fixations that are associated with each 
hidden node. 

Several things can be observed from 
Figure 40. First, there is a strong tendency to 
associate similar regions across the two prints, 
which would be expected given the task. 
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Second, there are a large number of links 
within an image, suggesting that experts are 
looking at several regions to bind them 
together.  

A strength of this  approach is that it is 
computed across all experts and all images. 
That is, the solution is not specific to one 
individual or one image, and therefore has 
good generality to new images. Thus the 
solution is robust and generalizes such that it 
can predict the eye gaze record for future 
image pairs. It also simultaneously determines 
the spatial grouping (i.e. what is an important 
feature or region) as well as the temporal 
dependencies (i.e. how are these features 
temporally grouped together).  

The next step is to use network statistics 
to discover the possible existence of ‘hub’ 
nodes that tend to be used to create target 
groups. For example, node 10 in the left image 
of Figure 40 has a large number of relatively 
connections within the left-hand print, and 
therefore may be identified as a hub. 

This work is ongoing, as we need to 
determine the appropriate representation of the 
activation space (ICA or CoVar activations) as 
well as the appropriate spatial scale and 
number of hidden nodes. We will use 
likelihood statistics to determine the adequacy 
of each combinations of parameters. We 
anticipate finishing this work by the end of the 
grant period. 

H.1.3. Self-Information and the CoVar 
model 

A related effort extends the CoVar model 
to the self-information metric. In principle this 
is a straightforward application, because the 
CoVar activations can be gathered across 
many different image patches across hundreds 
of images and the distribution of activation 
values can be collected for each latent neuron. 
However, a key assumption underlying the 
self-information metric is that each basis 
function produces activations that are 
independent across the entire dataset. This was 

verified empirically with the ICA basis 
functions, as well as expected because the 
ICA algorithm is designed to find basis 
functions that produce activations that are 
independent. 

The CoVar model takes advantage of the 
fact that although the activations are 
independent across the entire dataset, they are 
highly correlated for local regions, because the 
nature of natural scene  statistics tends to 
produce similar-looking image patches close 
together. The CoVar model learns the 
covariance structure to produce a principled 
sub-space decomposition of the ICA 
activations.  

There is no guarantee, however, that the 
latent neuron activations will be independent. 
This must be empirically validated before the 
self-information metric could be applied in 
this case, or the metric will need to be 
generalized to take these dependencies into 
account. This is an active focus of our current 
efforts, because not only would this produce a 
metric with strong predictive ability for image 
patches, it would also reveal the feature rarity 
and diagnosticity of each image patch. 

H.1.4. Tools for Examiners 
The representations created by the ICA 

activations and the CoVar decomposition have 
a number of strengths. They accurately predict 
where experts will send their gaze, and they 
provide a measure of feature diagnosticity. 
There are several practical applications of 
these metrics. Although the focus of the 
current grant efforts were on basic science, 
below we describe how our results could be 
applied to casework. 

As discussed previously, the self-
information metric readily provides a measure 
of feature rarity and can be extended to 
produce estimates of the discriminative value 
of a particular patch. Our current modeling is 
conduced in Matlab, which allows for rapid 
prototyping and model construction, but is not 
a suitable platform for widespread production 

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



Final Technical Report  Busey, T., PI 
 

Page 21 of 64 

software. Thus the self-information metric 
would have to be translated to code that would 
allow for distribution. However, this kind of 
application could easily be adopted by AFIS 
vendors as part of their application suite. 

Another application of the basis 
functions might be noise reduction. The ICA 
basis weights (and those of the CoVar model) 
represent a set of tuned filters that characterize 
the image detail in a set of friction ridge 
patches. Matched filters are useful when 
extracting a signal from noise, because they 
are most sensitive to the image detail and 
exclude off-band noise.  

An extension of this approach might be 
to include spatial dependencies in the ICA 
activations. This might allow a region of high 
noise to be cleaned up by using the image 
statistics of nearby cleaner regions to estimate 
the optimal filter to apply to the noisy region. 
The CoVar model might be especially 
appropriate here, although further testing 
would be required to fully develop this 
application. 

These examples illustrate that the 
quantitative representation afforded by the 
ICA and CoVar representations have wide 
application, especially once the appropriate 
spatial scale parameters have been estimated 
from human experts.  

H.2. Glossary 
basis functions- a set of fundamental 

building blocks that when combined create 
more complex structures. In vision these are 
simple shapes that when combined produce 
complex patterns. These reflect the statistical 
regularities of the input images. 

Clustering- A technique for grouping 
objects together based on their spatial 
proximity. 

CoVar Model- Covariance model by 
Karlin & Lewicki (2009) that can be used to 
decompose a set of image patches into a set of 
basis functions, but also to model the 
covariances of the activation functions to 

produce an even lower subspace 
representation. 

dimensionality reduction- a procedure 
that eliminates redundancies within a set of 
input objects (in this case image patches) to 
find the most common statistical patterns. 

Expectation Maximization- a procedure 
to fit a set of Gaussian curves to a set of data 
such that there is maximum overlap between 
the data and the Gaussian meant to reflect 
these points. 

Feature space- The concept that a 
complex object such as an image patch can be 
represented by a set of basis functions. The 
activations of these basis functions can be 
considered as coordinates in a high 
dimensional space, the feature space. Similar 
points in this feature space likely correspond 
to two similar features in visual space. 

Gaussians- Another term for the normal 
distribution (also called the bell curve). 

Hidden Markov Model- A representation 
of both spatial and temporal information that 
models the sequence of steps through a set of 
hidden states that produce observable 
outcomes. An analogy might be a frog 
jumping from one lily pad to the next, but all 
you could observe was the way action on the 
shore and had to infer the sequence of jumps. 

independent components analysis (ICA)- 
a method of dimensionality reduction that 
produces basis functions that have activations 
that are as independent as possible, in the 
sense that knowing the activation of one ICA 
component tells you very little about the 
activation of the other components. 

logistic regression- A classification 
method that assigns linear weights to different 
basis function activations and then transforms 
the resulting weighted sum into the range 0-1, 
which corresponds to category membership. 

Machine Translation- A technique to 
assign correspondences between tokens in 
different languages or images based on their 
co-occurrence across parallel texts. 
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non-Gaussianity- many things are 
normally distributed (i.e. Gaussian). However, 
brain signals and other systems tend to have 
non-Gaussian distributions, such that the 
output is usually small but occasionally 
becomes quite large. 

Self-Information Metric- A technique to 
assign feature rarity to a region based on the 
self-information value calculated from the 
basis function activation probabilities. 

Shannon self-information measure- The 
theorem that rare signals are the most 
informative. 

support vector machine- A classification 
procedure that attempts to separate two groups 
by finding a hyperplane (decision criterion) 
that correctly assigns the category 
membership to as many objects as possible. 
This is typically done in a feature space. 
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Figures 

 
Figure 1. Our eye tracker worn by a participant in the eyetracking studies. It consists of one 

camera that monitors the position of the eye relative to the head, and a second camera that 
monitors the position of the head relative to the images being examined. 
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Figure 2. High Definition Eye camera that allows high-resolution movie capture during actual 
latent print examinations. 
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Figure 3. Simulated latent print with artificial texture noise added to the left print. These 

images look very similar to latent prints, but have the advantage of allowing access to the ground 
truth of the ridge detail in the clean version of the print. 
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Figure 4. Forward eye model interface. The pupil (dark circle) and corneal reflection (white 
circle) are identified using a forward eye model that adjusts the parameter settings based on the 
location of the pupil. Once a set of parameters is found for each region, the program fits the eye 
model to the entire dataset, which can take 2-16 hours of CPU time on a 3 GHz computer. 
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Figure 5. Eliminating image distortions. When the head-mounted video camera is positioned 
away from the center of the monitor, image distortions result. In this case the upper-right corner 
of the monitor in the image on the left is distorted. We created an undistortion algorithm that 
eliminates these distortions and allows us to accurately project the eye location onto the original 
image (right panel). 
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Figure 6. Screen that plots the eye data, along with the fitted pupil and corneal reflection 
parameters, along with the estimated eye gaze location in the scene camera (red plus). Graphs 
along the bottom show the pupil location for frames around the current frame. The large 
discontinuities in the blue and red curves are eye blinks.  
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Figure 7. Gaze data from one subject. Green dots are raw gaze estimates, red dots are 
fixations that are determined using a velocity-based measure, and blue lines are saccades from one 
location to another. 
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Get 40,000

image patches.
 

 
Figure 8. Illustration of image patch extraction centered on fixations from human observers. 

Each image patch is 38x38 pixels in size, and is extracted from a region of the latent or inked 
print. These image patches are then analyzed for commonalities using the Independent 
Components Analysis approach. 
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Patches from Experts Patches from Random

 
Figure 9. Example patches derived from experts and random locations. 
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Figure 10. Basis set recovered from image patches taken from expert data and random 

locations. This set can be used to project the data into a high dimensional space for machine 
classification. 

 

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



Final Technical Report  Busey, T., PI 
 

Page 34 of 64 

Relatively few basis images can reconstruct
the original images (with some error)

 
Figure 11. Relatively few basis functions can be used to reconstruct the original image 

patches, although with some error which mainly translates as blurring of level three details such 
as the shapes of the pores. 
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Figure 12. Example clustering solution based on  a pixel patch size of 128x128, a basis set 

size of 50, using 30 different clusters. Regions of color correspond to collections of pixels that 
are associated with the same cluster of ICA basis activations. Despite the fact that this algorithm 
knows nothing of space, it tends to find that contiguous regions of pixels are associated with the 
same cluster. In addition, it tends to find the core and delta regions of each fingerprint. Although 
this approach awaits validation from human experts, it does seem to capture the different regions 
of the fingerprint and we will use it to define sub-regions for the self-information metric of 
feature diagnosticity. 

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



Final Technical Report  Busey, T., PI 
 

Page 36 of 64 

 
Figure 13. Clustering solution applied to 6 different fingerprints, illustrating how the 

algorithm can identify similar regions in different fingerprints regardless of the exact location of 
the core or delta (see purple areas).  
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Figure 14. In addition to finding the same general feature on different fingerprints, the 

clustering algorithm will also automatically identify corresponding regions on two impressions 
from the same fingerprint. This illustrates the power of the ICA basis function approach, 
especially when clustering is used to identify regions. 
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Figure 15. Examples of other ICA basis functions. This was constructed from a 24x24 pixel 

basis images, 150 basis functions. 
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Figure 16. Examples of other ICA basis functions. This was constructed from a 128x128 

pixel basis images, 450 basis functions (only some shown). 
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Figure 17. Computing self-information. By cross-correlating the basis images (the k’s) 

across hundreds of thousands of image patches in hundreds of images, we construct an estimate 
of how likely that basis image will take on a particular value of activation (Bk). For a particular 
activation ai,j,k, we can then estimate the probability of observing an activation of that magnitude. 
This produces a probability estimate for this activation, which can then be combined with all 
other basis activations to produce the likelihood of observing that particular patch given the 
statistics of the database. This combination is through multiplication, following the independence 
assumption of ICA.  
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Figure 18. Diagnostic regions as revealed by the self-information metric applied using a 

38x38 pixel patch size and a basis set size of 150 pixels. Dark regions are regions that the metric 
determines are most diagnostic, while light regions are less diagnostic. Edge effects are common 
with these techniques and can be ignored. The dark regions seem to correspond to features that 
humans would consider to be interesting, such as minutiae. However, the method also highlights 
regions of severe curvature even in the absence of minutiate, which also may be diagnostic.  
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Figure 19. A second image showing diagnostic regions with the same basis set used in 

Figure 18. Again the method seems to reveal regions that human observers would consider 
diagnostic.  
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Figure 20. Self-information map similar to that in Figure 18, except using a basis set of 360 

basis functions rather than just 150.  
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Figure 21. A rarity map that is relatively unsuccessful at revealing diagnostic features. This 

particular map was generated using a basis set of 128x128, which is probably too large to reveal 
interesting features. This particular basis set does tend to reveal the region above the core in 
multiple images (not shown) which is often where examiners start their search. This example 
illustrates that the choice of basis set is relatively important for the self-information metric to 
work. 
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Figure 22. Another example of a basis set that fails to produce interesting results. In this 

case the patch size was only 16x16 pixels, which is too small to adequately capture detail at 
larger scales. This analysis is successful only at highlighting edges. This demonstrates that the 
choice of basis set size and patch size is critical. 
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Figure 23. Self-information maps for one impression, processed using basis function of 

different sizes. All maps were constructed using 150 ICA basis functions, and illustrate that 
different patch sizes highlight different kinds of information, ranging from fine detail to 
relatively large regions. Top left: Map with basis set size of 24x24 pixels highlighting local 
features. Top right: Map with basis set size of 64x64 pixels. Bottom left: Map with basis set size 
of 128x128 pixels. Bottom right: Map with basis set size of 160x160 pixels highlighting broad 
regions. 
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Figure 24. Strong predictability for a 160x160 pixel patch size basis set with 150 basis 

functions. The red dots corresponds to expert eye fixations, and there is close correspondence 
between the locations of the dots and the regions identified by the metric as diagnostic. 
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Figure 25. As in Figure 24 but with a different image to show generality. Again there is 

close correspondence between the eye fixations of experts and the regions identified as 
diagnostic. 
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Figure 26. Smaller numbers of basis functions may pick up different types of features. This 

is a 128x128 pixel patch basis set with only 16 basis images. It appears to be more specific in the 
regions it identifies. 
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Figure 27. Classification accuracy as a function of pixel patch size for both training and 

testing sets. In this graph, the x-axis is the pixel patch size, and the y-axis is the classification 
accuracy for both training and testing sets. The non-connected points at 75, 150 and 180 
correspond to combinations of pixel patches. The 75 combines 60 and 100, while the 150 
combines the 128 and 160. The value shown at 180 represents all pixel patch sets combined. 
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Figure 28. Overview of data processing for the extraction of temporal dependencies that can 

be used by machine translation procedures to identify regions of correspondence between two 
fingerprints. 
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Figure 29. The corresponding regions from Data Set 1 with inked and latent prints. Left: an 

example result from experts. Right: an example result from novices.   
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Figure 30. The corresponding regions from Dataset 2. Left: an example result from experts. 
Right: an example result from novices.  
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Figure 31. Classification accuracy as a function of spatial scale factor from the CoVar 

model both training and testing sets. Classification accuracy improves as the spatial scale 
increases, suggesting that examiners are relying on configural information in addition to simple 
features. The training and testing classification performance is similar, suggesting that the model 
readily generalizes to novel prints that were not used to train the system. 

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



Final Technical Report  Busey, T., PI 
 

Page 55 of 64 

 
Figure 32. Example Saliency map for Spatial Scale 6 for a training image. Darker regions 

are those regions that the logistic model predicts experts will find most diagnostic, and the red 
dots are fixations from experts. The close correspondence between the two suggests that the 
model accurately captures those features that attract the eye gaze of experts. 
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Figure 33. Saliency map showing good correspondence at spatial scale 7 between the 

fixations and the regions deemed most likely to be associated with expert eye gaze by the logistic 
model (darker regions). These are training images. 
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Figure 34. Example Saliency map for spatial scale 7 for a pair of training (and in this case 

nonmatching) images. The model captures the tendency for the experts to focus on the core and 
region above the core, plus down the tail, while ignoring detail in the tip. 
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Figure 35. Left panel- spatial scale 2. Right panel- same image at spatial scale 6. Different 

spatial scales represent different information, and both seem to be necessary to capture the 
distribution of fixations for this print. These are training images. 
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Figure 36. Example Saliency map a pair of testing images (i.e. one that was not use to train 

the logistic regression classifier). Darker regions are those regions that the logistic model 
predicts experts will find most diagnostic, and the red dots are fixations from experts. The close 
correspondence between the two suggests that the model is able to readily generalize to new 
fingerprints and predict which regions will be visited by examiners. 
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Figure 37. Example Saliency map a pair of testing images (i.e. one that was not use to train 
the logistic regression classifier).  
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Figure 38. Example Saliency map a pair of testing images (i.e. one that was not use to train 

the logistic regression classifier). These are also non-matching images. 
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Figure 39. Illustration of the Hidden Markov Model that has two hidden nodes (here labeled 
Delta and Core but could represent any abstract area). Each hidden node has an emission matrix 
that is a multi-dimensional Gaussian projecting into the feature space. The fixations have a point 
in the feature space as defined by the basis function activations, and the emission matrix 
determines the probability that each fixation belongs to a hidden node. The HMM training fits 
both the transition probability matrix (as determined by the probabilities on the arrows) as well 
as the location of the Gaussians in the high-dimensional feature space. Thus the model fits both 
the temporal relations and determines was constitutes a region or feature for purposes of the 
HMM. 
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Figure 40. Transition probability matrix of the regions visited by fingerprint examiners as 

discovered by a Hidden Markov Model (HMM). The HMM uses the activations of each fixation 
to do spatial clustering while simultaneously fitting a set of transition probabilities between 
different hidden states using a Hidden Markov Model.  Node 5 in the middle comes from the 
starting point at each trial, where the gaze is still in the middle of the screen after initiating the 
trial. 
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