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Abstract 

 

The goal of the research conducted under this grant was to develop a chemometric method of 

data analysis that would facilitate the identification of GC-MS patterns associated with ignitable 

liquid classes, as designated under ASTM E 1618-10. The objective of the research was to 

develop a data analysis method that would classify ignitable liquid residue in the presence of 

background interferences found in fire debris. Pattern recognition and classification methods 

available at the onset of this research did not explicitly take into account background interference 

issues. A novel method was developed under this research to classify ignitable liquid residues 

into the ASTM classes, even in the presence of a strong background signal, without a priori 

knowledge of the background signature. The method makes use of target factor analysis (TFA) 

in combination with Bayesian decision theory. The use of Bayesian decision theory provides 

results in the form of posterior probabilities that a set of samples from a fire scene contain an 

ignitable liquid of a specific ASTM class. Error rates are not currently available for fire debris 

analysis, other than extrapolations from proficiency tests. The method was further refined by 

introducing a sensitivity parameter which made the method very conservative in its predictions, 

and gave a true “soft” classifier. Soft classifiers allow classification of a sample into multiple 

classes and afford the possibility of not assigning the sample to any of the available classes.  In 

order to achieve the goals, this work was broken down into three tasks. 

 

Task I of the research focused on the development of the combined TFA and Bayesian decision 

theory, and testing of the method using computationally constructed data sets prepared using 

total ion spectra (TIS) from ignitable liquids and pyrolyzed substrates from the Ignitable Liquids 

Reference Collection and Database and the Substrate Databases respectively, both of which are 

NCFS/TWGFEX databases. Task II tested the method using laboratory generated burn samples. 

Task II of the research generated data sets by burning common building/furnishing materials 

with differing amounts of applied ignitable liquid and by varying both the amount of applied 

liquid and the relative amount of substrate materials.  Task III further tested the method on large-

scale burn samples generated specifically for the purpose of testing the method. The large-scale 

burns were conducted on Konex shipping containers that had been built out on the inside and 

furnished with commercially available household furnishings. Each container was burned with 

the aid of one or two flammable liquids. Following each burn, fire debris samples were collected 

from on and off the ignitable liquid pour trails, and the samples were analyzed at the National 

Center for Forensic Science, on the campus of The University of Central Florida. Task III burns 

were conducted at the Bureau of Fire Standards and Training, Ocala, FL, in collaboration with 

the Bureau of Forensic Fire and Explosives Analysis, Tallahassee, FL.  

 

 Results from Task I demonstrated that ignitable liquid contributions can be detected, even as a 

minor component, in the presence of undefined background contributions from pyrolysis of 

common building materials. Laboratory-scale burns conducted in Task II demonstrated an 80 – 

85% success rate for classification when assigning the ASTM class based on the class having the 

largest posterior probability. Similar results were achieved for the large-scale burns conducted in 

Task III.  

 

The 15% incorrect classifications include those samples where the ignitable liquid residue was 

heavily weathered and, in some cases, the liquid may have been completely evaporated. The 
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correct classification rate of 80 - 85% is nearly identical to the 85% correct classification rate 

previously reported by our research group for ignitable liquids, in the absence of any 

interference, based on TIS similarity. These results indicate that ignitable liquid classification 

can be achieved in the presence of a priori unknown interferences from pyrolysis. The 

methodology developed under this research grant is directly applicable to fire debris analysis and 

numerous other areas of forensic trace analysis where the analyte must be identified in the 

presence of an unspecified background signature. The broader applicability of the method also 

broadens the potential impact on forensic practice. The results from the research have been 

presented at numerous forensic science conferences, two Forensic Science M.S. theses have been 

written, a comprehensive manuscript on the work is under peer-review at Forensic Science 

International, and one patent application on the combined TFA-Bayesian method has been filed. 

  

 

. 
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Executive Summary 
 

The Problem: It has been said that fire debris analysis is among the most difficult forensic 

challenges. This problem is one of identifying the chromatographic pattern produced by 

hundreds of organic analytes from an ignitable liquid in the presence of possibly hundreds of 

interfering compounds, some of which are also components of the ignitable liquid. Gasoline, for 

example, can contain several hundred organic hydrocarbons. The compounds that interfere with 

identifying the ignitable liquid pattern come primarily from pyrolysis of materials contained in 

the structure. The heat from a structure fire will cause the organic materials (woods, plastics, 

foams, etc.) to breakdown into comparatively simple hydrocarbons. The number and identities of 

hydrocarbons formed from different organic materials is highly varied, and in many cases they 

will be identical to the hydrocarbons comprising a given ignitable liquid. There may be many 

organic materials present in any structure, i.e., building materials and furnishings. The pattern 

recognition problem is further complicated by evaporative processes resulting from the heat of 

the fire, which also distort the ignitable liquids chromatographic profile. 

 

The method currently used to identify an ignitable liquid chromatographic profile is primarily 

one of visual pattern recognition. When the ignitable liquid residue is present in much higher 

concentrations than the interfering compounds, this procedure works well and the fire debris 

analyst can call a sample positive for ignitable liquid residue with confidence. However, when 

the ratio of ignitable liquid residue to interfering compounds decreases, recognition of the 

ignitable liquid residue becomes more challenging and the use of extracted ion chromatographic 

profiles and target compound analysis take on greater importance. As the ratio of ignitable liquid 

to substrate continues to decrease, eventually the analyst must decide if they are comfortable 

calling a sample positive for ignitable liquid residue. The point at which the analyst goes from 

certain to unsure will vary with each sample and is subjective at best. Consequently, when fire 

debris evidence is introduced at trial, the fire debris analyst does so without an estimated or 

known error rate. Given the lack of known error rates, the fire debris analyst must be 

conservative in calling a sample positive for ignitable liquid, that is to say that the ignitable 

liquid pattern must be strong and clearly recognized. A mathematical approach to address this 

issue and assist the fire debris analyst in reaching a decision regarding case samples does not 

currently exist, due in large part to the complicated nature of the problem. The research reported 

here directly addresses this issue. 

 

To be clear, the problem that the fire debris analyst faces is not an identification problem, it is a 

classification problem. The analyst is not trying to identify a specific ignitable liquid, (i.e., 83 

octane gasoline from the station on the corner). The analyst is attempting to identify a pattern 

that is consistent with a “class” of ignitable liquids. The standard method followed by most 

analysts in the United States is the American Society of Testing and Materials, ASTM E1618, 

which defines the classes of commercial ignitable liquids.  The ASTM classes include gasoline 

(Gas), petroleum distillates (PD), iso-paraffinic products (ISO), aromatic products (AR), 

naphthenic paraffinic products (NP), normal alkane products (NA) and oxygenated solvents 

(OXY). The classes may be subdivided based on carbon range as light (C4 – C9), medium (C8 – 

C13) and heavy (C8 – C20+). The PD class is frequently broken into the light, medium and heavy 

sub-classifications; LPD, MPD and HPD respectively. The OXY class is a collection of all 

ignitable liquids that contain a major oxygenated component (i.e., ketone, alcohol, ester, etc.). 
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The miscellaneous (MISC) category does not possess class characteristics and is simply a 

collection of those ignitable liquids that do not fit into the other defined classes. 

 

The problem addressed in this research is the development of a chemometric method to aid the 

fire debris analyst in determining if an ignitable liquid residue is present in a fire debris sample 

by providing a statistical evaluation that will assist the analyst in reaching his/her decision. The 

method must be robust enough to work without a priori knowledge of the interferences’ 

chromatographic signature.  In a broader context, detection of an analyte or class of analytes in 

the presence of an unspecified interference is a very challenging analytical problem. This 

research also addresses that broader problem. Fortunately, in both the forensic-specific and 

broader problem, the number of analyte classes or the number of analytes of interest are 

significantly smaller in number than the number of possible backgrounds. It is this common 

feature of the problem that facilitates a solution. 

 

Purpose of the Research: The purpose of this research is to devise a chemometric method 

that aids the fire debris analyst in detecting the presence of an ignitable liquid in the presence of 

a substantial and undefined background signature. It is important to note that the decision to call 

a sample positive for ignitable liquid residue lies with the analyst and it is not the intent of this 

research to circumvent that responsibility or to replace the analysts decision with a “black box” 

algorithm. The product from this research should aid the analyst in reaching the decision to call a 

sample positive or negative for ignitable liquid residue and to provide some statistical 

information regarding the ASTM class of ignitable liquid that may be present in fire debris 

determined to contain ignitable liquid residue. 

 

Research Design: The goals of this research were addressed through the development of an 

appropriate theoretical approach and a series of three experimental tasks. Currently, chemometric 

multivariate approaches to pattern recognition do not explicitly address the problem of 

interferences. The most common approach is to use a controlled training procedure where the 

training data set includes analyte samples that are contaminated with interferences. This 

approach has been met with varying degrees of success. The problem with this approach is that it 

is impossible to include conceivable interference and combination of interferences. 

 

In the research reported here, data from multiple samples from a fire scene are analyzed as a 

whole, rather than analyzing a single sample. The data from multiple samples are concatenated 

into a single data matrix for analysis. Chromatographic retention times vary from one laboratory 

to another and even within a single laboratory. Therefore, chromatographic retention times do 

not form a strong basis for pattern recognition. The average mass spectrum taken across the 

chromatographic profile (also referred to as the total ion spectrum or TIS) has been shown to 

form a strong basis for identification of complex mixtures, such as commercial ignitable liquids. 

The TIS from the GC-MS analyses of extracted ignitable liquid residues from fire debris are used 

in this research. The chemometric methodology developed for this work involves a combined 

approach of target factor analysis (TFA) and Bayesian decision theory. The data matrix 

comprised of multiple fire debris sample TIS is subjected to abstract factor analysis 

(mathematically equivalent to principal components analysis) and the dimensionality of the data 

is reduced to give a set of latent variables or principal factors. A set of target TIS are projected 

into the principal factor space and then back-transformed into the original data space. A direct 
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comparison is made between the target TIS and recovered TIS (i.e. by Pearson correlation). The 

target TIS are taken from the Ignitable Liquids Reference Collection and Database (ILRC) 

maintained by the National Center for Forensic Science. Each entry in the ILRC has been 

assigned to one of the classes defined by ASTM E1618-10. The correlations from the ILRC TIS 

that were projected into the principal factor space are divided into their assigned ASTM classes 

and a class-conditional kernel probability distribution is calculated for each class. The 

probability of obtaining a correlation, greater than a specified limit, is calculated for each class 

by integrating the area under each class-conditional probability curve over the region between 

the specified limit and one. Those probabilities are used to calculate the posterior probabilities by 

the standard Bayesian approach. In cases where the integrated area for a given class-conditional 

probability falls below a sensitivity limit , typically 0.05, the posterior probability for that class 

is set to zero. If the integrated areas for all classes fall below  for all classes, the sample cannot 

be classified. The method can be made very conservative by adjusting  and the integration 

lower limit, and the method meets the requirements of a soft classifier. 

 

The first experimental task was to test the method using computationally generated data sets. A 

series of test calculations were conducted on data sets containing 10 spectra. Each spectrum 

contained one or two ignitable liquids from different ASTM classes, a set of five or 10 substrate 

pyrolysis TIS and five percent random noise. A second test set was calculated with two 

contributing ignitable liquids from classes ISO and MPD and five substrate pyrolysis TIS, along 

with 5% random noise. In the final test, a single ignitable liquid class, Gas, was combined in 

contributions up to 70% with 10 substrate pyrolysis TIS. This test is significant because the 

number of components (ignitable liquid plus substrates) exceeds the number of spectra analyzed 

(i.e., the problem is under determined). The last test is also significant because in real samples, it 

is impossible to tell if the number of spectra analyzed exceeds the rank of the resulting data 

matrix. The target TIS for these tests were taken from the ILRC and limited to the three classes 

involved in the tests. 

 

The second experimental task involved investigation of a series laboratory-scale burn samples. 

Each experiment was comprised of a set of samples prepared by heating a set of substrates and a 

single ignitable liquid in quart paint cans. The samples in each set contained varying volumes of 

the ignitable liquid and/or variable substrates. Passive headspace samples were collected from 

each burn sample and analyzed following a defined analytical protocol.  The TIS from analysis 

of each set of samples were compiled and analyzed following the TFA-Bayesian method. The 

tests utilized all ASTM classes of ignitable liquids and the target TIS were taken from the ILRC. 

The results from the tests were evaluated to determine if the highest posterior probability 

corresponded to the class of ignitable liquid used in the burn.  

 

The third experimental task was to conduct large-scale burns with known ignitable liquids, to 

take multiple samples from the post-burn scene and test the TFA-Bayesian method. The large 

scale burns were conducted at the Bureau of Fire Standards and Training, Ocala, FL, in 

collaboration with the Bureau of Forensic Fire and Explosives Analysis, Tallahassee, FL. Konex 

shipping containers were built out on the inside with wallboard and commercial flooring. The 

containers were furnished with commercially available household furnishings and then burned 

with the aid of one or two ignitable liquids (500 mL of each liquid).  The fires were allowed to 

burn for 5 – 15 minutes before being extinguished with water. All of the containers went to 
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flashover and were allowed to cool for a period of several hours before samples were collected. 

Fire debris samples were taken along the pour trails and off the trails. Samples were returned to 

UCF for analysis by gas chromatography – mass spectrometry (GC-MS). Data from each 

container burn was combined and analyzed by the TFA-Bayesian method. A total of 12 container 

burns were performed in three sets of four burns. 

 

 

Findings and Conclusions: The TFA and Bayesian theories used in this research are 

carefully described in this report. The theoretical approach in this work differs from those 

previously described. Because of this difference and the need for forensic scientists to fully 

understand the method, a full derivation of the vector projection method is given along with a 

careful description of how the TFA results are combined with Bayesian decision theory to obtain 

a soft classification system. The combination of these two well-known methods is novel and 

constitutes a major portion of this research. The results from applying the TFA-Bayesian method 

to complicated data samples proved promising for current application and future research. 

 

In the first experimental testing, gasoline was successfully detected at contributions as low as 1 – 

5% in the presence of 90 – 94% substrate. Posterior probabilities greater than 0.9 were obtained 

for the Gas class, while the other two classes not included in the sample, ISO and MPD, had 

much lower posterior probabilities. Similarly, when the ISO and MPD classes were combined in 

concentrations as low as 1 – 5% each, in the presence of 85 – 93% substrate, the posterior 

probabilities for each of these two classes approached 0.5, while the posterior probability for Gas 

was very low. In the underdetermined problems, Gas was identified with a high posterior 

probability; however, the correlations between the target and recovered TIS were significantly 

lower than observed in tests that were not underdetermined. 

 

Application of the TFA-Bayesian approach to the laboratory burn data resulted in four of the 20 

samples where the maximum calculated posterior probability did not match the class of ignitable 

liquid used in the burn (i.e., 80% correct prediction of the correct class based on the largest 

posterior probability). Similarly, when the TFA-Bayesian method was applied to the large-scale 

burns, approximately 83% correct classification was obtained based on assigning the ignitable 

liquid to the class with the largest posterior probability.  In both the laboratory- and large-scale 

burns, when the analysis was performed at a sensitivity level of 0.05, posterior probabilities were 

calculated for all of the burns. When the posterior probability calculation was repeated at  = 

0.01 for the large-scale burns, in one case none of the class probabilities exceeded , and 

therefore the ignitable liquid residues from one burn could not be classified.   

 

In considering this overall correct classification rate, several factors must be kept in perspective. 

The large-scale burns were all taken to flashover and there is absolutely no control over the 

amount of ignitable liquid residue remaining for analysis. Similarly, the degree of weathering is 

not controlled. In these regards, the data are very representative of real fire debris samples. This 

is, to our knowledge, the first multivariate classification model designed to work explicitly in the 

presence of an unknown and unspecified background signature. The correct classification rate of 

83% is nearly identical to the 85% correct classification rate for ignitable liquids (in the absence 

of any interference) based on TIS similarity.[11]  Finally, the addition of the sensitivity criterion 

makes the method conservative and by adjusting the lower correlation limit for integration in 
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combination with the sensitivity, the conservative nature of the method can be controlled. The 

disadvantages of the method are that it requires the analysis of data from multiple samples taken 

from a single fire scene, rather than a single sample, and the number of samples should exceed 

the “chemical rank” of the data, a condition that may be difficult to ensure in real samples. In this 

research, less than 15 samples were analyzed in each fire scene. 

 

Implications for Policy and Practice: Fire debris analysts are currently allowed to opine 

that a sample is positive for ignitable liquid residue without the requirement to offer a known 

error rate for this assessment. It is reasonable to assume that at some point the admission of 

expert opinions in fire debris analysis is likely to meet a Daubert challenge based on the lack of a 

known error rate. This study represents one approach to obtaining error rates. Other approaches 

are also available from NIJ-sponsored research. In addition, this method provides a set of 

probabilities that the analyst may take into consideration when determining whether to call a 

sample positive or negative for ignitable liquid residue. Samples containing a significant 

signature for an ignitable liquid residue will result in large probabilities for the appropriate 

ignitable liquid class, and the probabilities may be helpful in providing statistical support for the 

analyst.  We see perhaps a larger benefit coming when the ignitable liquid signature is weaker. 

The TFA-Bayesian method can identify the presence of an ignitable liquid at low levels, as 

shown in simulation studies, where gasoline was identified at contributions as low as 1 – 5%.  

 

 

I.  Introduction:  
 

In many analytical chemistry and forensic science applications, a significant challenge exists in 

determining the presence of an analyte of interest when there is a significant and highly variable 

background signature. The difficulty of this problem is increased when the analyte in question is 

comprised of a complex mixture of chemical species. Fire debris analysis exemplifies this 

problem and the complexities it entails. 

 

Statement of the problem: The research reported here directly addresses the broader 

analytical problem of detecting an analyte in the presence of a strong background signal for the 

purpose of determining the class of analyte present, but not the specific identity of the analyte. 

This problem is of general interest in the areas of signal processing, sensor development and 

forensic analysis. The forensic application specifically addressed in this research is the detection 

of ignitable liquid residue in the presence of pyrolysis background contributions and the 

classification of any ignitable liquid present into the classes defined under ASTM E 1618. We 

consider the solution to this problem to be the “Holy Grail” of forensic fire debris analysis. This 

problem is not readily solved by simply applying existing chemometric methods because: (1) 

classification methods that are currently available do not explicitly address the problem of 

background contributions to the overall signature of the sample and (2) most classifiers are 

defined as hard classifiers, while the existing soft classifiers do not directly provide probabilities 

of membership in multiple classes, nor do they offer the option of not assigning a sample to any 

class. The key to successfully addressing this problem is the recognition that in most analytical 

problems the number of analytes, or the number of classes of analyte, that are of interest are 

significantly less than the number of possible background interferences. Detection and 

classification of ignitable liquid residue in fire debris is representative of the “limited analyte 
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classes – multiple interferences” problem. The approach taken to solve the problem, as addressed 

here, is to identify ignitable liquids that potentially contribute to a sample is by testing a library 

of ignitable liquids from the ASTM E1618 classes to determine if they contribute to a fire debris 

sample. More specifically, we seek the probability that a sample contains contributions from one 

or more ASTM class of ignitable liquid, and this information must be obtained irrespective of the 

background signature. 

 

Literature review:  Most of the ignitable liquids encountered in forensic fire investigations 

are commercial products that are comprised of multiple components. Varying amounts of the 

more volatile components are frequently lost through evaporation during the fire, a process 

referred to as “weathering” by fire debris analysts. The complexity of commercial products, 

coupled with weathering complicates the analysis of ignitable liquid residues in fire debris 

samples. The process is further complicated by the addition of background or interference 

compounds. In fire debris, these background components often arise from pyrolysis. The term 

pyrolysis is used here as defined by Webster: “chemical decomposition or other chemical change 

brought about by the action of heat regardless of the temperature involved.”[1] The term is often 

used in the chemical literature to refer to decomposition in the absence of oxygen; however, the 

amount of oxygen present at any given time in a fire is difficult to define but absent from 

Webster’s definition and therefore the term pyrolysis is used as defined by Webster. Pyrolysis 

converts common building and furnishing materials into a complex mixture of hydrocarbons, and 

many of the pyrolysis products may be coincidental with those compounds found in commercial 

ignitable liquids. When the amount of pyrolysis products is large compared to the ignitable liquid 

residue, the problem is to identify the pattern of the ignitable liquid in the total ion 

chromatogram (TIC) of the fire debris sample. On the other hand, when the amount of pyrolysis 

products is small, the TIC from the fire debris may closely match the TIC from a reference 

ignitable liquid and the problem can simplify to one of explaining the origin of a few extraneous 

peaks from the fire debris sample. In the United States, common practice requires that the 

ignitable liquid pattern of the TIC be readily discernible by visual pattern recognition following 

the American Standard Testing and Materials (ASTM) E1618-10 Standard Test Method.[
 
2] 

 

Despite the level of weathering and interference from pyrolysis products, the problem in fire 

debris analysis is not one of identifying a specific ignitable liquid or commercial product. 

Instead, the problem is to determine if a chromatographic profile and the chemical composition 

leading to that profile is consistent with one of the seven “classes” of products, or the 

miscellaneous category, as defined under ASTM E 1618. The ASTM classes include gasoline 

(Gas), petroleum distillates (PD), iso-paraffinic products (ISO), aromatic products (AR), 

naphthenic paraffinic products (NP), normal alkane products (NA) and oxygenated solvents 

(OXY). The classes may be subdivided based on carbon range as light (C4 – C9), medium (C8 – 

C13) and heavy (C8 – C20+). The PD class is frequently broken into the light, medium and heavy 

sub-classifications; LPD, MPD and HPD respectively. The OXY class is a collection of all 

ignitable liquids that contain a major oxygenated component (i.e., ketone, alcohol, ester, etc.). 

Under this definition, the OXY class may also be considered a derivative class wherein a 

member of any other class may conform to the OXY definition simply by addition of an 

oxygenated component. The miscellaneous (MISC) category does not possess class 

characteristics and is simply a collection of those ignitable liquids that do not fit into the other 

defined classes. 
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While fire debris analysts rely heavily on the TIC and extracted ion chromatograms for the 

classification of ignitable liquids, they do so by visual pattern recognition. In order to automate 

the process of classification so that it may be applied across multiple laboratories, it is necessary 

to either define a method of establishing fixed retention times across laboratories or move to a 

system that is based on a parameter with little or no inter-laboratory variability. Robust 

classification schemes cannot be built on highly variable parameters.[3] One approach would be 

to base matches on the similarity between covariance maps of GC-MS data sets. [4,5] 

Covariance maps are time-independent data representations that have been demonstrated to be 

useful for statistical comparisons of ignitable liquids. Covariance mapping,[6,7,8,9] and 

coincidence measurements,[10] have also been applied to time-of-flight mass spectrometry to 

resolve correlated events. Calculating covariance maps from GC-MS data sets is a CPU and 

memory intensive process. Alternative approaches to time-independent representations of GC-

MS data have been investigated. 

 

The total ion spectrum (TIS) is an average mass spectrum measured over the chromatographic 

profile, and has been shown to give 85% correct classification into the primary ASTM classes in 

an inter-laboratory test of neat ignitable liquids. [11] The TIS has also been shown to provide 

database search results similar to covariance mapping, and the calculation of a TIS and 

comparisons between two TIS require fewer computational resources than required for 

covariance maps. Figure 1 shows a heat map comparison of the similarities between TIS from 

over 500 ignitable liquids. High similarities are colored red and low similarities are colored blue. 

The lower left to upper right diagonal reflects the similarity of each liquid with itself, which is 

defined as a similarity of one. The off-diagonal elements show the similarities between different 

ignitable liquids. Similarities are clustered such that the most similar row-wise and column-wise 

patterns are grouped. The result is the heat map which shows areas of red along the diagonal, 

with the highest similarities corresponding to the PD and NP classes of ignitable liquid (upper 

right corner). Smaller clusters corresponding to MPD, NP, HPD and LPD can be seen within the 

larger PD/NP clusters. Near the center of the heat map, the NA cluster can be observed with two 

clusters of ISO along the diagonal on either side of NA. A small cluster of the MISC category 

and OXY class occurs between the ISO/NA and a small cluster of the Gas class. Below the Gas 

cluster is a cluster of primarily HPD ignitable liquids that show slightly weaker similarities. It is 

not clear why these HPDs cluster away from those in the upper right-hand corner of the heat 

map. Finally, along the diagonal in the lower left-hand corner of the heat map are a series of 

small clusters corresponding to the heavy, medium and light members of the AR class. The AR 

class show very low similarities with members of other classes of ignitable liquid. Interspersed 

among the clusters are primarily MISC and OXY ignitable liquids. The heat map shown in 

Figure 1 was constructed based on an algorithm using the Manhattan distance with a single 

linkage model. Heatmaps based on algorithms using other distances (i.e., Euclidean, Minkowski, 

etc.) and different linkages (i.e., centroid, complete, etc.) give slightly different results. 
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Figure 1. Heat map showing similarities between the TIS of different ignitable liquid classes designated by a 

sample reference number (SRN). 
 

When a similar comparison is made between the same set of ignitable liquids and TIS from 

pyrolysis products from 60 common commercial building materials, the resulting heat map is 

shown in Figure 2. The heat map is now asymmetric and the dendrogram for the substrate 

clustering is shown on the top border of the graph. The heat map is dramatically different from 

the ignitable liquids heat map. Most of the ignitable liquid TIS are seen to have similarities with 

pyrolysis products of less than approximately 0.5. The only area of high similarity observed in 

the heat map is between the PD/NP classes and a group of pyrolysis products comprised of 

polyester and olefin. This indicates that the TIS may be useful in discriminating between 

pyrolysis products and ignitable liquids from most ASTM classes.   The TIS from complex 

ignitable liquids are coupled with a multivariate statistical technique and Bayesian decision 

theory to form the classification method described in this work. 
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Figure 2: Heat map of similarities between ignitable liquid designated by sample reference number (SRN) 

and pyrolysis product TIS designated by material reference number (MRN). 

 

Multivariate statistical techniques that have previously been applied to classification problems 

have not explicitly address the problem of interferences. There have been attempts to include 

interference into the training data, as described below, as a way of improving prediction quality. 

These attempts have been met with varying levels of success.  The combined use of Principal 

components analysis (PCA) and linear discriminant analysis (LDA) has been applied to a set of 

gasoline samples for the purpose of discriminating between samples.[12,13,14] The method 

correctly classified 96% of the fresh gasoline samples, but only 51% of the evaporated gasoline 

samples. These studies used reference liquid gasoline samples rather than fire debris samples. 

Recent work from UCF (Award No. 2009-DN-BX-K227) has examined LDA and quadratic 

discriminant analysis (QDA) for the classification of ignitable liquids into the ASTM classes. 

[15] The method utilized TIS and was applied across all ASTM classes, except OXY and MISC. 

In addition, a single discrimination between samples containing ignitable liquid residue and 

those that did not contain ignitable liquid residue was included in the multi-step discrimination. 

Incorporating up to 20% pyrolysis products produced less than 10% false positive rate for the 

presence of ignitable liquid residue. PCA has also been combined with Pearson product moment 

correlation (PPMC) in an attempt to “associate” ignitable liquid residues with the corresponding 

neat ignitable liquids in the presence of interferences.[16] The study incorporated 12 ignitable 

liquids from six ASTM classes. The study demonstrated the difficulties of showing quantifiable 
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“associations” between neat ignitable liquids and ignitable liquid residues extracted from fire 

debris (i.e., burned nylon carpet substrate in this case). Principal components analysis is not an 

optimal classification technique. The goal of PCA is to reduce the dimensionality of a data set 

while maintaining the maximum possible variance in the minimum number of latent variables. 

Principal components analysis and soft independent modeling of class analogy (SIMCA) were 

tested for the classification of a set of 51 ignitable liquids chosen from five ASTM classes.[17] 

High correct classification rates were reported for SIMCA in these tests, which involved addition 

of solvents to previously burned substrates, thus avoiding much of the weathering process that 

characterizes fire debris analysis. 

 

Some highly innovative approaches, although less conventional, have also been tested for 

classification of ignitable liquids. A comparison of gas chromatography-mass spectrometry (GC-

MS) and gas chromatography-differential mobility spectrometry (GC-DMS) has been reported 

for the analysis of fire debris using projected difference resolution, a two-way data analysis 

method.[18] The number of prediction errors from one-way data analysis (i.e., comparison of 

chromatographic profiles), exceeded those from the two-way analysis. The research examined 

neat liquids, residues extracted from unburned substrate, and residue extracted from previously 

burned substrates. The abundant fragment ions in the integrated MS spectra (equivalent to the 

TIS) provided enough information to classify different ignitable liquids. The integrated MS 

spectra gave comparable correct classification to the two-way data for the neat and burned 

samples. An additional, somewhat unconventional approach, unsupervised self-organizing 

feature maps (SOFM) has successfully linked evaporated lighter fluids to the corresponding un-

evaporated liquid for a set of 15 different samples.[19] Successful classification by lighter fluid 

brand required the use of hierarchical cluster analysis coupled with SOFM, whereas SOFM alone 

was reported to be more robust in identifying visual similarities and differences in the 

chromatographic data. 

 

Hypothesis or rationale for the research:  As described in the preceding section, 

multivariate statistical techniques that have been applied to the classification of ignitable liquids 

do not explicitly account for background interferences and many of the methods are hard 

classifiers that require each sample be assigned to one class. Current fire debris analysis practice 

does not utilize statistical methods. Current fire debris analysis methods have no known error 

rates, and rely totally on visual pattern recognition which is inextricably tied to the use of 

chromatographic data. While the goal of this research was to develop alternatives that can 

overcome some of the challenges in fire debris analysis, it must be pointed out that current 

protocols are not inherently flawed and that fire debris analysis is among the most complex of all 

forensic analyses. The goal of this research is not to replace or substantially change current 

practice, but rather, to provide statistical-based chemometric methods to enhance current 

practice.  This research is based on the following hypotheses: (1) the signature of an ignitable 

liquid can be extracted from the signature of pyrolysis products in a significant percentage of 

cases, (2) classification can be based on time-independent data representations that are 

comparable between laboratories and (3) a multivariate soft classification method can be 

developed that will provide the analyst with probabilities of class membership as defined under 

ASTM E1618-10. These propositions were addressed by the synthesis of a chemometric method 

based target factor analysis and Bayesian decision theory. The time-independent total ion 
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spectrum of ignitable liquids reference samples are used as the target factors, giving the method 

inter-laboratory applicability. 

 
II.  Methods 
 

Experimental Methods:  The chemometric method of target factor analysis requires a 

library of target factors. In the problem addressed in this research, the target factors will be a set 

of TIS for reference ignitable liquids. The target factors will be drawn from the Ignitable Liquid 

Reference Collection (ILRC), created and maintained by the National Center for Forensic 

Science (NCFS) in collaboration with the Technical Working Group for Fire and Explosions 

(TWGFEX). Each ignitable liquid in the collection has been assigned to an ASTM E1618-

designated class. The TIS was calculated for each of the over 500 commercial ignitable liquids in 

the database. Spectra in the ILRC library originated from 20 microliters of a reference ignitable 

liquid diluted with 1 milliliter of carbon disulfide and analyzed by GC-MS as described below.  

Similarly, GC-MS data for substrate pyrolysis products have been taken from the 

NCFS/TWGFEX Substrate Database.  Spectra in the Substrate library originated from materials 

heated to produce pyrolysis and combustion products.  These combustion and pyrolysis products 

were adsorbed onto activated carbon and then desorbed with carbon disulfide for GC-MS 

analysis, as described below. 

 

Test fire debris samples were created in the laboratory by depositing ignitable liquids onto 

substrate materials prior to heating.  Substrate materials such as building materials, flooring, and 

furniture were purchased from local home improvement and furniture stores.  Decomposition 

products from these materials were produced by a modified destructive distillation method based 

on a procedure developed by the State of Florida Bureau of Forensic Fire and Explosives 

Analysis.  The materials were cut to approximately 6 cm
2
 in size,  placed upside down inside a 

un-lined metal quart-size paint can (Best Containers, Eagle, ID), and then a perforated lid with 

nine 1 mm diameter holes was laid loosely onto the can, see Figure 3a.  Heat was applied to the 

bottom of the can by a propane torch held at a distance of 4 cm from the bottom as shown in 

Figure 3b.  Heating continued 2 minutes after smoke appeared from the holes in the can lid.  

Once the heat was removed, the perforated lid was replaced with a solid lid to retain vapors 

within the headspace and the can cooled to room temperature.  After the can reached room 

temperature, an activated carbon strip was suspended in the headspace of the can to adsorb the 

resulting combustion and pyrolysis products along with any ignitable liquid residues.  The cans 

were heated inside an oven at 66°C for approximately 16 hours. After the 16 hours, the cans were 

removed from the oven and cooled to room temperature.  The adsorbed residues were desorbed 

from the activated carbon with carbon disulfide for GC-MS analysis.  These conditions are based 

on procedures used for the Substrate Database.  The target factor data analysis method requires 

that multiple samples, each potentially containing different contributions from an ignitable liquid 

and substrates, be analyzed as a composite dataset. Typically 6 – 12 samples were prepared for 

each ignitable liquid by varying the volume of (25 – 2000 L) that was deposited onto the 

substrate or using various multiple substrates in each sample with a constant volume of ignitable 

liquid.  The total ion spectra from the GC-MS analyses for a group of fire debris samples were 

concatenated into a single data matrix for further data analysis, as described below.  
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Figure 3. Laboratory burn setup. (A) Burn can showing lid with ventilation holes. (B) Ringstand and propane 

torch heating bottom of can.  
 

Large-scale burns were conducted at the Florida Fire College using four 2.4 x 2.4 x 6.1 m
3
 

Konex shipping containers fabricated inside with sheetrock walls and ceilings to construct a two 

room structure.  Each container had a three-sided 1.2 x 1.2 m
2
 opening at the rear of the 

container to resemble a window which allowed limited control of air to support the fire. The 

majority of the plywood floors were covered with carpet and carpet padding with a small area 

covered in either vinyl or wood laminate.  The front room was furnished with a chair, sofa, and 

table to resemble a living room and the back room was furnished with a bed and dresser to 

resemble a bedroom.  The building and flooring materials were purchased from Home Depot and 

the furnishing were purchased from either Wal-Mart or IKEA. Figure 4a shows a photograph 

taken inside one of the burn containers prior to ignition. Additional clothing, papers and plastic 

items were added to each container to increase the fuel load.  Five hundred milliliters of ignitable 

liquid was poured from the front of the container at the couch and trailed to the back of the 

container at the bed, see Figure 5.  The fire was initiated when a fire fighter placed a torch at the 

pour sight on the couch, see Figure 4b. The duration of the fires were typically 5 – 15 minutes, 

during which time, the containers reached temperatures as high as 870 ºC and the containers 

typically achieved a condition of “flashover”. These burns produced fire debris samples 

resembling those obtained from structural fires encountered by forensic laboratories.  After 

extinguishment with water, see Figure 6, and subsequent cool down of the container, most 

samples were collected on or near the ignitable liquid pour trail with a few samples collected 

from areas remote of the pour trail, see sample markers in Figure 7.  The fire debris samples 

collected were placed into individual one gallon metal paint cans. Any ignitable liquid, pyrolysis 

and combustion product residues were adsorbed onto activated carbon, as described in the 

following paragraph and subsequently desorbed with carbon disulfide for GC-MS analysis.  
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Figure 4. (a) Burn container before ignition and (b) after ignition. 
 

 

   
Figure 5. Diagram of the burn container showing front room with small sofa, chair, table and waste basket. 

Back room contained bed and small chest-of-drawers. Partition between rooms left a 3 foot opening. Back 

wall of container had a 4 foot “window” cut on three sides to allow it to open approximately 1 foot for air 

flow. The double doors on the front of the container were held at approximately 6 inches open during the 

burn. The red line in the diagram shows the pour-trail. 
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Figure 6. Extinguishing of large-scale burns was accomplished with water after the containers had reached 

flashover. 

 

     
Figure 7. Post-burn debris photo showing the placing of sample markers along the pour trail. 
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The ignitable liquid residue along with pyrolysis and combustion products from the laboratory 

and large-scale burns were collected from the fire debris by passive headspace adsorption onto 

activated carbon following the ASTM E1412-07 standard method.[20]  A 10 x 22 mm
2
 activated 

carbon strip (Albrayco Technologies, Inc., Cromwell, CT) was suspended into the headspace of 

the can by a paperclip and un-waxed dental floss.  The sealed can was heated for 16 hours at 

66°C.  Once cooled to room temperature, the activated carbon strip was removed from the can 

and cut in half lengthwise.  One half was archived and the other was deposited into a vial with 1 

ml of low benzene carbon disulfide (Fisher Scientific) for GC-MS analysis. 

 

Gas chromatography-mass spectrometry analysis was performed in accordance with ASTM 

E1618-10 [2] utilizing an auto-sampler on an Agilent 6890 gas chromatograph interfaced to a 

5973 mass spectrometer.  One microliter of the CS2-diluted ignitable liquid was injected into a 

250°C injection port.  The compounds were separated by a 100 % dimethylpolysiloxane (HP-1) 

capillary column with a film thickness of 0.50μm, a nominal diameter of 200 μm, and 25 m 

length.  Helium gas was maintained at a constant flow rate of 0.8 ml/min with an average 

velocity of 36 cm/sec.  The injection was split in a 50:1 ratio.  The initial oven temperature of 

50°C was held for 3 minute, followed by a temperature ramp of 10°C/min to a final temperature 

of 280°C, which was held for 4 minutes.  The mass spectrometer transfer line temperature was 

250°C with a source temperature of 230°C and a quadrupole temperature of 150°C.  Mass 

spectra were scanned between 30 and 350 mass to charge ratio at an acquisition rate of 2-3 

scans/second.  The detector was turned on at 2.00 minutes after solvent elution. 

 

The 3D GC-MS data from each sample was exported as a comma-separated values file and the 

total ion spectrum (from 30 – 200 m/z ) for each sample was calculated by summing each mass 

channel over the chromatographic profile and normalizing the data such that the intensities 

across the entire m/z range summed to one. Each row of the data matrix corresponded to a 

sample and each column corresponded to a variable (i.e., m/z ratio). An example can be found in 

the appendix. The library spectra from the ILRC were prepared the same way and compiled for 

target factor analysis. The TIS were analyzed as described in the following section. 

 

Statistical Methods: The classification methods discussed in “Section 2; Literature citations 

and review”, operate by classifying one sample at a time. Target factor analysis works by the 

simultaneous analysis of a set of data (i.e. data from multiple samples). In the case of interest 

here, the TIS from multiple samples collected from a single fire scene would be concatenated 

into a data matrix and analyzed. In this work, the number of spectra analyzed is typically 10 – 

15. The significance of the number of spectra will become apparent upon further discussion of 

the mathematical approach. A set of spectra, each composed of multiple contributing factors, 

may be analyzed by target factor analysis (TFA). Target factor analysis begins with a reduction 

in the dimensionality of the data by abstract factor analysis, a process highly analogous to PCA, 

to identify a limited set of latent variables that represent a significant portion of the variance in 

the data. In theory, each entry in the data matrix, dsv, should conform to Equation 1, which 

defines the linear nature of the approach. In Eq. 1, there are n contributing terms in each sum, 

each corresponding to a contributing factor. The values of rsk and ckv can correspond to 

concentrations and response in sample s at variable v. 

 

          ∑       
 
        (1) 
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While Eq. 1 defines the underlying data structure that is required for either abstract factor 

analysis or PCA, these methods are often applied without verification of the underlying data 

structure, especially in the social sciences. However, in the problem addressed here, Eq. 1 will 

hold in the absence of complicating factors that lead to nonlinearity, such as detector saturation 

which can be avoided by proper choice of experimental conditions. 

 

In abstract factor analysis, the s x v data matrix [D], composed of s samples and v variables, is 

decomposed into the product of [R], an s x N matrix, and [C], an N x v matrix, where [C] consists 

of the original variable loadings on an orthogonal set of eigenvectors (latent variables) and [R] 

contains the scores, which give the relative contributions required of each eigenvector to 

reproduce the data. The eigenvectors are achieved by singular value decomposition in this 

research; however, other methods are available.[21] The eigenvalues associated with each 

eigenvector is proportional to the fraction of variance in the data which is accounted for by the 

respective eigenvector. There are a maximum of N = s or N = v eigenvectors that account for 

100% of the variance in [D], with N corresponding to the smaller of s or v. The number (n) of 

eigenvectors needed to retain a given percentage of the variance in the data is selected and the 

data matrix reproduced from the n eigenvectors will be written as [D
#
]. Similarly, the reduced 

dimensionality scores and loadings matrices are designated as [R
#
] and [C

#
], respectively. 

Determination of the number of latent variables to retain may be accomplished by various 

methods, including the determination of rank by median absolute deviation (DRMAD), which is 

used in this work. [22] Malinowski defines target transformation of the scores matrix [R
#
] by 

beginning with the following definitions. When the number of factors retained, n, is less than N, 

the reproduced data will differ from the experimental data. This difference is generally expressed 

as an error matrix [E] which is of dimension s x v. In the following equations, [E] is dropped as 

an additive term and it is understood that the associated error has been removed from the 

recovered data, [D
#
], as shown in Equation 2. 

 

     [D
#
]=[R

#
]abstract[C

#
]abstract     (2) 

 

The subscripts “abstract” in Eq. 2 emphasize that the abstract factor solutions do not correspond 

to physically meaningful factors. The above equation can be rewritten as Eq. 3, where [T][T]
-1

 

equals the identity matrix, [I]. 

 

     [D
#
] = [R

#
]abstract[T][T]

-1
 [C

#
]abstract    (3) 

 

The product of the transformation matrix [T] with [R]abstract (or [T]
-1

[C]abstract) corresponds to 

“real” (i.e., physically meaningful) solutions as shown in Eq 4 – 5. 

 

     [R
#
]real=[R

#
]abstract[T]       (4) 

  

     [C
#
]real=[T]

-1
[C

#
]abstract      (5) 

 

Malinowski uses the notation [ ̅] (read as “r bar”) to denote the transformed scores matrix, Eq. 

6,  and [ ̅] to denote the transformed loadings matrix, Eq, 7. In addition, the “abstract” subscript 

is dropped so that: 
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       [ ̅] =[R
#
] [T]       (6) 

 
     [ ̅] = [T]

-1
 [C

#
]      (7) 

 

In seeking to find the underlying factor structure of the data it is possible to identify the elements 

of either [T] or [T]
-1

. In his classic text, Malinowski has derived the equations for the 

transformation of [R
#
] by finding the elements of [T] through target transformation and 

maximum likelihood (in a least squares sense) oblique rotations. Similarly, it is possible to find 

the elements of [T]
-1

 to accomplish target transformations of [C
#
], although Malinowski does not 

address this approach. It is worth noting that results identical to the transformation of [C
#
] can be 

obtained following Malinowski’s classic text if one chooses to diagonalize the covariance 

matrix, [Z], defined by pre-multiplying [D] by its transpose, rather than defining [Z] as [D][D]
T
. 

However, if we choose to define [Z] as [D]
T
[D], we must think of the eigenvectors as 

corresponding to combinations of sample composition, rather than spectra. It is convenient to 

consider the transformation of [C
#
] while maintaining the conventional arrangement of [D] 

where each row corresponds to a sample and each column corresponds to a variable. In the case 

examined here, the variables correspond to m/z ratio and the test vectors that will be available for 

target transformation are TIS from commercial ignitable liquids. The following derivation is 

given for finding the elements of [T]
-1

 to accomplish targeted oblique rotations of [C
#
]. The 

results of the derivation are particularly simple and readily interpreted within the construct of 

PCA, which is likely to be more familiar to forensic science students and practitioners. The 

derivation is also provided to enhance understanding of the result and facilitate the 

implementation by forensic scientists. 

 

We begin the derivation with Eq. 8, where the subscript “abstract” has been dropped, as 

described above. 

 

     [D
#
] = [R

#
] [T] [T ]

-1
 [C

#
]      (8) 

 

 

It is not necessary to find the entire transformation matrix [T]
-1

. Instead, it is possible to find a 

single row of [T]
-1

, as expressed in Eq. 9.  

 

        ̅    [ 
 ]       (9) 

 

The vector   ̅ is the predicted vector of dimension  1 x v and    is a row vector of dimension 1 x 

n  such that    is the     row of the transformation matrix [T]
-1

. Similarly,   ̅   is the     row of 

the transformed column matrix [ ̅]. We wish to find    that yields   ̅ which most closely matches 

a test vector denoted as   ̿. The transformation row vector    can be written as in Eq. 10. 

 

                         (10) 

 

The     column of [C
#
] is designated as given in Eq. 11: 

 

        
                  (11) 
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The dot product of    with   
  gives the projection of the     column of [C

#
] onto the new axis, 

  ̅ , and the dot product may be written as shown in Eq. 12. 

 

       ̅                            (12) 

 

Multiplying each column of [C#] by Tl similarly gives the projection of each column of [C#] 

onto the new axis, resulting in   ̅ ,   ̅  …  ̅  . The projected vector is compared to the test vector 

  ̿, having components   ̿ ,   ̿  …  ̿ . The difference,   ̅ -  ̿ , is denoted      and is expressed as 

shown in Eq. 13. 

 

            ̅    ̿                         ̿    (13) 

 

To perform the least squares maximum likelihood optimization, we set the sum of the derivatives 

of squares of the difference from Eq. 13 equal to zero. The square of the derivative can be 

expressed as in Eq. 14. The multiplier 2 can be factored out of each term in Eq. 14 and the terms 

summed over the v columns following a simple rearrangement, as shown in Eq. 15.  

 

   
       

 

    
        

                                ̿     (14) 

 

   ∑      ̿ 
 
       ∑    

  
       ∑       

 
         ∑       

 
     (15) 

 

Similar expressions can be written for each column in order to optimize with respect to each 

element of Tl. The resulting equations can be written in the following matrix form, where Al, Tl 

and [B] are given by Eq. 16, 17 and 18 respectively. 

 

 

           [ ]      (16) 

 

       [∑      ̿ 
 
   ∑      ̿ 

 
    ∑      ̿ 

 
   ]   (17) 

 

        [            ]     (18) 
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 ∑    

  
   ]

 
 
 

  (19) 

 

From Eq. 17, Al can be rewritten as the product shown in Eq. 20, and [B] can be rewritten as the 

product shown in Eq. 21, which simplifies to the identity matrix, [I] by virtue of the orthonormal 

nature of [C
#
]. 

 

            ̿[ 
 ]      (20) 
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      [ ]  [  ][  ]  [ ]    (21) 

 

The final formula for calculation of Tl which will give the least squares best fit   ̅ , Eq. 22, is 

then given by substitution of equations 20 and 21 into equation 16. 

 

         ̿[ 
 ]         (22) 

 

After the transformation vector, Tl, is found, Equation 9 is then used to calculate   ̅ which is 

compared by linear regression to the target vector,   ̿.  In this work, the Pearson product moment 

correlation coefficient, r, is used to judge the similarity of the test and predicted vectors. The 

property of target factor analysis that allows the search for one transformation vector at a time 

can then be utilized to identify factors that contribute to a data set, even in the presence of 

interferences, as will be demonstrated below. 

 

It is helpful to view the simple result of this derivation from the perspective of PCA, which is 

likely more familiar to forensic scientists. Equation 2 gives the general result of a PCA 

calculation. Equation 22 can be viewed as the projection of the data for a new sample (i.e.,   ̿)  

into the principal component space represented by the solution given in equation 2. The resulting 

Tl can be viewed as the scores from the projection. In other words, Tl would define the 

combination of eigenvectors that best represent   ̿. Applying Eq. 9 with the calculated Tl gives 

  ̅, the best possible representation of the new data that can be achieved from the orthogonal 

basis set. A direct comparison of   ̅ and   ̿ by least squares gives the correlation between the 

two.  A simple example of this result is shown in Figure 8, which depicts a data set (filled blue 

symbols) comprised of variables X, Y and Z. It can be seen from Fig. 8, that the data can be 

expressed as a function of two latent variables (i.e., two principal components), such that the data 

lies in a plane represented by the grid of black lines. If a new data point (pt1 shown by an open 

red circle) is projected into the PC-space, the scores for the projected point would be given by 

the coordinates of the blue cross symbol (pt1_r) in the coordinate system defined by the black 

grid. These scores would also correspond to the components of Tl, as discussed above. If the 

scores were projected from the 2D space back into the original 3D (XYZ) space, the coordinates 

would be given by location of the blue cross in the XYZ coordinate system, as shown in Fig. 8. 

Note the large distance between pt1 and pt1_r in the original space. A simple correlation between 

the XYZ coordinates of pt1 and pt1_r would yield a small correlation coefficient. In other words, 

pt1 cannot be accurately represented by the latent variables that define the 2D PC-space. A 

similar exercise is repeated for pt2 (green cross) and the recovered data, pt2_r, is shown by the 

open triangle in Figure 8. Now the distance in XYZ space between pt2 and pt2_r is quite small 

because it is possible to represent pt2 in terms of the latent variables.  This relationship is easy to 

see when the original data space is composed of only three variables; however, when the original 

data space is comprised of tens or hundreds of variables and the PC space is defined by a large 

number of variables, the relationship is difficult, if not impossible, to visualize without the aid of 

linear algebra. It should be noted that the coordinates (scores) in the PC space are dependent on 

the phasing of the eigenvectors. The scores plot and loadings plot corresponding to the data in 

Figure 8 are shown in Figures 9a and 9b, respectively.  
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Figure 8. Example of data projection and recovery using a simple 3D data set. 
 

 
Figure 9. Traditional PC scores and loadings plot for data shown in Figure 8. 
 

The theory and simple result outlined above can be applied by testing all of the members of a 

library of analytes to determine if they can be expressed as a combination of the latent variables 

derived from the abstract factor analysis of a data set. In the analysis of fire debris, the data set is 

comprised of the TIS from multiple samples coming from a fire scene. The library is comprised 

of the TIS from ignitable liquids in the Ignitable Liquids Reference Collection and Database 

(ILRC) maintained at UCF in collaboration with TWGFEX/SWGFEX. Each entry in the library 

has been classified into one of the ASTM E1618 classes by the TWGFEX Ignitable Liquids 

Committee. The question then becomes how to use this information, in combination with the 

target factor analysis results, to identify ignitable liquid residue in a fire debris sample. The 

connection is made through Bayesian decision theory. 
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Equation 23 forms the basis for Bayesian decision theory. In Eq. 23, the posterior probability, 

P(i|r), is expressed as a function of  the class-conditional probability, p(r|i), and the  prior 

probability, P(i), of membership in class i. [3] The probability distributions may be univariate 

or multivariate. In the discussion that follows, we treat the probabilities as univariate, where the 

variable is designated as r. Prior probabilities may be assessed in different ways, however, in the 

absence of a clear indication of the prior probabilities, they are set equal for each class. When the 

prior probabilities for each class are set equal, they cancel out of the numerator and denominator 

on the right-hand-side of Eq. 23.  In the analysis of fire debris, the prior probabilities could be set 

based on previous frequencies of assigning ASTM classes to samples that were positive for 

ignitable liquid residue. 

 

          |   
   |        

∑    |         
     (23) 

 

In a standard application of Bayesian decision theory, the class conditional probability curves are 

invariant and the value of r can be used directly to estimate class membership. For example, in 

Figure 10, if the two class conditional probability distributions are shown by the two curves, any 

sample having a value of r to the left of the vertical dashed line would be assigned to class A, 

and those to the right would be assigned to class B. 

 

 

 

    
Figure 10. Simple two class classification example. Maximum probability of correct classification is achieved 

by assigning a sample to class A if it has an r less than the value where the vertical dashed line intersects the r 

axis. Otherwise the sample is assigned to class B. 
 

The class conditional probability distributions are calculated from the correlation coefficients, r, 

obtained for each class as a result of the target factor analysis. There are no guarantees that the 

correlation coefficients for a given class of ignitable liquids will be normally distributed. 

Therefore, a kernel distribution function is used to calculate each class conditional probability 

distribution. Equations 24 – 26 give the kernel distribution function employed. 
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Equation 24, expresses the class-conditional probability as a superposition of Gaussian functions 

centered at the ni correlation values for each class i.[3] The value hi is an adjustable bandwidth 

which may be calculated by Equation 25, where Ai is an adaptive estimate of the spread in the 

correlations for class i.[23] In Eq. 26, si is the sample standard deviation of the correlations 

corresponding to class i, Ri is the inter-quartile range of the correlations for class i, and min 

indicates that the minimum of the two values (si and Ri/1.34) is assigned to Ai. Equations 25 and 

26 are reported to give a mean integrated squared error within 10% of the optimum for several 

commonly encountered non-normal distribution types.[23] 

 

As an alternative to the conventional approach to Bayesian decision theory, the posterior 

probabilities may be utilized to estimate the degree of class membership, resulting in a Bayesian 

soft-classifier.[24] The soft classifier allows the user to view the probabilities and weight them 

against other evidence when making a decision. However, to truly be a soft classifier, the method 

must also have a way to reject any and all samples from being assigned to any of the classes. 

 

The example shown in Figure 10 demonstrates the conventional approach to Bayesian decision 

theory. However, every time target factor analysis is performed on a set of samples from a fire 

scene, the positions and shapes of the class conditional probability curves change and the 

correlations for some classes may approach the upper bound of 1, as shown in Figure 11. Higher 

correlations correspond to closer matches between the target and recovered vectors. 

Consequently, one approach would be to calculate the posterior probability at r equal to one, 

where there is a perfect match between the target and recovered vectors. In the case shown in 

Figure 11, classes B and A would have posterior probabilities of 0.95 and 0.05, respectively, 

when the posterior probability is calculated at r = 1. With real samples, it is a very stringent 

standard to require perfect correlations. 

 

   
Figure 11. Class-conditional distribution functions for three classes (A, B and C) as they might result from 

target factor analysis. The vertical dashed line represents the correlation lower limit for integration (see text). 

The integrated area under the class-conditional probability over the limit range of -1 to r
LL

 gives the 

probability of obtaining a correlation coefficient for a given class that exceeds r
LL

. 
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An alternative approach is to establish a lower acceptable limit for the correlation, r
LL

. In this 

approach, the probability for obtaining a correlation greater than or equal to r
LL

 for each class is 

calculated by integrating the area under the class conditional probability distribution from r
LL

 to 

one. The correlation is bounded on the interval [-1,1], but the integral under curve B in Figure 

11, when taken over the limits of -1 to 1, will not have an integrated area of 1. We avoid this 

boundary problem by defining the probability of obtaining a correlation greater than or equal to 

r
LL

 as the quantity 1-Ii[-1,r
LL

],  where Ii[-1,r
LL

]  is the integral for class i over the limits from -1 to 

r
LL

. With this definition, we can rewrite the Bayesian equation as shown in Equation 27, where 

p(r|i) has been replaced with 1-Ii[-1,r
LL

] and the posterior probability should now be read as the 

probability of class i, given Ii[rLL
, 1] and a sensitivity factor, , which is described below. 

 

         |  [     ]    
     [      ]      

∑      [      ]       
    (27) 

 

One last issue remains to be discussed. Given the formulation of the posterior probability, all of 

the probabilities will sum to one, as they should. However, it is possible that all of the classes 

would have very poor correlations between the test and transformed vectors, and yet their 

posterior probabilities would sum to one. The solution adopted in this work is to introduce a 

sensitivity parameter, . If the integrated area under the class-conditional probability, 1-Ii[-1,  

r
LL

] for a given class did not exceed  the posterior probability for that class would be set equal 

to zero. If the integrated area at correlations greater than r
LL

 did not exceed  for all classes, then 

a posterior probability would not be calculated and the sample could not be classified.  This 

approach makes the classifier very conservative, so long as reasonable values are used for r
LL

.  

 

III.  Results   
 

 

Simulations:  The TFA method was tested by constructing simulated data sets composed from 

the TIS from Gas, ISO and MPD samples and 10 substrates pyrolysis TIS, designated Sub1 – 

Sub10. The data sets each contained 10 spectra. Each spectrum in the set was composed of one 

or two ignitable liquid TIS, a single substrate TIS and random noise. When two ignitable liquids 

contributed to a data set, they were both mixed in each spectrum in amounts randomly chosen 

from a uniform distribution such that the total contribution from each ignitable liquid is in the 

range designated in Table 2. The identities and ignitable liquid and substrate samples, and their 

respective designations, are given in Table 1. The TIS for the three ignitable liquids and 

substrates 1 – 5 are shown in Figures 12 and 13, respectively. The compositions of the test 

sample data sets are given in Table 2. In the test labeled 1a, for example, each of the 10 spectra 

was comprised of gasoline in 1 – 15%, one of the substrates (Sub1 – Sub5) in 80 – 94% and 

random noise accounted for 5% of the total signal. The sum of all the peak intensities in each 

sample spectrum summed to a value of one. In test 1a, the data matrix had a rank of 6, 

corresponding to Gas and five substrate pyrolysis samples. Abstract factor analysis (or principal 

components analysis) found that six factors were required to reproduce the data, as determined 

by DRMAD, and the remainder of the factors accounted for the random noise. The eigenvectors 
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are not shown here, but the loadings in several vectors were large on the ions corresponding to 

m/z 91, 105, etc., as expected for gasoline. Examination of Table 2 reveals that the data matrices 

for tests 1a, 1b and 2a were found to have ranks corresponding to the number of factors (or 

components) used to make up the data matrix. In test 2b, two ignitable liquids (1 – 5% each) 

were combined with five substrates. The rank of the data matrix was determined by DRMAD to 

be eight, rather than seven which corresponds to the number of components contributing to the 

matrix. In this case the ignitable liquid contribution is very small, certainly less than an amount 

that would likely be called positive for an ignitable liquid in a fire debris sample. In real samples, 

it is preferable to retain more of the variance in the data, in order to ensure successful target 

transformation, as discussed below.  

 

 
Figure 12: Total ion spectra used in simulation studies: (a) Gas, (b) ISO and (c) MPD. 
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Figure 13: Total ion spectra for substrates 1 – 3 used in simulation studies are shown as a – c respectively. See 

Table 1 for identification of the substrates. 
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Table 1: Ignitable liquid and pyrolyzed substrate TIS used in simulations studies. Each TIS is referenced in 

the text by the identifier (ID) given in the first column. 

 

 
 
Table 2: Composition of simulated data sets for testing TFA. 

 

 
 

 

Samples 3a – 3d contained a single ignitable liquid, Gas, combined with 10 different substrates, 

in order to give a data matrix of rank 11; however, the number of spectra concatenated to 

produce the data matrix was only 10, one less than the rank of the matrix. In these cases, the 

problem is under determined, as it is required that the number of samples (rows in the matrix) 

exceed the rank of the matrix. It is nonetheless important to examine the behavior of this type of 

system because in a real fire debris analysis, it is not possible to determine if the number of 

spectra collected exceed the number of contributing components. In these tests, the number of 

principal factors (or components) predicted by DRMAD was limited to one, except in example 

3d where the ignitable liquids was present in 1 – 70%. The results for 3a – 3d represent a 

potential challenge for the method; the number of samples must be greater than or equal to the 

ID Ignitable Liquids

Gas BP regular unleaded gasoline, 25% weathered

ISO Sunnyside Odorless Paint Thinner

MPD Ace Premium Quality Charcoal Lighter

Pyrolyzed Substrates

Sub1 Carpet Padding

Sub2 Clear White Oak Laminate

Sub3 Olefin Nylon Blend Carpet

Sub4 Roofing shingles

Sub5 Yellow Pine

Sub6 PET polyester carpet and padding

Sub7 Street smart boots

Sub8 Vinyl floor

Sub9 Polyurethane foam mattress

Sub10 Cardboard box

Test IL

Pct. each 

IL Sub Pct. Sub 

Pct. 

Noise

No. 

spectra

No. 

Factors

No. PC 

(MAD)

1a Gas 1 -1 5 Sub1 - 5 80 - 94 5 10 6 6

1b Gas 1 - 5 Sub1 - 5 90 - 94 5 10 6 6

2a ISO + MPD 1 -1 5 Sub1 - 5 65 - 93 5 10 7 7

2b ISO + MPD 1 -5 Sub1 - 5 85 - 93 5 10 7 8

3a Gas 1 - 5 Sub1 - 10 90 - 94 5 10 11 1

3b Gas 1 - 30 Sub1 - 10 65 - 94 5 10 11 1

3c Gas 1 - 50 Sub1 - 10 45 - 94 5 10 11 1

3d Gas 1 - 70 Sub1 - 10 25 - 94 5 10 11 2
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number of contributing components. Therefore, from a methodology perspective, it is important 

to maximize the number of samples analyzed. However, the predictive performance of the 

method has yet to be examined, and will be discussed in the following paragraphs. 

 

The identification of an appropriate number of factors in the simulation data is not necessarily 

surprising. The more challenging aspects of the tests are to determine if the appropriate ignitable 

liquids can be identified through target transformations. The library of target factors for the 

simulation studies was comprised of the total ion spectra from samples of the ASTM classes Gas 

(23 samples), ISO (33 samples) and MPD (93 samples). Resulting vectors from target 

transformations of the eigenvectors from 1a with the 23 Gas test vectors gave correlations 

ranging from r = 0.621 (n = 171, 90% evaporated Gas) to r = 0.930 (n = 171, un-evaporated 

gasoline). These results are based on the retention of six eigenvectors, as shown in Table 2. 

Target transformation of spectra from the ISO and MPD classes gave poorer correlations 

between the test and predicted vectors. Class-conditional probability distributions for test 1a are 

shown in Figure 14a. The distributions are calculated based on the correlation coefficients for 

each class with bandwidths; hGas = 0.035, hISO = 0.013 and hMPD = 0.007. The distributions reflect 

the overall larger correlations for library spectra from the Gas class. The posterior probabilities, 

P(i|[rLL,1]), for the Gas, ISO and MPD classes were calculated to be 0.94, 0 and 0.06 

respectively at rLL = 0.9. The posterior probabilities are graphed as a function of rLL in Figure 

14b.   

 

Posterior probabilities for tests 1 – 3, calculated at rLL = 0.9, are given in Table 3. Results for test 

1b, wherein the Gas contribution was in the 1 – 5% range, were nearly identical to the results for 

test 1a. Importantly, this very small contribution from Gas results in samples that are likely far 

too weak to call positive for ignitable liquid in real fire debris analysis. In tests 2a and 2b, the 

posterior probabilities approach 0.5 for both ISO and MPD, reflecting the presence of both 

liquids in the test data. The class-conditional probabilities for test 2a are shown in Figure 15. The 

graph in Figure 15 demonstrates increased correlations for the ISO and MPD classes, and 

decrease in correlations for the Gas class. Notably, tests 3a – 3d gave very high posterior 

probabilities for the Gas class, even though in these tests the problem was under determined and 

the number of principal factors was significantly under estimated. In these tests, the correlations 

for all three classes were significantly decreased; however, the ISO and MPD class correlations 

were decreased to the point that the integrated areas in the range from rLL – 1 were below the  

value and the posterior probabilities were set equal to zero. Although the correlations for the Gas 

class were low, the integrated areas in the range from rLL – 1 were greater than  Since Gas was 

the only class with a non-zero posterior probability and all probabilities must sum to one, 

P(Gas|[rLL,1]) was assigned a value of one.  
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Table 3. Posterior probabilities P(i|[0.9,1]) from tests 1 – 3 in Table 2. Posterior probabilities less than 0.001 

are reported as 0 and the posterior probability for analyte class in each test is indicated in bold text. 

 

 
 

 

 

     
Figure 14. (a) Kernel probability distribution functions for test 1a (Table 2), (b) posterior probabilities for 

test 1as a function of rLL. 

 

Test 1a 1b 2a 2b 3a 3b 3c 3d

IL Gas Gas

ISO + 

MPD

ISO + 

MPD Gas Gas Gas Gas

Pct. each 

IL 1 -1 5 1 - 5 1 -1 5 1 -5 1 - 5 1 - 30 1 - 50 1 - 70

Gas 0.937 0.929 0.103 0.002 1.000 1.000 1.000 0.994

ISO 0.000 0.000 0.530 0.484 0.000 0.000 0.000 0.000

MPD 0.063 0.071 0.367 0.514 0.000 0.000 0.000 0.006
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Figure15. Kernel probability distribution functions for test 2a (Table 2 ).    

 

 

Laboratory-scale burns:  A series of 20 laboratory-scale burn tests were conducted as 

described in the experimental section. The ASTM classes, ILRC sample reference numbers 

(SRN), and the substrates included in each set of burns are given in Table 4. Representative 

liquids from all ASTM classes were used in laboratory burns. The numbers and types of 

substrates were varied among the different test burns, as were the volumes of ignitable liquid and 

the number of burn data sets compiled into the data matrix for each test. Table 5 lists the range of 

volumes of ignitable liquid used in each test, the number of burn samples compiled for each test, 

the number of samples and number of substrates for each test, the ignitable liquid used in the 

burn and the posterior probabilities calculated at rLL =0.95. The ignitable liquids in the library 

used for target transformation comprised the ASTM classes and specifying light (L), medium 

(M) and heavy (H) sub-classifications for the petroleum distillate (PD) and aromatic (AR) 

classes. The library of 358 TIS contained 25 Gas, 3 HAR, 47 HPD, 34 ISO, 7 LAR, 23 LPD, 17 

MAR, 95 MPD, 17 NA, 16 NP and 71 OXY ignitable liquids. Correct classification was 

optimized relative to rLL by assigning each sample to the class having the highest posterior 

probability. The optimized correct classification rate was obtained at rLL = 0.94 – 0.97, leading to 

a value of 0.95 used in Table 5. The sensitivity level, , for the results in Table 5 was set at 0.05, 

corresponding to a 95% confidence level. The maximum posterior probability is shown in bold 

text for each test in Table 5. All P(i|[rLL,1]) values less than 0.001 are shown as zero in Table 5. 

 

All of the Gas test burns, except one (test 8), were calculated to have a maximum posterior 

probability corresponding to the Gas class. In the one case where the largest posterior probability 

did not correspond to Gas, the rank of the data matrix (six substrates and gasoline) exceeded the 

number of burn samples analyzed (five samples analyzed). The volume of gasoline used in each 

of the burns in test 8 was only 0.025 mL. In this case the amount of gasoline residue was too 

small for successful classification, and gasoline pattern could not be discerned by visual 

inspection of the TIC. Other tests where the maximum calculated posterior probability did not 

correspond to the class of ignitable liquid used in the burn included both ISO samples and one 

OXY sample. One of the ISO samples was calculated to have the highest posterior probability 
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corresponding to the OXY class, while the other corresponded to the NA class.  Similarities 

between the ISO and NA classes, see Figure 1, aid in understanding these results, where 

posterior probabilities of 0.436 and 0.520 were calculated for the ISO and NA classes 

respectively. One OXY test was calculated to have the largest posterior probability 

corresponding to the Gas class. No explanation can be offered for this result. The largest 

posterior probability for 16 out of 20 samples (80%) corresponded to the ignitable liquid used in 

the test. 

 
Table 4. Laboratory-scale burn sample data. 

 

 
 
 

 

 

 

 

Test No. IL Class

ILRC 

SRN Substrates

1 Gas 116 polyester carpet and padding

2 Gas 116  yellow pine, fiberglass insulation, polyurethane foam 

mattress, vinyl flooring, PET polyester carpet, and 

carpet padding

3 Gas 116 yellow pine,  fiberglass insulation, polyurethane foam 

mattress, vinyl flooring, PET polyester carpet, and 

carpet padding

4 Gas 116 yellow pine, fiberglass insulation, polyurethane foam 

mattress, vinyl flooring, PET polyester carpet, and 

carpet padding

5 Gas 116 poplar, fiberglass insulation, olefin/nylon carpet

6 Gas 258 oak, nylon rope, and roofing shingles

7 Gas 385 teak, cotton tshirt, cork tiles

8 Gas 116 corkboard and vinyl

9 Gas 116 PET polyester carpet, carpet padding and cotton

10 HPD 206 polyester carpet and padding

11 ISO 87 polyester carpet and padding

12 ISO 87 Douglas Fir

13 AR 59 polyester carpet and padding

14 MPD 30 polyester carpet and padding

15 MPD 30 Douglas Fir

16 NA 241 polyester carpet and padding

17 NP 243 polyester carpet and padding

18 OXY 174 polyester carpet and padding

19 OXY 248 olefin carpet, cherry wood, vinyl

20 OXY 407 olefin carpet, oak, fiberglass insulation
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Table 5: Posterior probabilities P(i|[0.95,1]) from laboratory-scale burn tests using the ignitable liquid (IL) 

classes and volumes reported. The number of samples analyzed and number of substrates (Sub.) used in each 

burn are also given. Posterior probabilities less than 0.001 are reported as 0 and the highest posterior 

probability for each burn is indicated in bold text. 

 

 

 
 

 

 
 

No. 1 2 3 4 5 6 7

Vol. (mL) 0.1 - 2 1 0.2 0.05 0.2 0.2 - 2 0.2 - 2

Samples 9 9 6 6 5 5 5

Sub. 2 6 6 6 7 3 3

IL Gas Gas Gas Gas Gas Gas Gas

Gas 0.766 0.933 0.934 0.884 0.906 0.958 0.995

HAR 0.007 0 0 0 0 0 0

HPD 0 0 0 0 0 0 0

ISO 0 0 0 0 0 0 0

LAR 0.006 0 0 0 0.008 0 0

LPD 0 0 0 0 0 0 0

MAR 0.222 0.066 0.065 0.047 0.081 0.036 0

MPD 0 0 0 0 0 0 0

NA 0 0 0 0 0 0 0

NP 0 0 0 0 0 0 0

OXY 0 0 0.001 0.069 0.005 0.006 0.005

No. 8 9 10 11 12 13 14

Vol. (mL) 0.025 0.05 0.11 - 2 0.1 - 2 0.2 - 2 0.1 - 2 0.1 - 2

Samples 5 5 9 9 5 9 9

Sub. 6 5 2 2 1 2 2

IL Gas Gas HPD ISO ISO LAR MPD

Gas 0.123 0.907 0.04 0 0 0.034 0

HAR 0 0 0.243 0 0 0 0

HPD 0 0 0.64 0 0.001 0 0.266

ISO 0 0 0 0 0.436 0 0.006

LAR 0 0 0 0 0 0.899 0

LPD 0 0 0 0.04 0.024 0.011 0.097

MAR 0.012 0.076 0 0 0 0.001 0

MPD 0 0 0 0 0.003 0 0.372

NA 0 0 0 0 0.52 0 0

NP 0 0 0.061 0 0 0 0.232

OXY 0.865 0.017 0.016 0.96 0.017 0.055 0.028
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Table 5 continued. 

 

 
 

 

When the laboratory-scale burn data was analyzed with  = 0.01, posterior probabilities were not 

calculated for three of the tests (9, 11 and 18), because none of the class-conditional probabilities 

had integrated areas greater than . Fourteen of the remaining 17 samples were correctly 

calculated to have a maximum posterior probability corresponding to the ignitable liquid used in 

the burn (82% correct). 

 

Large-Scale Burn Studies:  As described in the methods section of this report, 12 large-

scale burns were conducted in Konex boxes that had been built out and furnished with common 

household items. In four of the burns, two ignitable liquids were used, whereas in the remaining 

eight burns a single ignitable liquid was used. Table 6 lists the number of samples taken from 

each burn, the ignitable liquid(s) used in the burn and the posterior probabilities for the ASTM 

classes and subclasses, as described for Table 5. A total of 500 mL of each liquid was used in 

each burn. The temperatures in each burn varied, but generally reached the 700 - 800ºC range 

before the fire was extinguished. All of the containers went to flashover and were extinguished 

with only water. After the containers had cooled, evidence markers were placed where samples 

were to be collected and the locations documented. A total of 11 – 13 samples were taken from 

both on and off the pour trail for each burn. Assigning the ignitable liquid to the class with the 

highest posterior probability, 83% of the samples (10 of 12 burns) were assigned to either the 

single liquid used, or one of the two liquids used in the test, a result very similar to the results 

from the laboratory-scale burns. 

 

 

 

No. 15 16 17 18 19 20

Vol. (mL) 0.2 - 2 0.1 - 2 0.1 - 2 0.1 - 2 0.2 - 2 0.2 - 2

Samples 5 9 9 9 5 5

Sub. 1 2 2 2 3 3

IL MPD NA NP OXY OXY OXY

Gas 0 0 0 0 0.804 0

HAR 0 0 0 0 0 0

HPD 0.274 0.004 0.014 0 0 0

ISO 0.006 0.053 0 0 0 0

LAR 0 0 0 0 0 0

LPD 0.067 0 0.016 0.059 0 0

MAR 0 0 0 0 0 0

MPD 0.341 0 0.117 0.228 0 0

NA 0 0.938 0 0 0 0

NP 0.288 0 0.836 0.311 0 0

OXY 0.024 0.005 0.018 0.402 0.197 1
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Table 6: Posterior probabilities P(i|[0.95,1]) from large-scale burns using 500 mL of each of the ignitable 

liquid (IL) classes indicated. The number of post-burn samples analyzed are also given. Posterior 

probabilities less than 0.001 are reported as 0 and the highest posterior probability for each burn is indicated 

in bold text.  
 

 
 

 

 
 

 

Container 7 was burned with Gas and MPD; however, the highest posterior probabilities, 0.31 

and 0.300, were calculated for the NP and MPD classes respectively. Container 8 was burned 

with Gas and MPD, but the largest posterior probability was calculated for the OXY class.  

Container 1 2 3 4 5 6

Samples 12 12 12 11 14 13

IL Gas
Gas+MP

D
MPD OXY Gas Gas

Gas 0.925 0.017 0.032 0.254 0.511 0.895

HAR 0 0 0 0 0 0

HPD 0.002 0.418 0.248 0.037 0 0

ISO 0 0 0.009 0 0 0

LAR 0 0 0 0 0.275 0

LPD 0.017 0 0.093 0 0.041 0

MAR 0 0 0.043 0 0.084 0.049

MPD 0 0.511 0.302 0.006 0 0

NA 0 0 0 0 0 0

NP 0 0 0.247 0 0 0

OXY 0.056 0.054 0.028 0.703 0.089 0.057

Container 7 8 9 10 11 12

Samples 12 13 13 12 12 12

IL
Gas + 

MPD

Gas + 

MPD

Gas + 

HPD
LPD NP ISO

Gas 0.038 0.001 0.004 0.012 0.002 0.3

HAR 0 0 0 0 0 0

HPD 0.248 0 0.724 0.021 0.159 0.02

ISO 0.003 0 0 0 0 0.359

LAR 0 0 0 0 0 0.002

LPD 0.063 0 0 0.442 0.03 0.011

MAR 0.019 0 0 0 0 0.058

MPD 0.3 0 0.173 0.453 0.331 0.047

NA 0 0 0 0 0 0.158

NP 0.31 0 0.027 0 0.455 0

OXY 0.019 0.998 0.073 0.072 0.024 0.046
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Container 2 was burned with Gas and MPD, and the posterior probability for MPD and Gas were 

calculated to be 0.511 and 0.17 respectively.   

  

When the calculations are repeated at rLL = 0.95 with a significance level of 0.01, only Container 

4 was not classified due to none of the classes having an integrated area under the class-

conditional probability curves greater than  In nine of the 11 remaining containers (82%), the  

highest calculated posterior probability corresponded to the ASTM class of the ignitable liquid 

(or one of the two ignitable liquids) used to initiate the fire. 

 
 
IV. Conclusions 
 

 

Discussion of findings:  The goal of the research conducted under this grant was to develop 

a chemometric method of data analysis that would facilitate the identification of GC-MS patterns 

associated with ignitable liquid classes designated under ASTM E 1618. The challenge of 

obtaining this goal is increased by the presence of a highly variable and unpredictable 

background signature arising from the pyrolysis products of building materials and furnishings. 

In order to attain this goal, the first objective of the research was to develop a data analysis 

method that would classify ignitable liquid residue in the presence of background contamination 

levels.  

 

The first objective was achieved by applying the technique of target factor analysis to a matrix of 

data consisting of the total ion spectra from a series of samples taken from a fire scene. Target 

factors were provided by a library of total ion spectra derived from the analysis of commercially 

available ignitable liquids. The library of 358 TIS contained 25 Gas, 27 HAR, 47 HPD, 34 ISO, 

7 LAR, 23 LPD, 17 MAR, 95 MPD, 17 NA, 16 NP and 71 OXY ignitable liquids. The TIS were 

calculated for ignitable liquids in the ILRC, which contains GC-MS data for commercially 

available materials and each entry has been given a consensus ASTM classification by the 

TWGFEX ILRC Committee.  The target factors in each class were compared to the least-squares 

best fit projected vectors by Pearson product moment correlation coefficients. Results from the 

simulated data set studies demonstrated that target factor analysis of TIS from multiple samples 

would produce a distribution of correlation coefficients which was in general higher for the 

class(es) of ignitable liquids contained in the samples. Each sample contained a number of 

background contaminants that were derived from the NCFS Substrate database. The results 

further demonstrated that when ignitable liquids from two classes contributed to a sample, the 

correlation coefficient distributions for both class would be higher on average than the 

correlation coefficients for the non-contributing class. 

 

The second objective of the study was to obtain statistical probabilities for the class assignments. 

This objective was achieved by analyzing the correlation coefficients for each class using a 

modified version of Bayesian decision theory.  The Bayesian soft classification method 

combined with target factor analysis was tested on the analysis of simulated data and fire debris 

data. Unlike most classification methods, the TFA-Bayesian method is designed to work in the 
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presence of interfering background spectral contributions. The method provides the analyst with 

a posterior probability of ASTM class assignment and the associated risk, which should aid in 

the assignment of difficult samples. Applying the Bayesian method to the results from the 

simulated data samples provided high posterior probabilities for gasoline in the single ignitable 

liquid samples (Tests 1 and 3) and posterior probabilities approaching 50% for ISO and MPD 

classes in Test 2, which contained both ignitable liquids. Application of the TFA-Bayesian 

approach to the laboratory burn data resulted in four of the 20 samples where the maximum 

calculated posterior probability did not match the class of ignitable liquid used in the burn (i.e., 

80% correct prediction of the correct class based on the largest posterior probability). Similarly, 

when the TFA-Bayesian method was applied to the large-scale burns, approximately 83% correct 

classification was obtained based on assigning the ignitable liquid to the sample with the largest 

posterior probability.  In both the laboratory- and large-scale burns, when the analysis was 

performed at a sensitivity level of 0.05, posterior probabilities were classified for all of the burns; 

however, when the calculation was repeated at  = 0.01 for the large-scale burns, posterior 

probabilities were not calculated for any of the classes in one burn sample. 

 

While the overall correct classification rates are lower than expected, several factors must be 

kept in perspective. The large-scale burns were all taken to flashover and there is absolutely no 

control over the amount of ignitable liquid residue remaining for analysis. Similarly, the degree 

of weathering is not controlled. In these regards, these data are very representative of real fire 

debris samples. This is, to our knowledge, the first multivariate classification model designed to 

work explicitly in the presence of an unknown and unspecified background signature. From this 

perspective, a correct classification rate of 83% is very encouraging. Nonetheless, there is room 

for improvement, as discussed in the following sections. Finally, the addition of the sensitivity 

criterion makes the method conservative in that by adjusting r
LL

 and , the method can be made 

to only calculate posterior probabilities for classes that have a reasonably high correlation for a 

significant portion of the library population of a given class. The disadvantages of the method are 

that it requires the analysis of data from multiple samples taken from a single fire scene, rather 

than a single sample, and the number of samples should exceed the “chemical rank” of the data, 

a condition that may be difficult to ensure in real samples. 

 

Implications for policy and practice:  Fire debris analysts are currently allowed to opine 

that a sample is positive for ignitable liquid residue without the requirement to offer a known 

error rate for this assessment. It is reasonable to assume that at some point the admission of 

expert opinions in fire debris analysis is likely to meet a Daubert challenge based on the lack of a 

known error rate. This study represents one approach to obtaining error rates. Other approaches 

are also available from NIJ-sponsored research. In addition, this method provides a set of 

probabilities that the analyst may take into consideration when determining whether to call a 

sample positive or negative for ignitable liquid residue. Samples containing a significant 

signature for an ignitable liquid residue will result in large probabilities for the appropriate 

ignitable liquid class, and the probabilities may be helpful in providing statistical support for the 

analyst.  We see perhaps a larger benefit coming when the ignitable liquid signature is weaker. 

The TFA-Bayesian method can identify the presence of an ignitable liquid at low levels. 

Simulated data has shown that gasoline can be identified as low as 1 – 5% contribution.  
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Implications for further research:  As described in the previous section, the TFA- 

Bayesian method was successful in giving correct classification rates in the presence of pyrolysis 

interference which were as high as the rates for correct classification of interference-free 

ignitable liquids based on similarity of the TIS. Improving on the 80 – 85% correct classification 

may be achievable based on an alternative representation of the GC-MS data set. This is the topic 

for future research. In addition, the TFA-Bayesian method described in this report is applicable 

in many areas of analytical chemistry, sensing and forensic analysis. Applications of the TFA-

Bayesian approach to additional areas of forensic science constitute future research 

opportunities. Further research is also warranted on any method that allows the determination of 

error rates in fire debris analysis or any other area of forensic science where error rates do not 

currently exist.  
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VII. Appendix 
  

Representation of exported 3D data from Chemstation. 

 
 

Calculate the total ion spectrum from exported 3D data. 

 
 

Normalize the total ion spectrum 

 
 

 Representative data set of normalized TIS for nine samples. 

 
    

 

 
 

 

Mass Range 30 200

Scan Range 1 3847

Scan number is in the first column

Scan 30 31 32 33 34 35 36 37 38 39 40 41 42 43 … 200

1 0 0 3067 0 0 0 0 0 1312 192 0 433 0 294 0

2 0 0 3278 0 0 0 0 0 1243 258 155 331 0 272 0

3 0 0 3043 0 0 0 0 0 1294 239 0 306 0 224 0

4 0 0 3027 0 0 0 0 0 1160 279 0 429 0 234 0

5 0 0 2798 0 0 0 0 0 1134 717 176 1375 476 315 0

6 0 0 2719 0 0 0 0 0 1238 1732 430 3580 1215 445 0

7 0 0 2645 0 0 0 0 0 1240 1759 461 3489 1310 572 0

8 0 0 2789 0 0 0 0 0 1120 1445 390 3088 1261 464 0

9 0 202 2595 0 0 0 0 0 1194 1265 370 2555 944 515 0

10 0 331 2744 0 0 0 0 0 941 739 193 1624 561 422 0
.
.
.

3847 0 0 773 0 0 0 0 0 0 0 0 0 0 0 0

Scan 30 31 32 33 34 35 36 37 38 39 40 41 42 43 … 200

TIS 692 183792 3413356 0 0 0 684 39627 151406 847525 159732 1622394 450391 3023710 0

1. Sum the ion (m/z) intensity for the entire spectrum 84295880

2. Divide each ion (m/z) intensity by the total ion instensity of the spectrum

Scan 30 31 32 33 34 35 36 37 38 39 40 41 42 43 … 200

normalized TIS 0.000 0.002 0.040 0.000 0.000 0.000 0.000 0.000 0.002 0.010 0.002 0.019 0.005 0.036 0

m/z 30 31 32 33 34 35 36 37 38 39 40 41 42 43 … 200

Sample 1 0.000 0.002 0.040 0.000 0.000 0.000 0.000 0.000 0.002 0.010 0.002 0.019 0.005 0.036 … 0.000

Sample 2 0.000 0.002 0.033 0.000 0.000 0.000 0.000 0.001 0.002 0.010 0.002 0.019 0.005 0.033 … 0.000

Sample 3 0.000 0.003 0.037 0.000 0.000 0.000 0.000 0.000 0.002 0.009 0.002 0.021 0.006 0.030 … 0.000

Sample 4 0.000 0.001 0.034 0.000 0.000 0.000 0.000 0.000 0.001 0.008 0.002 0.017 0.003 0.024 … 0.000

Sample 5 0.000 0.002 0.033 0.000 0.000 0.000 0.000 0.001 0.002 0.010 0.002 0.021 0.006 0.033 … 0.000

Sample 6 0.000 0.001 0.037 0.000 0.000 0.000 0.000 0.001 0.002 0.013 0.003 0.028 0.008 0.045 … 0.000

Sample 7 0.000 0.000 0.034 0.000 0.000 0.000 0.000 0.001 0.002 0.013 0.002 0.024 0.006 0.043 … 0.000

Sample 8 0.000 0.001 0.029 0.000 0.000 0.000 0.000 0.001 0.002 0.009 0.002 0.020 0.005 0.030 … 0.000

Sample 9 0.000 0.001 0.029 0.000 0.000 0.000 0.000 0.001 0.002 0.009 0.002 0.019 0.005 0.027 … 0.000
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