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Abstract 
 

One weakness that currently exists in the field of comparative examination of evidence is the 

general failure of current approaches to adequately assess the significance of association through 

quantitative measures that provide a statistical evaluation of evidence.  While various efforts 

have been made and methodologies employed over the years, such as the measurement of 

consecutive matching striations, tool mark comparisons remain difficult to quantify in a robust 

statistically valid sense. While the desire to develop a methodology that allows the examiner to 

assign confidence levels and predict error rates is universal, the unfortunate truth is that such a 

description (similar to what is possible in the field of DNA) is an unattainable goal in toolmark 

analysis since the population will continually increase and the variability cannot be satisfactorily 

defined.  However, this is not to say that statistical relevance cannot be assigned to toolmark 

examination.  Relevance can be assigned if one is careful about the structure of the study 

attempted. 

 

In a recent study of tool marks produced by sequentially made screwdriver tips the authors 

developed a computer algorithm that was able to reliably separate matching tool marks from 

those that do not match using an analysis based on Mann-Whitney U-statistics applied to data 

files containing 2-dimensional information obtained using an optical profilometer.  These 

successful results indicate that significance of association can be accomplished by statistical 

evaluation of the data files.  The work carried in the present project (and discussed in this report) 

built upon this success by providing additional statistical information that will increase the 

relevance of the measurements obtained. Thus, the overall goal of this work was to increase the 

statistical relevance of toolmark analysis. To achieve this goal two distinct objectives were 

identified:  

 

1) Extend the previously developed statistical methodology to allow for self-calibration to 

control rates of false non-matches. 

 

Our previous work (Chumbley et al., 2010) has focused on the use of the Mann-Whitney U-

statistic as an index for assessing the similarity of toolmarks.  While it has been empirically 

shown to be useful in sorting mark-pairs made by the same tool from mark-pairs made with 

different tools, it is also influenced by many other aspects of the toolmark structure, hence a 

single value cannot be used as objective evidence (with quantifiable risk) for or against a match.  

The current work has focused on overcoming this difficulty by using multiple test marks made in 

the laboratory, in a ``self-calibrated’’ analysis.  In short, comparison values between lab marks 

(that are known to match) form the basis for comparisons between lab marks and evidence 

marks, eliminating the need for “universal” critical values (i.e. single sets of constant references 

values such as those found in commonly used statistical tables) for the comparison index.  A 

formal statistical analysis based on likelihood functions have been developed to allow for control 

of false non-match calls. 

 

2) Empirically validate the methodology developed by performing experiments using a 

different type of tool mark.  
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The first part of the project dealt with objective one.  In this task the variability of marks from 

screwdriver tips by characterized examining multiple marks made by a trained forensic 

examiner.  The data was used to establish the variation in U-statistic values inherent in the 

system and allowed likelihood analysis to be conducted denoting significance of association 

between lab-lab comparisons and lab-field comparisons made at the same angle.  With the initial 

model established, modifications were then undertaken to generalize the model to be applicable 

to marks made at all angles. In this analysis it was shown that the angle at which mark was made 

could be deduced to a fairly high level of accuracy. 

 

In the second part of the project the second objective was attained by applying the algorithm 

developed in the previous study to an entirely new system separate and apart from the 

screwdriver tool marks studied initially. In this case, markings produced by shear cutting metal 

wire using the shear face on pliers were analyzed and tested to determine the applicability of the 

approach. Since the marks produced are not regularly striated, this study represented a significant 

extension concerning the performance of the algorithm.  The study found that with adjustment of 

the analysis parameters used, known matched sets of data from these quasi-striated marks, i.e. 

marks characterized by groups of striations instead of regular striae, could be successfully 

differentiated from known non-match sets.  Areas for improvement were also identified that will 

make the system even more reliable.  Successful validation of the methodology has created a 

wide range of possible future applications for the developed statistical algorithm that could 

revolutionize comparative tool mark analysis. 
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Executive Summary 
 

1. Synopsis of the Problem 

 

The problem addressed by this work is one that has received much attention over the past few 

years, namely, how can the field of forensic examinations be moved from a simple subject 

comparison to a more objective analysis involving quantifiable measurements and valid 

statistical descriptions?  This is a difficult proposition since the majority of comparative 

forensic analyses are essentially open systems and subject to variability.  However, this problem 

can be effectively addressed in a number of ways.  In this project, efforts to increase the 

objectivity of the analysis involved examining data obtained from multiple marks, then using this 

data in both a likelihood analysis and to investigate the angle effect, i.e., how a toolmark changes 

as you vary the angle of attack of the tool associated with making a toolmark. 

 

Also problematic is that the wide variability of toolmark types makes it difficult to develop an 

algorithm suitable for more complex marks. The earlier algorithm developed in [1] was therefore 

tested to determine suitability for use in quasi-striated marks. 

 

 

2. Purpose 

 

The research hypotheses adopted for this study are stated as follows: 

 

Hypothesis #1:.  The effectiveness of quantitative toolmark comparison can be improved by 

including multiple marks made by the suspect tool, and by the use of statistical models that 

reflect relevant sources of variation and correlation. 

 

Hypothesis #2: Objective analysis of quasi-striated marks is possible.  The same (or a similar) 

algorithm applicable to striated marks can be developed that provides the same level of 

performance and confidence as seen for striated marks. 

 

The methods used to test these hypotheses varied substantially.  Therefore, the work is described 

in two distinct sections or tasks, each task being related to one of the above stated hypotheses.  

Task I consisted primarily of a mathematical analysis of existing data to see if means could be 

found to increase statistical relevance.  The models developed were then tested in various ways.  

Task II involved experimental data acquisition of toolmarks of a type that have been shown to be 

difficult to analyzed using methods designed for regularly striated marks.  The purpose of this 

study was to determine whether the current algorithm developed at Ames Lab / Iowa State 

University and used successfully on striated marks was robust enough to be used in evaluating 

other kinds of tool marks in which parallel striae are not so dominant.  

3. Research Design 

 

Task I: Statistical Relevance 

The research design for the statistical validation study used data obtained from 50 sequentially 

manufactured screwdrivers.  Toolmarks from these screwdrivers were made in lead at a variety 

of angles ranging from  30 degrees to  85 degrees, using both sides of the screwdriver.  At least 

four replicates were made of each toolmark, providing a large database of measurable toolmarks.  

Quantification was carried out using a stylus profilometer. 

 

The analysis undertaken was based on the assumption that a single tool mark was found at the 

crime scene.  A suspect tool is obtained and forensic examiners make several marks using the 
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suspect tool in the lab under controlled conditions.  By comparing multiple marks all known to 

be made by the same tool in the lab, a sample of matching mark-pairs can be created from that 

tool.  The same lab tool marks can be compared to the field mark to create a smaller sample of 

mark-pairs with an unknown matching status.  Rather than evaluating only one mark-pair, there 

now exist two samples that can be compared; if there is no apparent systematic difference 

between these two samples, this supports the argument that the marks were all made by the same 

tool, i.e. that the crime scene tool mark and lab tool marks “match.” 

 

Let    represent the tool mark that was found at the crime scene.  Let   , ...,    represent the n 

tool marks that were made by the suspect tool in the lab.  Note that all comparisons of the marks 

not including    are known matches all made by the same tool under the same conditions.  Let 

    represent the numerical index value of similarity that results from comparing    to   .  If all 

pairwise comparisons of available tool marks are made, this results in two different types of data.  

The first set,     for j = 1, ..., n, includes all comparisons of the field mark to a lab mark.  This 

type of data is designated field-lab comparisons.  The second set is     for i, j = 1, ..., n and i < j.  

These data values represent indices of similarity for a known match from the suspect tool, which 

are designated lab-lab comparisons. 

 

The collection of all data values will be denoted by the vector y, which is of length N.  When all 

possible comparisons are made there are ( 
 
) lab-lab comparisons and n field-lab comparisons, so 

N = ( 
 
) + n.  For the purposes of this report, the data is discussed in terms of the number of lab 

marks, such as a data set of size n.  Note that this means there are n + 1 tool marks under 

comparison. 

 

The question is whether or not the suspect tool was used to make the tool mark found in the field.  

If the field-lab comparisons are indistinguishable from the lab-lab comparisons then there is no 

evidence that the tool marks are different, and the data are therefore consistent with the 

hypothesis that all marks were created using the same tool.  However, if the field-lab comparison 

values are relatively small compared to the lab-lab comparison values, then there is evidence that 

the field mark and the lab marks were created using different tools. However, if the data 

representing field-lab comparisons are generally smaller in value than the data representing lab-

lab comparisons, then there is evidence that the field mark and the lab marks were created using 

different tools. 

 

A simple hypothesis test is used to compare the field-lab and lab-lab comparisons.  Let    be the 

mean for a field-lab comparison, that is        =    for j = 1, ..., n.  Let    be the mean for a lab-

lab comparison, so              for i, j = 1, ..., n and i < j.  It is assumed that all data values 

have a common variance defined as Var(   ) = σ
2
 for i, j = 0, 1, ..., n and i < j, that each     is 

normally distributed.  Finally, denote by y an N-element vector of all comparison values, and 

assume that the joint distribution of y is multivariate normal.  The mean of y is a vector of means 

   and    with the form   = (    
        

 )
 
 , where   designates a vector of 1’s of size 

indicated by the subscript, and the variance of each element of y is σ
2
.  To finish defining the 

joint distribution of y, one needs to develop an appropriate dependency structure reflecting the 

way the data are generated. 

 

Each     is the result of comparing two tool marks, specifically    with   .  Thus, at most four 

physical tool marks (i.e. up to two for each pair-wise comparison) are involved in the 

consideration of covariance between two data values.  Since these four tool marks are not 

necessarily unique, one can say two data values are correlated with correlation ρ if a common 
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tool mark is involved in both comparisons.  That is,     is correlated with     if i = k, i = l, j = k 

or j = l.  Two comparisons with no marks in common are uncorrelated.  The case of two 

comparisons made on the same pair of tool marks is not considered because those similarity 

values would be identical, i.e. there is no measurement-specific “error” in this system, and so no 

point in replication.  Let R be the N × N correlation matrix of y defined by the following entries 

 

 

 
 

To finish defining the joint distribution of all pairwise comparisons of tool marks, let y be the 

vector of all pairwise comparisons (both field-lab, and lab-lab) ordered so that each     is such 

that i < j.  Then y ~ N (µ,σ
2
R) where µ = (    

        
 ) and each element of the matrix R is as 

defined in (1).  

 

 

The model described suggests there could be separate means for the two available samples, field-

lab and lab-lab comparisons.  This enables hypothesis testing to be conducted, and using Normal 

model theory and weighted least squares, maximum likelihood estimates (MLEs) can be easily 

derived. Details of how this was done are provided in the full text.  Likelihood analysis is 

effective in determining a match of tool marks under carefully controlled test conditions in which 

all tool marks are produced the same way.  However, in order to be useful in practice, it must 

also perform well when tool marks are made under different conditions. It is known empirically 

that when tool marks are made at the same angle, and the field mark was not made by the suspect 

tool, analysis of the field-lab comparisons show no correlation while the lab-lab comparisons 

show high correlations match.  However, for angles that differ by 10 or more, even the lab-lab 

comparisons show low correlation.  In other words, even when marks are made by the same tool, 

if the tool angles differ by 10 or more, the comparison values resemble those from non-

matching tool marks. 

 

Knowing this, it is important to generalize the approach to account for these effects.  It is 

impossible to know the tool angle that was used to make a mark left at the crime scene.  

However, in a lab, tool marks can be made at any angle to try to better match a crime scene 

mark.  If enough tool marks are made in the lab at angles differing by 10 or less, it should be 

possible to find the best match of a field mark to lab marks to estimate the angle at which the 

field mark was made. 

 

Before the basic model is modified to account for angle information, more notation is necessary.  

Let    be the tool angle, in degrees, at which tool mark    is made for i = 0, 1, ..., n.  Tool angles 

will be incorporated as a function of their absolute difference, |     |, which will be denoted 

by the similarity measure          . 

 

The mean response for data values is large when the angles are the same and approaches zero as 

the difference in angles increases.  Comparisons of matching tool marks made at angles differing 

by 10 or more resemble non-matches, so these facts will be reflected in         .  The function 

chosen to represent the difference in angles was  (     )        (     )
2
] where       .  

This was chosen so that            when tool angles match, is much smaller when |     |   

10 and approaches zero as |     | continues to increase.  This functional form has no particular 
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physical basis, but empirically reflects the trends seen in the data.  The data available in this 

study did not support formal estimation of the parameter  , but this might be possible – and 

desirable – for larger data sets. Therefore, a modified data model incorporating tool angle is 

 

 
 

where α0 and α1 can be thought of as “regression coefficients” represent the extent of the effect 

of angle similarity on the data.  So, where the field and lab marks are not made by the same tool, 

it would be expected that α0 would be near zero, since similar angles should not improve the 

“apparent similarity” of tool marks in this case. That is, the mean of a data value is a linear 

function of the overall mean of the comparisons and the similarity measure between the tool 

angles used in making the marks.  Similar to the initial model different mean functions for field-

lab and lab-lab comparisons are allowed for through different regression slopes.  Thus, 

inferences about whether or not the suspect tool made the crime scene marks can again be made 

with a likelihood ratio test.  However, of interest now is comparing the alternative hypothesis 

defined by the model described in (2) through (4) with a null hypothesis defined by a simpler 

model that does not discriminate between field-lab and lab-lab comparisons.  That null model 

can be stated as 

 

 
 

Both the null and alternative models assume that the angles are known for every tool mark made 

in the lab; that is   , ...,    are known.  The angle of the mark made in the field,   , is unknown.  

Thus,    is a parameter in the model along with  ,   ,   ,  ,    and ρ.  The correlation structure 

described in equation (1) remains for this model and ρ will still be chosen using a grid search 

between 0 and 0.5.  Since the tool angle needs to be accurate within 10 to see evidence of a 

match, the maximum likelihood estimation procedure incorporates a grid search of values for    

in increments of 5 between 20 and 90.  These angle bounds were chosen as reasonable angles 

for which a tool mark could be made and leave behind a viable mark.  Maximum likelihood 

estimates for the remaining parameters can be computed using weighted least squares provided 

values of    and ρ.   

 

With a model now in hand extensive testing could be conducted. The results of these tests are 

summarized under Section 4 of the Executive Summary, Findings and Conclusions. As stated 

above under Section 2 of the Executive Summary, Purpose, the experimental work of this 

proposal fell naturally into two Tasks. The experimental methodology of Task II will now be 

summarized. 

 

Task II: Analysis of Quasi-Striated Marks 

For this experiment, 50 pairs of sequentially manufactured slip joint pliers, as nearly identical as 

possible, were used to produce samples for evaluation.  To make the samples, copper wire of 

0.1620” diameter was obtained and cut into two-inch lengths with bolt cutters to distinguish the 

ends from the shear cuts made by the pliers. The cut lengths of wire were placed centered in the 

plier jaws on the shear surface and shear cuts of the copper were made, taking care to keep the 

sides of the pliers consistent as the shear cuts were made. The total number of copper samples 

thus obtained was 1000, with 500 shear cuts in contact with one side of each pair of pliers 

(2) 

(3) 

(4) 

(5) 

(6) 
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(designated Side A) and 500 shear cuts in contact with the other side (i.e. Side B).  Each shear 

cut mark surface was scanned optically with an Alicona Infinite Focus G3 profilometer at 10x 

magnification to acquire the surface geometry of the mark. Shear cuts made in this manner are 

quasi-striated, i.e. linear striae do exist but vary considerably across the surface of the shear cut 

mark due to the shearing process involved.  If the process were completely cutting in nature 

regular striae would be the expected result. 

 

Once the data were acquired, noise spikes around the edges of the mark where no signal was 

acquired were removed by development of a cleaning routine and the data was de-trended.  De-

trending was necessary because due to the manner in which the data were collected the line 

profile of each mark data file had an increasing linear trend in the z direction moving from one 

side of the mark to the other. Such a trend is common when using profilometers since the surface 

analyzed is rarely exactly parallel with the direction of scanning.  Trending was corrected by 

subtracting a fitted plane, fit to match that of the original data file using a least squares process, 

from that of the trended data. 

 

Comparisons between the marks were made using the algorithm developed by the PIs in a 

previous study and completely described in [1]. This algorithm uses a Mann-Whitney statistical 

approach to make comparisons between two data sets.  Comparisons were conducted at two 

locations, close to the end of the mark and close to the start of the mark.  These mark locations 

were chosen to examine differences between the beginning of the shear cut, where the mark has 

short and variable length striae, and the end of the mark, where the striae are longer and appear 

to be more regular. 

 

Each side of the pliers was considered to be a separate data set, the assumption being, as 

confirmed by forensic examiners, each side acts as a different surface.  Given there are 50 pairs 

of pliers, with two sides for each pair of pliers and ten replicate shear cuts for each side of each 

pair of pliers, the total number of samples possible for examination came to 1,000 discrete data 

sets. 

 

 

4. Findings and Conclusions 

 

Task I: Statistical Relevance 

Since it was known that all the tool marks used in each analysis are made by the same tool, one 

expects the field-lab and lab-lab comparisons to result in similar data values, so only one 

regression slope for the similarity measure,         , should be needed for an adequate model fit 

since lab and field marks are actually interchangeable in this case.  Thus, the null model 

described in equations (5) and (6) above should be the best model for these data and the 

distribution of p-values (i.e. attained significance levels) from these likelihood ratio tests should 

be distributed approximately uniformly between 0 and 1.  This was indeed the case in most 

instances.  However, it was noticed that a large portion of the LRTs resulted in very small p-

values, contrary to fact, leading to a close examination of the individual tool marks.  Two 

recurring issues in the data were present in the majority of field marks that resulted in LRTs with 

small p-values, the first related to the quality of the acquired data, the second related to data 

acquisition at the very ends of each profilometer scan.  Both types of poor data resulted in 

incorrect / inaccurate analysis by the algorithm.  In addition to problems associated with data 

quality, it was found that some of the very small p-values originated from a more fundamental 

problem with the algorithm described in [1].  In several instances best matching windows were 

found that were physically impossible, for example, they occurred at opposite ends of the mark 

in highly sloped regions.  This “opposite end” match results in problems for the algorithm when 
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running the validation step.  After removing obviously poor data, the data sets and the analyses 

were run again, producing much improved results. This indicates that the performance of the 

algorithm may be enhanced significantly by the introduction of screening algorithms to test the 

data quality before matching is attempted. 

 

To further examine the efficiency of the modified models and the LRT, also examined was the 

accuracy of the estimates of   , the tool angle with which the field mark was made.  Overall, the 

null model does fit well to the data in most cases where the data are matches, and the estimation 

process for the field angle seems reasonably accurate. 
 

To create non-matching data sets, all n = 20 tool marks made from the same tool were considered 

to be lab marks.  Field marks were chosen out of the remaining five tools, one mark from each of 

the 5 angles available for each tool.  The data sets were assembled by comparing the field mark 

with each of the lab marks and comparing the lab marks pairwise with one another.  This process 

was repeated for two different sets of lab tool marks, resulting in a total of 50 data sets for which 

the lab tool and field tool are not the same. 

 

For non-matching data, all of the field-lab data values should be close to zero regardless of the 

tool angles since the marks were made by different tools.  However, most lab-lab comparisons 

will result in a larger comparison value since they are true matches.  This discrepancy should 

show up in the models through the regression slopes.  One could expect that the alternative 

model will be a better fit to these data since the coefficient for the angle similarity function, 

         , will be close to zero for the field-lab comparisons but large for the lab-lab 

comparisons.  Thus the alternative model should be a better fit to these data and the p-values 

from the LRT should be small, i.e. the distribution of p-values should be skewed with greater 

frequencies associated with smaller p-values.  

 

When this model was tested on the data sets, as expected, the p-values were mostly small and 

had an overall skewed shape.  This supports the hypothesis that the alternative model which 

allows for multiple regression slopes is a better fit to these data and provides evidence that the 

lab tool marks do not match the field mark in most of these tests. 

 

 

Task II: Analysis of Quasi-Striated Marks 

A sampling format was set up to compare three different groups of data: known matches, known 

non-matches from the same pair of pliers (i.e. different sides), and known non-matches from 

different pairs of pliers. The same algorithm used in an earlier work for striated marks [1] was 

applied in this study to examine the quasi-striated marks made by the slip joint pliers, and details 

can be found in the quoted references and in the full text concerning the operation of the 

algorithm.  

 

Initial results used the same algorithm parameters that had been successfully employed for 

striated mark comparisons.  However, the success of identifying known matches was relatively 

low, there being little separation between the returned T1 values (a normalized form of the 

Mann-Whitney U statistic;  see, e.g., Conover [2] for details) of known matches and non-

matches.  From the minimal success of the first attempt at matching the plier marks, several 

changes were decided upon for further comparisons.  This involved using de-trended data to 

remove problems associated with non-flat samples and a series of experiments was conducted 

where the window sizes were varied in a consistent manner to evaluate the effect window size 

has on the resulting T1 value.  Window sizes were varied in two ways, firstly in the absolute size 

of the search and validation windows employed, and secondly in the ratio of sizes employed.  
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The results of these experiments showed that the performance of the algorithm increased 

dramatically.  By increasing window size, while known non-matches returned values centered 

around zero regardless of window size, the T1 value for known matches increases from just 

slightly over zero to an average of 6.36 and 6.09.  However, the data range increased as well, and 

at the larger window sizes numerous outliers exist and failure of the algorithm occurs in some 

cases, especially for the short edge comparisons.  This problem was addressed by changing the 

ratio of window sizes used for the search and validation steps.  Results of these experiments 

showed that higher window ratios did have a significant effect in reducing the number of outliers 

and spread of the known matches.  While a slight degradation in the maximum T1 values 

obtained was seen for the known matches there was still significant separation between the 

known matches and non-matches.  Less change was seen in the results for the known non-

matches, whose average values still were centered around zero. 

 

Outliers are seen in all the data sets, both known match and known non-match.  Examination of 

these data files points to the same problem with the algorithm noted above under the Task I: 

Statistical Relevance section, namely, the “opposite end” match problem.  In its current form, the 

algorithm has maximum flexibility, allowing marks to be compared along a linear direction both 

forwards and backwards.  However, a screening option is being considered that will 

automatically determine whether an “opposite end” match has occurred and alert the user to this 

possibility. The user can then examine only those files so flagged and decide whether an 

incorrect match has occurred. 

 

5. Implications for Policy and Practice 

 

Task I: Statistical Relevance 

The implications of this study for policy and practice are as follows.  The statistical analyses 

carried out on toolmarks in this work clearly adds further evidence that the long-held 

assumptions under which forensic examiners operate, namely, that all toolmarks are unique, does 

have a sound scientific basis.  However, if a truly objective, quantitative analysis is desired such 

as was carried out in this study, it may require examiners to generate more lab samples for 

comparison than is typically done now. 

 

Task II: Analysis of Quasi-Striated Marks 

Successful application of the algorithm described in [1] to quasi-striated toolmarks has two 

major implications.  Firstly, the work shows once again that there is a scientific basis for 

objective, quantitative toolmark identification.  Secondly, as this represents one of the first 

successful analyses on a quasi-striated toolmark, it implies that it should be possible to 

characterize and classify all types of toolmarks, given the right type and quality of data and the 

appropriate analysis algorithm. 
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I. Introduction 
 

Research into objective, quantitative, analysis of evidence such as is found in comparative 

forensic examinations has been a focus of the group at Ames Laboratory / Iowa State University 

for quite some time.  The work conducted under this project, for which this document constitutes 

the final report, falls into two reasonably distinct tasks.  Task I involved continued examination 

of data acquired under an earlier effort concerning screwdriver toolmarks in an attempt to add 

further statistical relevance to the characterization and analysis previously undertaken.  Task II 

involved an examination of an entirely new set of marks, namely, shear cut marks produced 

when wire is mechanically separated by slip-joint pliers.  The toolmark produced in this action is 

not regularly striated, but varies over the length of the mark. 

 

For both tasks the problem statement and literature review is the same when considering the 

broad scope of the work undertaken.  However, the research hypotheses tested vary, as do the 

experimental methods used and the results.  Therefore, the organization of this report is such that 

the Methods and Results of these two distinct Tasks will be dealt with separately for the sake of 

clarity. 

 

1. Statement of the Problem 
 

The problem addressed by this work is one that has received much attention over the past few 

years, namely, how can the field of forensic examinations be moved from a simple subject 

comparison to a more objective analysis involving quantifiable measurements and valid 

statistical descriptions?  Various attempts have been made in recent years to introduce 

objectivity into toolmark analysis, driven equally by the well-known Daubert decision and the 

highly publicized success of DNA testing, which can link a suspect to a crime scene with a high 

degree of statistical reliability.  This is possible since the boundary conditions involved in DNA 

testing are well known.  This is not the case in the majority of comparative forensic analyses, 

which are inherently more open and subject to variability. We believe this problem can be 

effectively addressed in a number of ways.  A first attempt was made in a previous study by the 

authors [1] involving the objective comparisons of striated marks produced by sequentially made 

screwdrivers. Much of the work presented in this report builds on this earlier effort.   

 

In this project we have expanded the scope of the investigation to examine the variability 

between striated marks.  We sought to increase the objectivity of the analysis by examining data 

obtained from multiple marks made from the same tool. This data was used in both a likelihood 

analysis and to investigate the effect making a toolmark at different angles has on the possibility 

of identification. 

 

Also problematic is that the wide variability of toolmark types makes it difficult to develop an 

algorithm suitable for more complex marks. The earlier algorithm developed in [1] was therefore 

tested to determine suitability for use in quasi-striated marks.  This involved examination of 

irregular, quasi-striated marks that result due to shear cutting. The specific samples used were 

obtained by shear cutting copper wire using sequentially made pairs of pliers. 
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2. Literature Review 
 

Historical Background 

 

The history of forensic analysis of toolmarks and firearms stretches back nearly 180 years to the 

first documented case of firearms identification in 1835 [2]. Early firearms identification relied 

primarily on the identification of the caliber, any macroscopic imperfections of the bullet, and 

the shape and type of bullet used in the crime [3]. The case in question occurred in the City of 

London, England in 1835 when Henry Goddard, a part of the police force, was able to identify 

the mold mark on a fired lead ball used in committing a crime. He also was able to identify the 

paper patch used in firing the black powder weapon. From these clues, Goddard was able to 

deduce the guilty party and bring him to justice [2]. 

 

The late 1800s and early 1900s saw an increased interest in firearm identification. This interest 

included several court cases within the United States, and promoted research conducted 

throughout the U.S. and Europe. Published works included titles such as, “La Deformation Des 

Balles de Revolver” (Deformation of Revolver Bullets, 1889), “The Missile and the Weapon” 

(1900), “Zur Sachverstandign Beurteilung Von Geschossen” (The Expert Examination of Fired 

Bullets, 1905) written by A. Lacassogne of Lyon, France, Dr. Albert Llewellyn Hall of Buffalo, 

New York and Dr. R. Kockel of Leipzig, Germany, respectively [2]. Some credit Dr. Kockel 

with the first use of striation matching of toolmarks, which occurred around 1900. In his first 

paper, Kockel identified knife cuts made in wood through oblique lighting and photography. In a 

later notable paper, he described the examination of marks through magnification and measured 

the relative spacing with calipers. Additionally, this paper noted the change in geometry of the 

toolmark with different attacking angles of the knife blade [3]. 

 

Most early studies and cases largely focused on ballistic toolmarks, with the exception of a few 

studies including Dr. Kockel’s work as previously described. In 1948, Dr. Thomas of the 

University of Ghent added to the toolmark references by publishing a paper describing the 

toolmarks left on a skull by an axe. Since then, many different types of toolmarks have been 

characterized [3]. 

 

In 1942 a notable paper was published by Burd and Kirk examining the marks made by 

screwdrivers. In this study [4] the authors addressed four different points: 1)  the effect of 

varying the angle of application of the screwdriver on a toolmark, 2) establishing the necessary 

criteria for identification, 3) assessing the similarity between tools with identical appearance and 

manufacturing process, and 4) classifying the different types of marks that can be encountered. 

Burd and Kirk pointed out in the study the traditional method of examining toolmarks with 

oblique lighting and a comparison microscope will only yield a match if, and only if, the marks 

in question have a similar contour, since this is reflected in the “lines” or striations seen through 

the microscope. The authors go on to conclude several important points. First, two marks made 

with the same tool must be made with a difference in vertical angle of no more than 15 degrees if 

a match is to be obtained. Similarly, two marks made with the same tool must be made with a 

difference in horizontal angle of no more than 20 degrees if a match is to be determined. The 

authors also established the maximum percentage of lines that matched in non-match 

comparisons did not exceed 25% and when match comparisons were performed this percentage 

jumped to around 80%. Additionally, examination of “identical” tools produced noticeably 

unique marks that could not be matched to another “identical” tool.  

 

Tongue and groove pliers were evaluated in 1980 by Cassidy [5]. These pliers are often used to 

pry open door handles and their marks are simple striated marks stemming from a plier tooth 
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sliding across a surface gripped in the pliers’ jaws. For this study Cassidy procured three sets of 

upper and lower jaws that were sequentially broached with no further manufacturing processes 

applied to preserve any subclass characteristics present from the broaching process. He observed 

no subclass characteristics that might be mistaken for individual characteristics. In the study’s 

discussion, Cassidy demonstrates that the pliers’ teeth were broached perpendicular to the 

direction that the marks are made and would not produce any subclass characteristics in the 

striated marks. Furthermore, actual tongue and groove pliers in production go through many 

processes after broaching; thus, marks produced by these mass production pliers would produce 

only marks that have individual characteristics.  

 

The studies cited above in no way constitute the entirety of the research carried out on toolmarks.  

By way of example, studies related to firearm identification [6-9], tool mark comparisons 

[10,11], knife markings [12,13], tire and shoe tracks [14,15], bolt cutters [16-18], drill bits [19], 

rotary glass cutters [20] etc., can all be found in the AFTE journal.  The sheer volume of work 

attests to the effort on the part of examiners and others to define the limits of their field and 

establish best practices and protocols.  All these studies have shown that given the right 

conditions, comparative studies can be used to correctly relate evidence obtained at a crime 

scene to evidence obtained either from suspects or to exemplars produced in a laboratory setting.  

It is equally well documented that important exceptions exist in every field, where identification 

is difficult, questionable, or impossible.  In such cases examiners by training are taught to err on 

the side of caution.  However, as this is a subjective assessment the field will always be open to 

questions of impropriety unless the status of the evaluation can be made more objective in 

nature.   

 

Recent Studies 

 

Since the 1993 Daubert vs. State of Florida decision the scientific basis for conducting 

comparative forensic examinations has been called into question. Attacks concerning the 

reliability and relevance of many forms of forensic evidence have increased in recent years due 

to the widespread publicity surrounding a number of unfortunate misidentifications that have 

occurred. 

 

The lack of studies aimed at determining definitive error rates associated with any particular field 

that relies upon comparative identification was recognized by a recent National Academy of 

Science report Strengthening Forensic Science: A Path Forward [21]. As stated in the Executive 

Summary of the report,  “A body of research is required to establish the limits and measures of 

performance and to address the impact of sources of variability and potential bias. Such 

research is sorely needed, but it seems to be lacking in most of the forensic disciplines that rely 

on subjective assessments of matching characteristics. These disciplines need to develop 

rigorous protocols to guide these subjective interpretations and pursue equally rigorous 

research and evaluation programs.”  The development of such protocols is difficult at best, 

given the complex nature of the problem to be addressed.  However, such studies are starting to 

emerge in an effort to answer these critical assessments. 

 

With the availability of inexpensive computing power and increasingly precise metrology 

instruments, toolmarks are being reexamined through objective statistical comparison of their 3-

D profiles. In 2007 Faden et al. [10] developed a computer algorithm to compare and match 

surface data taken from a stylus profilometer. In the study, 44 sequentially manufactured 

screwdriver tips were used to create marks at 30, 60 and 85 degrees from both sides of the 

screwdriver blade and the profilometer used to record the surface contours of the mark through 

9600 data points. A computer program was then used to compare the collected profilometer 
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traces. Three different comparison data sets were generated: 1) true matches, 2) true non-

matches, and 3) comparisons between side A and side B of the screwdriver blades. The Pearson 

correlation was calculated for all comparisons. Faden et al. determined that while there is a 

significant separation in the correlation values between true match and true non-match marks at 

the same angle, the Pearson correlation is not effective at determining when an actual match 

exists. Moreover, marks made from different sides of the same screwdriver tip produced a 

separation of data consistent with that of non-matches.  

 

In 2010 Bachrach et al. [22] expanded the research of statistical comparison of toolmarks by 

evaluating screwdriver marks, and tongue and groove plier marks through confocal microscopy. 

In this study, Bachrach et al. examined marks made by screwdrivers at different angles in lead 

and aluminum. In addition, they examined the marks from tongue and groove plier marks in lead, 

brass and galvanized steel. After scanning the marks with a confocal microscope, the mark data 

were normalized to level the data, and then put through a signature generation process. This 

process took the cross sectional profile of the mark and applied a Gaussian band pass filter to 

eliminate class characteristics within the mark. Then, two signatures were run through a 

correlation component to evaluate the two signatures’ similarity to each other. From this study, 

several conclusions were drawn. First, striated toolmarks in the same medium and produced 

under the same conditions are repeatable and sufficiently specific to allow identification. Second, 

striated toolmarks created with the same conditions, but different media, have a high 

reproducibility. Third, screwdriver marks depend on the angle at which they are made more than 

the media in which they are created. Fourth, the probability of two tools displaying similar 

features is extremely small. Finally, the probability of error originated from a poor toolmark 

image, not from the tool’s failure to create an individual toolmark.  

 

Chumbley et al. [1] continued with the work performed by Faden et al. in 2010. In this study, a 

statistical algorithm was used to evaluate its effectiveness in comparison to actual toolmark 

examiners. Again, data were collected by a stylus profilometer for 50 sequentially manufactured 

screwdriver tips. Marks were made at 30, 60, and 85 degrees for both sides of the screwdriver 

tip, A and B. The mark profiles collected were then analyzed by a statistical algorithm. These 

calculated results were then compared to a double blind study where 50 experienced toolmark 

examiners evaluated a given sample set with which the algorithm had difficulty. The results from 

this study showed that while the objective algorithm was very effective in discriminating 

between known matches and known non-matches, it still did not reach the level of performance 

of experienced examiners.   

 

Objective statistical comparison continued through research done by Petraco et al. in 2012 [23]. 

In research supported by the U.S. Department of Justice, Petraco evaluated striated marks from 

screwdrivers and chisels, as well as striated and compressed marks from cartridge cases. Like 

Bachrach et al., Petraco et al. also used confocal microscopy when collecting the surface profiles 

of the sample marks. The results of this study showed chisel marks were patchy at best and 

proved too complicated for the developed software to analyze successfully. Screwdriver and 

cartridge cases had much more success in comparisons and had very low error rates. With the 

successes and the difficulties associated with this current software, Petraco et al. have made their 

marks and software open sourced and accessible to others in the forensic community. 

 

Summary 

 

Examination of past and recent papers on this subject reveals several common themes or findings 

that should be noted.  These are summarized below: 
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1. A large body of work exists showing that comparative examinations can successfully be used 

to identify toolmarks from specific tools / firearms.  Such comparisons are traditionally 

qualitative in nature. 

 

2. Quantitative methods can be employed satisfactorily to discriminate between known matches 

and known non-match comparisons.  However, toolmark analysis is inherently different than 

DNA analysis where all parameters can be adequately described.  The diversity of the field 

precludes statistical validation on the same level as can be obtained for DNA. 

 

3. Quantitative analysis of different types of toolmarks present different challenges. Statistical 

analyses that have been shown to work well for a striated mark perform less well or fail 

completely when used on other marks such as impressed marks. 

 

 

3. Research Hypotheses 
 

The research hypotheses adopted for this study address Summary points #2 and #3 as noted 

above.  Namely, these are stated as follows: 

 

Hypothesis #1: The effectiveness of quantitative toolmark comparison can be improved by 

including multiple marks made by the suspect tool, and by the use of statistical models that 

reflect relevant sources of variation and correlation. 

 

 

Although the effectiveness of these methods cannot be validated to the same level of satisfaction 

as methods used with DNA data, the results still serve to show that the conclusions reached are 

objective in nature and possess a sound scientific basis. 

 

Hypothesis #2: Objective analysis of quasi-striated marks is possible.  The same (or a similar) 

algorithms applicable to striated marks can be developed that provide the same level of 

performance and confidence as seen for striated marks. 

 

By showing that all types of toolmarks can be analyzed objectively the long-held assumption that 

all toolmarks are unique is strengthened. Objective, quantitative analysis also opens the door to 

further development of advanced characterization algorithms. 

 

The methods used to test these hypotheses and the results obtained are presented below. The 

methods employed vary quite substantially for the two hypotheses, separating the work quite 

naturally into two distinct tasks.  Task I, whose goal was to test Hypothesis #1, consists primarily 

of a mathematical description of the approach taken to increase statistical relevance and the 

testing of that approach.  Task II, whose goal was to examine Hypothesis #2, involved more of 

an experimental approach to using the current algorithm developed at Ames Lab / Iowa State 

University.  

 

As this work constituted the theses of two graduate students at Iowa State University, the two 

Tasks as outlined above will be discussed separately, with appropriate sections related to 

Methods, Results, and Conclusions contained entirely within each Task heading.  Much of the 

text below comes directly from what will be submitted in partial fulfillment of the graduation 

requirements for these students.  Summaries of the work will also be submitted to internationally 

refereed journals for evaluation by the PIs peers.  Plans at this time include submitting results 
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associated with Task I to Technometrics and those associated with Task II to the Journal of 

Forensic Science. 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 



16 

TASK I: Statistical Relevance 
 

II. Methods 
 

As previously mentioned, several authors have proposed algorithms to quantify the matching 

process for striated tool marks.  This study focused on the algorithm proposed by Chumbley et 

al. [1]. For their algorithm, the first step in quantifying the comparison of tool marks is to digitize 

the marks. Data obtained in that study was acquired using a Hommelwerk surface profilometer, 

Figure 1(a), with a vertical resolution of 0.005 microns over a 7 mm trace that contained 9600 

discrete points or pixels. The data obtained consists of depths of the grooves recorded at a 

function of “pixel" location. When the numeric depths are plotted by pixel location, the result is 

a digital tool mark like that shown in Figure 1(c) (N.B. The actual mark left by the screwdrive 

starts at ≈ pixel location 2000. The large spike on the left is typical of the edge of the toolmark.) 

Because the striated surface is essentially a set of parallel ridges, most of the useful information 

about the individual characteristics of the tool can be characterized by this single index data 

series. 

 
 a. b. c. 

  

Figure 1: Using a profilometer to digitize a tool mark. (a) Stylus profilometer. (b) Magnified tool 

mark showing the location of a profilometer scan, approximately 5 mm in length. (c) Digitized 

tool mark. Vertical axis is surface height in microns, horizontal axis is pixel number.   

 

The process of matching tool marks generally used in crime laboratories today does not utilize 

the digitized profilometer data just described, but involves an expert comparing the tool mark 

found at the crime scene to one or more made in the lab with the suspect tool.  A comparison 

microscope allows the two marked surfaces to be independently moved on different stages while 

the examiner views both of them in a “split field”.  The examiner locks in the “best” matching 

microscopic subset of striae from both tool marks and then looks for similarities in the 

surrounding striae.  In an analogous strategy, the algorithm proposed by Chumbley et al. [1] uses 

numerical optimization to determine the “best” matching subset and returns a single numerical 

index value of similarity based on comparing other segments of the data series representing the 

two tool marks.  For details on the process, reference Chumbley et al. [1]. 

 

 

1. Data 
 

A single data value, as we will refer to it in this paper, is the numerical index of similarity that 

results from comparing two tool marks. The particular data used in this study, denoted as y 

below, are centered-and-scaled Mann-Whitney U-statistics, which are approximately distributed 

as normal variates with mean zero and variance one for marks made by different tools (see, for 
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example, Conover [2]).    The extent of data is determined by the collection of tool marks we 

have to compare.  Suppose a single tool mark was found at the crime scene for which we wish to 

find a match.  A suspect tool is obtained and forensic examiners make several marks using the 

suspect tool in the lab under controlled conditions.  Comparing multiple marks all known to be 

made by the same tool in the lab, we can create a sample of matching mark-pairs from that tool.  

The same lab tool marks can be compared to the field mark to create a smaller sample of mark-

pairs with an unknown matching status.  Rather than evaluating only one mark-pair, we now 

have two samples that we can compare; if there is no apparent systematic difference between 

these two samples, this supports the argument that the marks were all made by the same tool, i.e. 

that the crime scene tool mark and lab tool marks “match.” 

 

Let    represent the tool mark that was found at the crime scene.  Let   , ...,    represent the n 

tool marks that were made by the suspect tool in the lab.  Note that all comparisons of the marks 

not including    are known matches all made by the same tool under the same conditions.  Let 

    represent the numerical index value of similarity that results from comparing    to   .  If all 

pairwise comparisons of available tool marks are made, this leaves us with two different types of 

data.  The first set,     for j = 1, ..., n, includes all comparisons of the field mark to a lab mark.  

We will call this type of data field-lab comparisons.  The second set is     for i, j = 1, ..., n and i 

< j.  These data values represent indices of similarity for a known match from the suspect tool 

which we will call lab-lab comparisons. 

 

The collection of all data values will be denoted by the vector y which is of length N.  When all 

possible comparisons are made there are ( 
 
) lab-lab comparisons and n field-lab comparisons, so 

N = ( 
 
) + n.  For the purposes of this paper, we will discuss data in terms of the number of lab 

marks, such as a data set of size n.  Note that this means there are n + 1 tool marks under 

comparison. 

 

The overall question of interest in these analyses is whether or not the suspect tool was used to 

make the tool mark found in the field.  Comparing the two groups of data described previously 

will help in answering this question.  An illustration of possible results can be seen in Figure 2 

with the red portions of the bars representing the field-lab comparisons, and blue portions of bars 

representing lab-lab comparisons.  If the field-lab comparisons are indistinguishable from the 

lab-lab comparisons, such as shown in Figure 2(a), then there is no evidence that the tool marks 

are different, and the data are therefore consistent with the hypothesis that all marks were created 

using the same tool.  However, if the field-lab comparisons are relatively small compared to the 

lab-lab comparisons, as in Figure 2(b), then there is evidence that the field mark and the lab 

marks were created using different tools. 
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                                 (a) Known match                                              (b) Known non-match 

 

Figure 2: Histograms for datasets showing field-lab comparisons (Red) with lab-lab comparisons 

(Blue) under known match and non-match conditions. 

 

2. Basic Model 

 
Since we would like to determine whether or not tool marks were made by the same tool, a 

simple hypothesis test could be used to compare the two samples of field-lab comparisons and 

lab-lab comparisons.  Toward development of such a test, let    be the mean for a field-lab 

comparison, that is        =    for j = 1, ..., n.  Let    be the mean for a lab-lab comparison, so 

             for i, j = 1, ..., n and i < j.  We will assume that all data values have a common 

variance defined as Var(   ) = σ
2
 for i, j = 0, 1, ..., n and i < j. (More general models that include 

different variances for lab-lab comparisons and field-lab comparisons were investigated in 

preliminary work, but did not appear to improve performance of the method.)  It is further 

assumed that each     is normally distributed.  The similarity index of Chumbley et al.  [1] is 

essentially a U-statistic (e.g. Conover [2]), for which an assumption of approximate normality is 

justifiable.  The assumption may also be reasonable for other similarity measures. 

 

Although this is sufficient to fully define the distribution for a single data value, we also need to 

address the joint distribution of all pairwise comparisons.  Each data value is normally 

distributed, and we will further assume that the joint distribution of y is multivariate normal.  The 

mean of y is a vector of means    and    with the form   = (    
        

 )
 
 and the variance of 

each element of y is σ
2
.  To finish defining the joint distribution of y, we need to develop an 

appropriate dependency structure reflecting the way the data are generated. 

 

 

Correlation 

 

Each     is the result of comparing two tool marks, specifically    with   .  Thus, at most four 

physical tool marks are involved in the consideration of covariance between two data values.  

Since these four tool marks are not necessarily unique, we will say two data values are correlated 

with correlation ρ if a common tool mark is involved in both comparisons.  That is,     is 

correlated with     if i = k, i = l, j = k or j = l.  Two comparisons with no marks in common are 

uncorrelated.  We do not consider the case of two comparisons made on the same pair of tool 
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marks because those similarity values would be identical, i.e.  there is no measurement-specific 

“error” in this system, and so no point in replication.  Let R be the N × N correlation matrix of y 

defined by the following entries 

 

 
 

With this correlation structure in place, we can finish defining the joint distribution of all 

pairwise comparisons of tool marks.  Let y be the vector of all pairwise comparisons ordered so 

that each     is such that i < j.  Then y ~ N (µ,σ
2
R) where µ = (    

        
 ) and R is as 

defined in (1).  The complete model for a data set of size n = 4 is shown in (2) through (4). 

 

 
 

Likelihood Analysis 

 

The model described suggests there could be separate means for the two available samples, field-

lab comparisons and lab-lab comparisons.  To test whether the same tool made the field and lab 

tool marks, we can set up the hypothesis test 

 

                     .                                                    (5) 

 

Using Normal model theory and weighted least squares, maximum likelihood estimates (MLEs) 

can be easily derived for µ and σ
2
 given a value for ρ as follows 

 

 

(5) 

(6) 

(7) 
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where X =    under H0 and X [
   

     

] under HA.  Using a grid search for ρ, we can 

compute parameter estimates as the values that maximize the normal likelihood.  However, we 

must first establish viable values for ρ. 

 

Based on physical considerations, we require that ρ be non-negative.  This is reasonable because 

correlation is used to model the effect of a tool mark common to two pairs.  The structure of this 

correlation matrix forces stricter boundaries on the range of values for ρ.  In particular it can be 

shown that ρ < 0.5.  The proof of this relies on the fact that R must be positive definite.  

Specifically, it can be shown that the unique eigenvalues for R are 

 

 
 

By definition, a matrix is positive definite only if all of its eigenvalues are positive.  Applying 

this definition to the three eigenvalues results in the following implications and inequalities 

 
 

Using (8) we can see that ρ < 0.5.  Looking at (9), if n = 1, 2 or 3 we get the inequalities ρ > 1/2, 

ρ > 1 and ρ > 1/0 respectively, which are all impossible given (8) or beyond the known bounds 

for the Pearson correlation coefficient.  Thus we know we need a sample size of 4 or more.  For 

both (9) and (10), the larger the sample size becomes the closer the bound gets to zero.  

Combining these results with our requirement that ρ not be negative, we can say ρ   [0, 0.5). 

 

Using a likelihood ratio test (LRT) for the null and alternative models described in (5), the 

resulting p-value will determine whether or not there is evidence of a match.  To demonstrate 

this process, we return to the data that provided the histograms in Figure 2.  In the first example, 

Figure 2(a), there was a data set of size n = 7, that is one field mark and seven lab marks, 

resulting in a total of 28 data values all of which were known to come from the same tool.  Seven 

of the values are shown in red and represent the field-lab comparisons.  The remaining data 

values are shown in blue and represent known matches from lab-lab comparisons.  From the 

histogram we can see that the field comparisons are indistinguishable from the lab comparisons 

which was to be expected.  Table 1 shows the parameter values and maximized likelihood for 

both the null and alternative models.  The likelihood ratio statistic,  

 

 

 

is such that -2 ln () approximately follows a χ
2
 distribution with one degree of freedom.  For 

these data -2 ln () = 0.030 resulting in a large p-value of 0.8875.  (Wilks [3] is a historical 

reference for statistical tests constructed in this way.) The null hypothesis that the means are 

equal is rejected and conclude there is no evidence that the tools are different. 

 

(8) 

(9) 

(10) 
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Table 1: MLEs for known matching data displayed in Figure 2(a) 

 

Figure 3 shows the profile likelihoods for ρ for the null model (a) and the alternative model (b).  

The plots are nearly identical for the two models suggesting that the models are the same, and 

only one mean is necessary.  This supports the conclusion from our hypothesis test since we 

failed to reject the hypothesis that    and    are equal.  Furthermore, both plots are maximized 

around 0.3 which reinforces the need for correlation in the model. 

 

 
 

     (a) Null Model                                                     (b) Alternative Model 

 

Figure 3: Profile likelihoods for ρ for the Null and Alternative Models 

  

In the second example, Figure 2(b), the field tool mark was known to originate from a different 

screwdriver than the lab marks it was tested against.  Here n = 8 so there was one field mark 

available and eight lab tool marks for a total of 36 data values.  Again, the histogram shows the 

field-lab comparisons in red and the lab-lab comparisons in blue, however, now we see a clear 

separation in the two types of samples with the field-lab comparisons being much smaller than 

the lab-lab comparisons.  Table 2 shows the parameter estimates from maximizing the likelihood 

for these data under the null and alternative hypotheses and the likelihood ratio statistic, −2 ln( ) 

= 28.417.  The small p-value of 9.78 ×10−8 indicates we should reject the null hypothesis that 

the means of the two samples are equal.  From this we would conclude there is strong evidence 

that the two samples were created using different tools. 

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 



22 

 
 

Table 2: MLEs for known non-matching data displayed in Figure 2(b) 

 

When we examine the profile likelihoods for ρ from these non-matching data, Figure 4, we can 

see the two plots are very different from one another.  The plot from the null model, (a), shows 

that the correlation coefficient reaches a maximum near the upper bound around 0.45, but the 

plot from the alternative model, (b), reaches its maximum near the lower bound around 0.1.  This 

supports the results that the two models are different and a second mean is needed to model these 

data.  However, the MLE of ρ is non-zero in each model reinforcing the argument that the 

correlation structure in (1) is appropriate. 

 

 
 
                             (a) Null Model                                                      (b) Alternative Model 
 

Figure 4: Profile likelihood for ρ for Null and Alternative Model 

 

 

 

3.  Angle 
 

Angle Influence 

 

As we saw from the examples in Section 2, the likelihood analysis is effective in determining a 

match of tool marks under carefully controlled test conditions in which all tool marks are 

produced the same way.  However, in order to be useful in practice, it must also perform well 
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when tool marks are made under different conditions.  When a screwdriver is scraped against a 

metal surface, specific circumstances such as the pressure exerted on the tool and the angle 

between the tool and the surface, can affect the appearance of the tool mark.  Here we will 

consider the angle at which a mark is made, a measurable quantity that can be analyzed and 

accounted for to enhance the model and analysis described in Section 2.  For clarification, the 

angle at which a mark is made is measured as the smallest angle the tool makes with respect to 

the marked surface, illustrated in Figure 5.  

               
 a. b. 

 

Figure 5: a.) Depiction of the angle between a screwdriver and a marked surface. b.) Jig used for 

making markings 

 

Chumbley et al. [1] demonstrated that when two tool marks are made by the same tool, similarity 

indices are generally much larger when the tool angle is the same in each case.  To demonstrate 

this effect with our own data, we produced tool marks with a single screwdriver at 30, 45, 60, 

75 and 85.  At each angle, four separate tool marks were made.  Although they are made at 

different angles, they all represent what we have defined until now as marks that match.  

Pairwise comparisons of the twenty available marks were made resulting in 190 data values.  

This process was repeated for two different screwdrivers.  Figure 6 displays boxplots of the data 

for each tool grouped by the difference in the tool angles of the marks being compared. 
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 (a) Tool 1 (b) Tool 2 

 
Figure 6: Boxplots for known match comparisons yij at different angles. 

 
 

We know empirically that when tool marks are made at the same angle, and the field mark was 

not made by the suspect tool, the field-lab comparisons are centered around zero, while the lab-

lab comparisons that match have a mean around two or three.  From the boxplots in Figure 6, we 

can see that when the angles are the same, the data are centered around two or three like a true 

match.  However, for angles that differ by 25, the data are smaller and centered around values 

closer to zero.  In other words, even when marks are made by the same tool, if the tool angles 

differ by 25, the comparison values resemble those from non-matching tool marks. This is in 

agreement with statement by toolmark examiners who state that when the angle varies by 10˚ or 

more the marks start to appear distinct from each other and positive identifications can not be 

made. 

 

To better demonstrate the similarities between comparing matches to non-matches and 

comparing matches made at the same angle to those made at different angles, we refer to Figure 

7.  The data that were used to make Figure 2 were grouped into matches and non-matches and 

are shown in the boxplots in Figure 7(a).  We then used the same data but included only the 

comparisons that were made by the same tool, and collected the tool angle information for each 

mark.  The matching data was then grouped into matches made at the same angle and those made 

at different angles, which is shown in Figure 7(b).  For these data, the only available angles were 

30, 60 and 85 so all angles differed by at least 10.  Side-by-side, the similarities between 

comparing matches to non-matches, and comparing matches made at the same and differing tool 

angles is more apparent.  This further shows that for tool angles that differ by 10◦ or more, the 

data are no longer identifiable as a match. 

 

yij 
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Figure 7: Boxplots showing the similarities between data from different tools made at the same 

angle and data from the same tool made at different angles. 

 

Knowing that tool angle has a significant effect on the data, it is important to generalize the 

approach described in Section 2 to account for these effects.  One difficulty is that it is 

impossible to know the tool angle that was used to make a mark left at the crime scene.  

However, in a lab, tool marks can be made at any angle to try to better match a crime scene 

mark.  Note here that with current procedures, tool mark examiners often do make marks at 

multiple angles for this purpose.  If enough tool marks are made in the lab at angles differing by 

10 or less, perhaps we can find the best match of a field mark to lab marks to estimate the angle 

at which the field mark was made and determine if the suspect tool was consistent or inconsistent 

with the crime scene mark. 

 

Model with Angle 

 

Before we modify the basic model of Section 2 to account for angle information, we need to 

introduce more notations.  Let    be the tool angle, in degrees, at which tool mark    is made for 

i = 0, 1, ..., n.  Since we know the closer the angles are, the better the match will be, we will 

incorporate tool angles as a function of their absolute difference, |     |, which we will denote 

by the similarity measure          . 

 

We saw from Figure 6, that the mean response for data values is large when the angles are the 

same and approaches zero as the difference in angles increases.  We also observed that 

comparisons of matching tool marks made at angles differing by 10 or more resemble non-

matches, so these facts will be reflected in         .  The function we chose to represent the 

difference in angles was  (     )        (     )
2
], where       .  This was chosen so 

that            when tool angles match, is much smaller when |     |   10 and approaches 

zero as |     | continues to increase.  Figure 8 shows this behavior of          as a function of 

|     |. 
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Figure 8: Graph showing          as a function of the absolute distance between angles, 

|     |. 
 

 A modified data model incorporating tool angle is: 

 

 
 

where α0 and α1 can be thought of as regression coefficients representing the extent of the effect 

of angle similarity on the data. So, where the field and lab marks are not made by the same tool, 

it would be expected that α0 would be near zero, since similar angles should not improve the 

“apparent similarity” of tool marks in this case. That is, the mean of a data value is a linear 

function of the overall mean of the comparisons and the similarity measure between the tool 

angles used in making the marks.  Similar to the previous model we have allowed for different 

mean functions for field-lab comparisons and lab-lab comparisons through different regression 

slopes.  Thus we can again make inference about whether or not the suspect tool made the crime 

scene marks with a likelihood ratio test.  However, we are now interested in comparing the 

alternative hypothesis defined by the model described in (11) through (13) with a null hypothesis 

defined by a simpler model that does not discriminate between field-lab and lab-lab comparisons.  

That null model can be stated as 

 

 
 

Both the null and alternative models assume that we have known angles for every tool mark 

made in the lab; that is   , ...,    are known.  The angle of the mark made in the field,   , is 

unknown.  Thus,    is a parameter in the model along with  ,   ,   ,  ,    and ρ.  The 

correlation structure described in Section 2.1 remains for this model and ρ will still be chosen 

using a grid search between 0 and 0.5.  Since we know the tool angle needs to be accurate within 

10 to see evidence of a match, we will perform a grid search for    in increments of 5 between 

20 and 90.  These angle bounds were chosen as reasonable angles for which a tool mark could 

be made and leave behind a viable mark.  Maximum likelihood estimates for the remaining 

(11) 

(12) 

(13) 

(14) 

(15) 
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parameters can be computed using weighted least squares provided values of    and ρ.  Let 

                     , ...,            and                      , ...,             .  

Then the MLEs for this modified model can be computed as 

 

 

where   [
  

 
] and   [  (  

    
 )

 
] under the modified null model and   [

  

  

  

] and 

  [
     

          
] under the modified alternative model. 

 

 

III. Results 
 

1. Introduction 
 

To test the modified models, tool marks were made from all the available jigs in our lab, 

corresponding to tool angles of 30, 45, 60, 75 and 85.  At each of the available tool angles, 

four unique tool marks were made using each of six screwdrivers, resulting in a total of 5 × 4 × 6 

= 120 tool marks.  To fully test the modified model, we will consider two scenarios, one where 

the suspect tool made the field mark and one where it did not.  In the first set, all the data from a 

single tool are used.  This reflects a situation where the analysis should indicate a “match” and 

the results can be seen in Section 1.1.  For the second scenario, we consider the case where the 

field mark was made by a different tool than the lab marks.  The non-matching results are 

discussed in Section 1.2. 

 

Results for Matches 

 

To collect the data for known matches, only tool marks made by the same tool were compared to 

one another.  Data sets were compiled using all 20 tool marks for a given tool; four marks from 

each of the five available angles.  Each tool mark within a set was chosen one-at-a-time to be the 

field mark leaving the remaining n = 19 lab marks for comparison, three of which are made at 

the same tool angle as the field mark.  This process was done for every available tool mark from 

all six tools and the likelihood ratio test described in Section 3.2 was performed for each (i.e. 120 

tests in all). 

 

Since we know all the tool marks used in each analysis are made by the same tool, we would 

expect the field-lab comparisons and lab-lab comparisons to result in similar data values so only 

one regression slope for the similarity measure,         , should be needed for an adequate 

model fit.  Thus, the null model described in (14) and (15) should be the best model for these 

data.  Based on this assumption, we would expect that the distribution of p-values from these 

likelihood ratio tests should be distributed approximately uniformly between 0 and 1.  The actual 

resulting p-values for all six tools are shown in Figure 9.   

 

(16) 

(17) 
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Figure 9: Histogram of p-values for all matching data. 

 

With the exception of the first bin from 0.0 to 0.1, the p-values do appear to be close to uniform 

in distribution.  However, there is a significant peak where a large portion of the LRTs result in 

very small p-values which is evidence of non-matching data, contrary to the fact.  To determine 

the source of these unexpected results, we looked for trends in the specific field tool marks 

whose LRTs had p-values less than 0.1.  In doing so, we noticed that when a likelihood ratio test 

returned a small p-value for a field mark, it was often the case that one or more of the other three 

tests from marks made at the same angle by the same tool also led to small p-values.  This 

suggested the possibility that a single tool mark might be responsible for several unexpected test 

results, leading us to a further look into the individual tool marks. 

 

We noticed two recurring issues in the data were present in the majority of field marks that 

resulted in LRTs with small p-values.  The first was an issue in the quality of data, in particular, 

a flaw in the individual tool marks which can occur in the form of a “flatline” or a “sharp peak”.  

During the digitizing process for a tool mark, the stylus profilometer reads the depths of the 

grooves of the striae in the tool mark, as described in Section 1.  In some of the tool marks, the 

stylus reached the minimum or maximum value it can record.  As a result, areas of the digitized 

tool mark are perfectly flat over a consecutive set of pixel locations.  For consistency, we define 

a flatline in a tool mark to be any region of 200 or more consecutive pixels with constant 

response, i.e. a variance of zero.  In a few circumstances, a flatline occurred for one of the tool 

marks but not the others made at the same angle with the same tool.  These were responsible for 

some of the apparent “non-matches” and small p-values. 

 

An example of a matching set of tool marks where one mark has a flatline flaw is shown in 

Figure 10(a).  The four lines represent all four digitized tool marks made by the same tool at the 

same angle.  Note that the actual value of the depth on the y-axis is not meaningful since these 

lines have been shifted vertically to make them easier to see.  The top three digitized marks 

appear very similar, but the fourth tool mark contains a flatline beginning in the vicinity of pixel 

3000.  As a result of this flaw, the validation step of the algorithm of Chumbley et al. [1] is 

misled when comparing this flatlined tool mark to its true matches since areas of the tool marks 

that should be similar are not. 

 

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 



29 

 
        (a) A set of tool marks demonstrating a flatline.   (b) A set of tool marks demonstrating a sharp peak. 

 

Figure 10: Examples of flaws in the tool marks. 

 

The second type of data quality flaw is a “sharp peak”.  This is a phenomenon that tends to occur 

at the end of a tool mark when the stylus goes from recording the tool mark to recording the flat 

lead plate on which the tool mark was made, resulting in a sharp jump in the digitized mark.  

Similarly to the flatline flaws, these peaks cause the validation process in the matching algorithm 

to fail since those areas cannot be aligned with the other tool marks made at the same angle.  

These peaks occur at varying degrees of severity in the tool marks; we chose to define a tool 

mark as having a sharp peak if a consecutive set of 200 pixel locations have a variance of 750 or 

more.  An example of a sharp peak is shown in Figure 10(b).  Even though the four tool marks 

appear to have the same pattern along most of the pixel locations, there is a sharp peak in the top 

mark near the left end of the mark.  As a result, when chosen as the field mark, comparisons to 

this tool mark resulted in a small p-value since the spike ruins the similarity that should be 

apparent in corresponding segments of the tool marks during the validation step. 

 

In addition to problems associated with data quality, we found that some of the very small p-

values originated from a more fundamental problem with the algorithm of Chumbley et al. [1].  

In the first step of the algorithm, “best match” windows are chosen from each of the tool marks 

being compared, within which the correlation between the two digitized marks is greatest.  The 

validation step then compares the marks in nearby “validation windows” based on the locations 

of these best match windows.  If the best match windows are chosen incorrectly, i.e. the 

algorithm selects a pair of segments that do not physically correspond, the rest of the algorithm 

will fail since the validation windows will not line up properly.  After reviewing the tool marks 

that returned small p-values, we noticed there were several instances where data values using 

that mark had best matching windows that were incorrectly chosen.  This is a failure of the 

algorithm that we will call a “bad match”.  We define a bad match as a situation where the best 

match windows are two windows that do not actually correspond, even though a good pair of 

matching windows can be seen in the tool marks. 

 

An example of a bad match is shown in Figure 11(a).  The red boxes represent the two windows 

that were chosen by the algorithm to be the best match.  However, we can see that they do not 

really match, but match can occur when the best matching windows are chosen on the opposite 

outer edges of the tool marks.  Figure 11(b) shows an example where the best match windows 

occur on the extremes of the tool mark, but opposite one another so they do not represent a true 

match. 
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(a) An example of a bad match.                      (b) An example of a bad match. 

 

Figure 11: Examples of flaws in the matching process of the algorithm. 

 

After examining all of the digitized tool marks and data values, we found that there were four 

tool marks that have sharp peaks, seven tool marks that have a flatline, and one that has both a 

flatline and a sharp peak.  In addition, there were 32 data values, out of the 180 that were from 

true matches in both tool and tool angle that have a poorly chosen best match window and were 

deemed bad matches.  Because all of these situations were caused by either a failure in the 

algorithm or poor quality of tool marks, they were removed from their respective data sets and 

the analyses were run again.  The p-values of the remaining108 likelihood ratio tests are shown 

in Figure 12.  The initial peak of p-values between 0 and 0.1 is substantially reduced in Figure 12 

relative to Figure 9.  The p-values appear closer to uniform in distribution as we had expected 

since all data values represent matches in this case.    

 

 
 

Figure 12: Histogram of p-values after removing bad matches and tool marks with flatlines or 

sharp peaks. 

 

To further examine the efficiency of the modified models and the LRT once the problematic data 

were removed, we also examined the accuracy of the estimates of   , the tool angle with which 
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the field mark was made.  The histograms in Figure 13 show the estimates,  ̂ , based on the null 

model described in (14) and (15) grouped by the true value of   .  Each of the histograms in 

Figure 13 shows that the estimation does accurately predict the angle within 5 degrees of the true 

angle in most cases.  Occasionally an estimate is very different from the true value, as shown, for 

example, by the small bar at 90 when the actual angle was 30 in Figure 13(a).  Since we know 

there are issues with both the quality of the data and the matching algorithm some of these 

inaccurate estimates may be associated with more subtle problems in the data generation process.  

Overall, the null model does fit well to the data in most cases where the data are matches, and the 

estimation process for the field angle seems reasonably accurate. 

 
                         (a) Values of  ̂                                                (b) Values of  ̂             
 

 
                     (c) Values of  ̂                                               (d) Values of  ̂             
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         (e) Values of  ̂             

 

Figure 13: Estimated values of a0 grouped by the true value of a0 for matching data. 

 

Results for Non-Matches 

 

To create non-matching data sets, we began by using all n = 20 tool marks made from the same 

tool and considered these the lab marks.  Field marks were chosen out of the remaining five 

tools, one mark from each of the 5 angles available for each tool.  The data sets were assembled 

by comparing the field mark with each of the lab marks and comparing the lab marks pairwise 

with one another.  This process was repeated for two different sets of lab tool marks, resulting in 

a total of 50 data sets for which the lab tool and field tool are not the same. 

 

For non-matching data, all of the field-lab data values should be close to zero regardless of the 

tool angles since the marks were made by different tools.  However, most lab-lab comparisons 

will result in a larger comparison value since they are true matches.  This discrepancy should 

show up in the models through the regression slopes.  We expect that the alternative model will 

be a better fit to these data since the coefficient for the angle similarity function,          , will 

likely be close to zero for the field-lab comparisons but should still be large for the lab-lab 

comparisons.  Thus we would expect the alternative model to be a better fit to these data and so 

the p-values from the likelihood ratio tests should be small, i.e. the distribution of p-values 

should be skewed with greater frequencies associated with smaller p-values.  The p-values that 

resulted from these tests are shown in the histogram in Figure 14.  As expected, the p-values are 

mostly small and have an overall right skewed shape.  This supports the hypothesis that the 

alternative model which allows for multiple regression slopes is a better fit to these data and 

provides evidence that the lab tool marks do not match the field mark in most of these tests. 
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Figure 14: Histogram of p-values for non-matching data. 

 

 

IV.  Conclusions 
 

1.  Discussion of Findings 
 

This work confirms that the angle at which a tool is used can have a significant effect on the 

similarity of the tool marks. Since it is these similarities that are crucial to the tool mark 

matching process, it is necessary to account for these effects in the models and analyses used to 

examine tool marks. Including the tool angle in the model as a function of the difference in 

angles of marks being compared does seem to yield positive results, both in the ability of the 

likelihood ratio tests to choose an appropriate model, reflecting a match or non-match, and in 

estimating the unknown field angle. As long as lab tool marks are made at angles within 15° of 

the field angle, the estimation process is reasonably accurate when the tool marks match. 

 

Due to the constraints of available resources, we were only able to collect tool marks from a few 

angles, those being 30°, 45°, 60°, 75°, and 85°. As a result we were forced to choose a 

parameter value for θ in the similarity function of the modified models. Having tool marks made 

at more angles would allow us to include θ in the estimation process. The lack of angles 

available also limited the precision with which we could evaluate the model since there were 

few angles close to one another. Having more angles available would allow us to see how well 

we can estimate the field angle when there are many marks made at similar angles in the lab set. 

 

Another area where future work is necessary is in studying the quality of tool marks. In the case 

of matching data, we saw there are flaws in the tool marks as well as in the algorithm used to 

compute the match score that need to be addressed. In the tool marks, any unusual area of the 

digitized mark, such as a flatline or sharp peak, can lead to incorrect estimation and conclusions 

for the matching status. Both of these flaws are caused by failure of the measurement device. 

Similarly, if the algorithm fails to accurately choose appropriate best matching windows in the 

tool marks, the analyses will have incorrect conclusions. Although further work may be 

necessary to account for the effects of varying data quality in the model, we saw that once the 

bad matches and flawed data had been removed, the modified models and likelihood ratio tests 

based on them did perform as was expected. 
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2. Implications for Policy and Practice. 
 

The rigorous analysis conducted, using replicate marks made from a series of screwdrivers, was 

able to show that replicate-to-replicate variation is much less than tool-to-tool variation, allowing 

comparisons of field-lab and lab-lab comparisons to be conducted successfully to match the field 

mark to the correct lab produced mark.  The study shows that, if given enough lab replicate 

marks for comparison, the analysis is so reliable that even the angle at which the field mark was 

made can be determined to a high degree.  

 

The implications of this study for policy and practice are as follows.  The statistical analyses 

carried out on toolmarks in this work clearly adds further evidence that the long-held 

assumptions under which forensic examiners operate, namely, that all toolmarks are unique, does 

have a sound scientific basis.  However, if a truly objective, quantitative analysis is desired such 

as was carried out in this study, it may require examiners to generate more lab samples for 

comparison than is typically done now.  While it is know anecdotally that examiners do currently 

prepare replicate marks, it is not known how many are made, or how rigorously all of those 

marks are examined.  The need to generate additional samples to replicate the results of this 

study in the forensic lab could increase the work load of examiners.  However, that drawback 

might be offset by the increased reliability and objectivity of the data produced. 

 

 

3. Implications for Further Research. 
 

The results found in this study suggest a number of possible areas for further research.  While the 

work described here effectively provides for control over the rate of false non-match calls, it 

does not address the more important issue of false match calls.  Current preliminary research 

indicates that this may also be possible through a different statistical testing structure.  Since it is 

clear that risk-control may heavily depend on making more lab marks for comparison to single 

evidence mark, quality control processes will also be particularly important for determining 

which, if any, of the replicate lab marks are of poor quality and so should not be included.  We 

will propose that this can be done with indices of the sort we have been using, but applied to 

pairs of lab-generated marks so as to identify any marks that consistently show weak similarity 

to others. 
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VI. Dissemination of Research Findings 
 

As stated at the beginning of this report, this project was conducted as part of the thesis work of 

Ms. Amy Hoeksema, a graduate student at Iowa State University, and much of the text comes 

from what will be include in her Ph.D. thesis.  The entire thesis will be available from Iowa 

State University.  In addition, a paper entitled “Significance of Angle in the Statistical 

Comparison of Toolmarks” is being prepared for submission to the refereed technical journal 

Technometrics. . 

 

Dissemination has also occurred by oral presentations given by Prof. Morris and Ms. Hoeksema 

including the following: 

 

M. Morris, A. Hoeksema, S. Chumbley, “Statistical Modeling of Tool Mark Comparisons 

Incorporating Material Correlation and Tool Angle,” Pattern and Impression Evidence 

Symposium, Clearwater Beach, FL, August, 2012. 

 

A.Hoeksema, “Statistical Comparison of Toolmarks in Forensics,” Joint Statistical Meetings, 

San Diego, CA, August 2012. 

 

A.Hoeksema, “Statistical Comparison of Toolmarks in Forensics“ Conference on Data Analysis, 

Santa Fe, NM, February 2012. 
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TASK II: Analysis of Quasi-striated Marks 
 

II. Methods 

 
For this experiment, 50 pairs of sequentially manufactured slip joint pliers were purchased from 

Wilde Tool Co., Inc. so as to be as nearly identical as possible. It is well known the 

manufacturing process greatly affects the resulting toolmarks a tool makes due to the surface 

features imparted on the tool during manufacturing [24, 25]. For this reason, a detailed 

description of the way the pliers used in this study were manufactured is in order. 

 

All of the plier-half blanks examined in this study were hot forged from the same die, followed 

by cold forging from the same forging die. Following forging, holes were punched to seat the 

fastener, i.e. the bolt that will hold the two halves of the pliers together.  At this point a 

difference is introduced in the blanks. On slip joint pliers, one half of the pliers has a small hole, 

while the other half has a larger, double hole allowing the user to gain a better grip when using 

the pliers (see Figure 15).  Once the plier holes were punched the teeth and shear cutting surfaces 

were created using a broaching process.  It is this machining method that creates the scratch 

minutiae on the surface of the plier halves responsible for producing the characteristic toolmark 

that is of interest in forensic examinations.  

 

 
 

Figure 15: Slip joint pliers in their unfinished and finished states. From left to right: plier halves 

(single and double hole) before broaching; an example flat side of pliers that will be polished; 

finished and labeled pliers (sides A and B). 

 

The plier halves for this study were cut on two separate broaching machines; halves with the 

smaller hole were all broached on one machine, while the halves with the double hole were 

broached on a second. At this point in the process the manufacturer stamped numbers 1-50 on 

each plier half as they were finished being broached. Thus, the 50 pairs could be assembled with 
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confidence that they were actually made sequentially.  After broaching, both halves were given 

the same heat treatment and shot peened to surface harden the metal. The long, flat surface was 

then polished and the pliers were assembled and gripped. As a final step the company branded 

the double hole side of each pair of pliers.  For the purposes of this study each half of the pliers 

was assigned as either A or B, with Side B being the branded half of the pliers (see Figure 15). 

 

To make the samples, copper wire of 0.1620” diameter and lead wire of 0.1875” diameter were 

obtained and cut into two-inch lengths with bolt cutters to distinguish the ends from the shear 

cuts made by the pliers. Next, the cut lengths of wire were placed centered in the plier jaws on 

the shear cutting surface with pliers side B facing down. Shear cutters are defined by AFTE as 

“opposed jawed cutters whose cutting blades are offset to pass by each other in the cutting 

process” [26]. Since the marks were created using the shear surface and both sides perform 

cutting action, by definition they are shear cutting marks. Alternating shear cuts of lead and 

copper were made with each pair of pliers for a total of 20 shear cuts. All odd numbered shear 

cuts were lead samples; all even numbered shear cuts were copper. The total number of copper 

samples thus obtained was 1000, with 500 shear cuts in contact with Side A, 500 shear cuts with 

side B.  

 

When the wire is mechanically separated, the two surfaces of the shear edges move past each 

other. The resultant action is therefore a combination of both cutting the surfaces and a shearing 

action of the edges as they move through the material. The result is two surfaces being created on 

each half of the separated wire sample, comprising both shear cut and impression markings, 

roughly at 90˚ to each other with both being ≈ 45˚ to the long axis of the wire. Only the shear cut 

surface on the ‘A’ and ‘B’ sides of the sample were scanned and analyzed. A schematic showing 

the process is shown in Figure 16. 

 

 
 

Figure 16: The left photo shows an example wire sample mid-shear cut, revealing how the 

toolmark gains its angle. The right photo shows the B side sample.  Note that the analyzed mark 

is not completely circular. The A side sample (not shown) is similar in shape. 

 

For the purpose of this study, only the copper samples were evaluated. Each shear cut mark 

surface was scanned optically with an Alicona G3 Infinite Focus microscope at 10x 

magnification and a two micron vertical resolution to acquire the surface geometry of the mark. 

An example of a typical scan is shown in Figure 17.  The tool mark is seen to be quasi-striated, 

i.e. parallel linear striae do exist but it clearly varies across the surface of the shear cut mark. 
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Figure 17: Areas examined during comparisons. Dashed line is referred to as the “short edge,” 

the solid line is referred to as the “long edge.”  Width of the sample varies slightly from sample 

to sample but is roughly the diameter of the wire, i.e. 0.1620”. 

 

When the data are acquired, noise spikes occur around the edges of the mark where the shear cut 

surface drops off because there is no surface here for the profilometer to scan. This noise is non-

informative for the matching process, and is not desirable in the data file. Therefore, the raw data 

are processed using a computer routine to remove the extraneous noise spikes.  This process is 

referred to as a cleaning routine and does not affect the data that characterizes the shear cut 

surface. An example of a clean and uncleaned data file can be seen in Figure 18.   

 

 
 

Figure 18: a) Raw data; b) cleaned data with noise spikes removed 

 

All raw data files contained trended data. Simply put, due to the manner in which the data were 

collected the line profile of a mark data file had an increasing linear trend in the z direction 

moving from one side of the mark to the other. Such a trend is common when using 

profilometers since the surface analyzed is rarely exactly parallel with the direction of scanning.  

Because the files were a rectangular collection of 3D data (shown in the uncleaned data of Figure 

18a), trending was corrected by subtracting a plane matching that of the trended data from the 

file. To accomplish this, the detrending routine selects left and right diagonal points from the 

data (approximately 40 on each side, 80 in total) and uses a linear least squares method to fit the 

a b 
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appropriate plane for the data. It then subtracts the fitted plane from the data to achieve an 

appropiately leveled data file for comparison. As a reference, these final data files are roughly 

2200 by 4500 pixels, each pixel being 0.8 microns in height and width. 

 

Comparisons between the marks were made using the previously described algorithm [1].  This 

algorithm uses a Mann-Whitney statistics approach for the comparisons, where the degree of 

relevance that exists between each comparison is given by the returned value of the statistical 

analysis known as a T1 value.  The comparisons were divided into two different groups, those 

made close to the end of the mark, as designated by the solid line in Figure 16, and those made 

close to the start of the mark, shown by the dashed line in Figure 16. From this point on, the 

dashed line data will be referred to as the short edge and the solid line data as the long edge. 

These mark locations were chosen to examine differences between the beginning of the shear 

cut, where the mark has short and variable length striae, and the end of the mark, where the striae 

are longer and appear to be more regular. 

 

Each side of the pliers was considered to be a separate data set, the assumption being, as 

confirmed by forensic examiners, each side acts as a different surface.  Given there are 50 pairs 

of pliers, with two sides for each pair of pliers and ten replicate shear cuts for each side of each 

pair of pliers, the total number of samples possible for examination came to 1,000 discrete data 

sets. 

 

 

III. Results 

 

1. Experimental Results 
 

A sampling format was set up to compare three different groups of data: known matches, known 

non-matches from the same pair of pliers (i.e. different sides), and known non-matches from 

different pairs of pliers. The comparison setups are as follows: 

 

Set 1: Compare known matches. These should be marks from the same side of 

pliers. Comparisons were made between marks 2 and 4 and between marks 6 and 

8 for each side of the pliers, side A and side B.  

 

Set 2: Compare known non-matches from the same pair of pliers. Comparisons 

were made between side A and side B for marks 10, 12 and 14.  

 

Set 3: Compare known non-matches from different pairs of pliers. The samples 

were divided into 12 groups of four, each numbered consecutively, e.g. tools 1-4, 

5-8, etc.  

 

 

Comparisons were made for both side A and side B. Table 3 shows an example comparison 

setup for the first group of pliers. 

 

 

 

 

 

 

 

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 



40 

Table 3: Comparisons for Set 3, Group 1 

 
Comparison Plier number Side Mark number Plier number Side Mark number 

A 1 A 16 2 A 16 

B 3 A 16 4 A 16 

C 1 A 18 4 A 18 

D 2 A 18 3 A 18 

E 1 A 20 3 A 20 

F 2 A 20 4 A 20 

 

The same algorithm used in an earlier work for striated marks [1] was applied in this study to 

examine the quasi-striated marks made by the slip joint pliers. The algorithm has two primary 

steps: Optimization and Validation. During the Optimization step, the regions of best agreement 

between the two marks are determined by the maximum correlation statistic, or “R-value.” The 

size of the region is assigned by the user and is hereafter referred to as the “Search Window.” 

The second step of the algorithm, Validation, uses both rigid and random window shifts to verify 

the regions chosen in the Optimization step indeed correspond to a true match. These windows 

are hereafter referred to as the “Valid Windows” and their width is also user determined. The R-

values in this step must clearly be lower than the R-value in the Optimization step, as the highest 

R-value has already been calculated. However, in the instance where a true match exists, the R-

values associated with the rigid shift valid windows should be larger than those associated with 

the random shift valid windows, the assumption being, if an excellent match exists at one 

location then very good matches should exist at any number of corresponding locations.  If true, 

this is indicative a true match does exist. Conversely, rigid window shifts do not produce 

systematically larger R-values than random shifts in the case of a true non-match, since the high 

values found during the Optimization step exists due to random chance rather than any physical 

relationship between the items being compared. Further discussion of this algorithm can be 

found in the literature [1]. 

 

Initial Results 

 

Originally, the size of the search and valid windows were set at the comparison software’s 

default 200 and 100 pixels, respectively, and the comparisons were conducted with samples from 

the first 20 pairs of pliers. This setup produced 400 different comparisons for the long and short 

edge comparisons. When a comparison is made, indication of a true match is found when the T1 

value of the statistic returned is relatively high.  Little or no relationship between the marks 

results in T1 values centered near 0. 

  

Results of these early comparisons can be found in Figure 19.  In these box plots, the bold line in 

the middle of the box represents the median, the lower quartile by the bottom line of the box, and 

the upper quartile by the top line of the box. The whiskers are within one and a half times the 

difference between the upper and lower quartiles. Any outliers outside the whiskers are denoted 

by dots. In these plots, known matches are in the comparisons designated Set 1, while Sets 2 and 

3 show comparisons between known non-matches from different sides of a pair of pliers and 

non-matches between different pairs of pliers, respectively.  It is evident that with these window 

sizes, the success of identifying known matches was relatively low, there being little separation 

between the returned T1 values of known matches and non-matches.  
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Figure 19: Original data comparisons for (a) short edge, (b) long edge. 

 

 

Size Effect 

 

From the minimal success of the first attempt at matching the plier marks, several changes were 

decided upon for further comparisons.  Firstly, the original data shown in Figure 19 compared 

trended data, which was corrected in subsequent comparisons as described above.  Secondly, it 

was decided to vary the window size for all plier mark samples.  The initial values used were 

chosen simply because they had proven effective for comparison of fully striated marks.  A 

series of experiments was conducted within each plier comparison set where the window sizes 

were varied to evaluate the effect window size has on the resulting T1 value.  In other words, the 

question asked was: does the size of the window play a large role in the discrimination between 

known matches or known non-matches? In this series of experiments Search and Valid windows 

were assigned four different values. The Valid window was always half the size of the Search 

window.  Search windows were set at values 100, 200, 500, and 1000 pixels, respectively, to 

examine the effects of one smaller Search window and two larger Search windows.  These new 

settings were extended to all 50 pairs of pliers and their corresponding toolmarks in the copper 

wire, bringing the total number of comparisons to 3,952.  

 

The results of these comparisons can be found in Figures 20 and 21.  Observation shows that the 

T1 value increases dramatically with increasing window size.  While known non-matches return 

values centered around zero regardless of window size, the T1 value for known matches 

increases from just slightly over zero to an average of 6.36 and 6.09 for the largest window size 

for the long and short comparisons, respectively.  However, the data range increases as well. At 

the larger window sizes, numerous outliers exist and failure of the algorithm occurs in some 

cases, especially for the short edge comparisons.   

a b 
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Figure 20: Long edge comparisons. a) Known matches from the same set of pliers. b) Known 

non-matches from the same set of pliers. c) Known non-matches from different sets of pliers. 

 

c 

a b
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Figure 21: Short edge comparisons. a) Set 1: Known matches from the same set of pliers. b) Set 

2: Known non-matches from the same pair of pliers. c) Set 3: Known non-matches from different 

pairs of pliers. 

 

The large number of observed failures and the increased number of outliers at the larger window 

sizes for known matches directly results from the constraints placed on the way the Search and 

Valid windows are chosen and compared.  One of the standard conditions under which the 

algorithm operates is the Search and Valid windows are never allowed to overlap. In some cases, 

especially with the short edge comparisons, the shorter length of line from which data can be 

selected and compared results in far fewer data points for comparison.  This problem is 

exacerbated as the window sizes increases.  For larger sizes, there simply is not enough data 

available to meet these conditions in all instances.  Thus, this stipulation can cause the algorithm 

to return no T value.  Note that the problem is most apparent for known matches rather than non-

matches.  This is because the validation process is more critical when an actual correlation exists 

between the marks being compared than if no correlation exists. 

 

Table 4 summarizes the instances in which the algorithm failed to return values. It can be clearly 

seen that the return rate decreases with the shorter line profiles as the window size increases. As 

c 
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a reference, set 1 has a total of 200 comparisons, set 2 has 150 comparisons and set 3 has 144 

comparisons. 

 

Table 4: Cases in which the algorithm returned no T values for each window size 

 
Long edge comparisons 

Set 100-50 200-100 500-250 1000-500 

1 0 1 1 1 

2 0 1 3 3 

3 0 2 3 5 

Short edge comparisons 

Set 100-50 200-100 500-250 1000-500 

1 0 0 1 9 

2 1 0 3 19 

3 1 0 3 24 

 

 

Ratio Effect 

 

As a first attempt at a solution, two additional window size ratios (i.e., the ratio of the size of the 

search window to the size of the validation window) were examined: 4 to 1 and 6 to 1. It was 

hoped that by limiting the size of the Valid windows less spread in the data would be seen.  For 

each new ratio, four different window sizes were chosen and the algorithm was run again 

following sets 1, 2 and 3 at both the long and short edge locations on the mark. For these 

exploratory tests the data were limited to pliers 1-25, the assumption being the abbreviated data 

set would be representative of the full 1-50 pliers data. Results of this examination can be found 

in Figures 22 and 23.  This set of parameters does indeed appear to have a significant effect in 

reducing the number of outliers and spread of the known matches (i.e. Set 1) as compared to the 

2:1 ratio data.   A slight degradation in the maximum values obtained was seen for the known 

matches.  Less change is seen in the results for the known non-matches (Sets 2, 3).  Average 

values still were centered around zero and spread seemed to increase somewhat in some cases for 

the known non-matches. 

 

 
Figure 22a: Effect of changing window size ratio on Set 1, known matches, long edge. 
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Figure 22b: Effect of changing window size ratio on Set 2, known non-matches, different sides 

of the same pliers, long edge. 

 

 

 
 

Figure 22c: Effect of changing window size ratio on Set 3, known non-matches, different pliers, 

long edge. 
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Figure 23a: Effect of changing window size ratio on Set 1, known matches, short edge. 

 

 
 

Figure 23b: Effect of changing window size ratio on Set 2, known non-matches, different sides 

of the same pliers, short edge. 
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Figure 23c: Effect of changing window size ratio on Set 3, known non-matches, different pliers, 

short edge. 

 

 

2. Discussion 

When using the developed algorithm, ideally the data should show a clear separation between T1 

values for known matches as opposed to known non-matches, with no overlap occurring, even 

when considering outliers. While elimination of overlap in the outliers has not been achieved it is 

clear that a high degree of separation is seen in the majority of cases when the search parameters 

are adjusted from the defaults used for the striated screwdriver marks. This suggests that the 

current algorithm is more robust than it initially appeared, and could be suitable for 

discrimination if performance can be enhanced and the spread in the data can be decreased to 

produce complete separation between known matches and non-matches. These tests also indicate 

the size of the Search and Validation windows can have a critical role in determining when a 

match can be discriminated from a non-match.  Since the size and number of Valid windows is 

user defined, future work must involve a series of experiments to determine what operation 

parameters are best suited for each individual class of marks. For example, the relatively small 

Search and Valid window sizes that worked well for screwdriver marks were inadequate for the 

plier marks. However, increasing the Search and Valid window size proved effective in 

increasing separation between known matches and non-matches for slip joint pliers and changing 

the size ratio has an effect on the spread of the data.   

 

Outliers are seen in all the data sets, both known match and known non-match.  Examination of 

these data files points to a consistent problem with the current state of the algorithm, which the 

authors refer to as the “opposite end” match problem.  This seems to be an area where further 

improvements can be made. In earlier work involving screwdriver comparisons [1], it was noted 

the algorithm often returned false match values, incorrectly identifying the match areas on 

opposite ends of the mark’s cross-sectional profile. “Opposite end” matches appear to occur most 

often in known non-matches, however non-match values have been returned for known matches 

as well with similar opposite end match problems. In detrending the data, many of these 

problems have been eliminated; however a few opposite end match problems still exist.  One 

such example can be seen in Figure 24 for a plier comparison datafile, which consists of 

detrended data.  One data set is shown at the top while the second is shown at the bottom.  

3 
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Simple chance where the opposite ends of the mark have a very similar profile over the small 

area of the search window, as denoted by the box, has resulted in the computer declaring an 

excellent match.  Obviously, such a match is physically impossible, no matter how good the 

numbers.  Due to the matches occurring at the ends, the validation routine is thwarted in its 

efforts to discriminate this incorrect result since few rigid translations are possible. In the 

example shown, translations to the left of the match are prevented by the bottom scan and 

translations to the right are restricted to a few pixels right next to the match region by the top 

scan.  Thus, the error goes undetected unless the files are visually examined. 

   

 

 
 

Figure 24: Incorrect opposite ends match for long edge comparison of known non-matches from 

different pairs of pliers. The search and valid windows were 450 and 75. T1 value is 8.137. 

 

In its current form, the algorithm has maximum flexibility, allowing marks to be compared along 

a linear direction both forwards and backwards.  Such a methodology requires no contextual 

information to be known about the mark.  A fully striated mark may leave few clues as to what is 

the “left” side of the mark vs. the “right” side, as determined by how one holds the screwdriver, 

Figure 25.  As shown by the bold arrows, pulling the screwdriver across the surface in opposite 

directions leaves the same mark, but it is rotated 180 degrees. While this situation is usually 

easily recognized by a trained examiner making a test mark, it is more of a problem for an 

automated system.  To the machine, both situations result in a series of parallel lines. If the scan 

is constrained to run comparisons in only 1 direction (dotted line), this match may be missed 

since “left” could be viewed as “right” and vice versa.  For this reason currently the algorithm is 

written to be as flexible as possible with comparisons run in both directions so it is not necessary 

to know which side of the mark was on the left and which was on the right as it was being made.   

 

Determining the correct scanning direction is less of a problem for a shear cut wire, where 

contextual information such as “left” and “right” can be easily assigned due to the macroscopic 

shape of the object itself, Figure 24b.  In this instance the situation is somewhat similar to 

distinguishing between class characteristics in a firearm examination. 
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 a. b. 

Figure 25: a) Fully striated marks hold few clues to “left” vs. “right” for the automated scan as 

denoted by the dashed line. b) Shear cut wire sample scan directions are easily distinguishable by 

the macroscopic shape. 

 

Currently each data file needs to be examined separately in order to determine whether an 

“opposite end” match has occurred.  A screening option is being considered that will 

automatically determine whether an “opposite end” match has occurred and alert the user to this 

possibility. The user can then examine only those files so flagged and decide whether an 

incorrect match has occurred. Clearly, in this instance the examiner will have to use their 

contextual knowledge of the marks being compared to make this determination. 

 

IV Conclusions 

1. Discussion of Findings 
 

A study of 1000 shear cut copper wire samples produced using 50 sequentially manufactured 

pliers were characterized using an Alicona G3 Infinite Focus Microscope operated as an optical 

profilometer.  An objective analysis of the data was carried out using a computer-based 

algorithm that had previously been employed to successfully compare striated marks produced 

by screwdrivers. Initial analyses results produced inconclusive when using the same parameters 

employed successfully for the screwdriver marks. However, further experiments showed that 

changing the comparison parameters, specifically the sizes of the search and validation windows, 

and the ratio of the sizes, the algorithm could produce better statistical separation of known 

match/non-match comparisons. Reasons for error were identified and future improvements to the 

algorithm are planned.  The major improvement anticipated is a screening option for the 

identified matched search windows to eliminate the possibility of clearly incorrect “opposite 

end” matches. 

 

 

2. Implications for Policy and Practice 
 

Successful application of the algorithm described in [1] to quasi-striated toolmarks has two 

major implications.  Firstly, the work shows once again that there is a scientific basis for 

objective, quantitative toolmark identification.  Secondly, as this represents one of the first 

successful analyses on a quasi-striated toolmark, it implies that it should be possible to 

characterize and classify all types of toolmarks, given the right type and quality of data and the 

appropriate analysis algorithm. 

Left 
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This work, coupled with the PI’s previous results on screwdriver toolmarks, imply that an 

objective, semi-automated or automated system for characterization can be developed.  While the 

technical details to make this a reality are numerous, there seems to be no valid theoretical 

reason that would prevent this.  This is not to say that a system could be developed with the same 

level of statistical relevance as is seen for DNA samples. This clearly is not the case. However, it 

is clear that comparative analysis is not solely a subjective matter. 

 

 

3. Implications for Further Research 
 

The algorithm developed at Ames Lab / Iowa State has been shown to be more robust than 

originally thought. Having looked at fully striated and quasi-striated shear marks, the next logical 

step is to examine full impression marks to see if the algorithm can be successful applied, or 

modified in such as manner as to be successful, to these types of marks.  Development of a more 

user-friendly software package that incorporates all of the lessons learned as regards the analysis 

of toolmarks is also desirable and should yield a useful product for forensic examiners. 
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VI. Dissemination of Research Findings 
 

As stated at the beginning of this report, this project was conducted as part of the thesis work of 

Ms. Taylor Grieve, a graduate student at Iowa State University, and much of the text comes from 

what will be included in her Ph.D. thesis.  The entire thesis will be available from Iowa State 

University.  In addition, the following paper has been submitted: 

 
Taylor Grieve, L.S. Chumbley, J.  Kreiser, Max Morris, and Laura Ekstrand, “Objective 

Comparison of Marks from Slip-Joint Pliers,” Association of Firearms and Toolmark Examiners 

(AFTE). 

 

Dissemination has also occurred by an oral presentation given by Ms. Grieve: 

 

T. Grieve, L.S. Chumbley, J. Kreiser, M. Morris, S. Zhang, L. Ekstrand, " Comparison of 

Striated Marks From Slip Joint Pliers," AAFS, Washington, February, 2013. 

 

A second paper is currently being written for submission to the Journal of Forensic Science. This 

paper will contain a further analysis of the data presented by Ms. Grieve in the AFTE journal.  It 

is planned that this paper will be ready for submission by Summer, 2013. 
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