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Abstract

Forensic science has come to play an increasingly important role in aiding crim-
inal investigations. The field has experienced numerous advances over the last
two decade. This has lead courts, practitioners, prosecutors and legislators to
embrace the tools it offers, in general, and DNA profiling, in particular. The
National Institute of Justice consequently sought applications to study a broad
array of social science research issues that these advances have raised. This report
describes findings from a project aimed at quantifying the specific deterrent ef-
fects of DNA databases.

Re-offending patterns of a large cohort of offenders released from Florida
Department of Corrections custody between 1996 and 2004 were analyzed. Dur-
ing this period, several important pieces of legislation were passed in Florida re-
quiring convicted felons—convicted of an increasing number of crime types—to
submit biological samples for DNA profile extraction and storage in searchable
databases.

Models constructed to identify the specific deterrent effects of DNA
databases distinct from their probative effects yielded mixed results. Small de-
terrent effects—2 to 3 percent reductions in recidivism risk attributable to
deterrence—were found for only offense categopries (robbery and burglary).
Strong probative effects—20 to 30 percent increase in recidivism risk attributable
to probative effects—were uncovered for most offense categories. Methods, data,
results and implications are discussed in this report.
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Executive Summary

OVERVIEW

The news brings almost daily affirmation of the potential of forensic science,
generally, and deoxyribonucleic acid (DNA) profiling, in particular, to aid crim-
inal investigations and exculpate the wrongfully convicted. The ability of DNA
evidence to place persons at crime scenes with near certainty is broadly accepted
by criminal investigators, courts, policymakers, and the public. In response to
this premise, numerous law enforcement agencies have established “cold case”
units to use forensic evidence to investigate long-unsolved serious crimes and
have instituted policies calling for the collection and preservation of forensic ev-
idence from many types of crime scenes. Court systems are generally accepting
of the probative value of DNA evidence. As a result, legislators in all 50 states
have established DNA databases and have gradually widened the categories of
offenders and suspects whose DNA profiles may be stored. Despite that, the
public safety benefits of such large-scale investments are largely unknown and
research attempting to quantify these benefits is only gradually emerging.

This report documents findings from a project designed to quantify the ef-
fect of the embrace of DNA technology on offender behavior. In particular, re-
searchers examined whether an offender’s knowledge that their DNA profile has
been entered into a database deters them from offending in the future. Briefly,
the logic of the hypothesis that DNA databases may exert specific deterrence
effects is as follows: The offender knows that his or her DNA profile has been
entered into a database and believes that this fact increases the probability that
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he or she will be apprehended and punished for any future offense. Since the
perceived certainty of punishment for future offending is now greater, deter-
rence theory suggests that the offender will respond by reducing his/her rate of
offending. This study tests the hypothesis, and quantifies any specific deterrent
effects, by examining the re-offending behavior of a cohort of offenders whose
profiles were entered into Florida’s DNA Investigative Support Database.

Florida’s DNA database is among the oldest and largest of the 50 state DNA
databases. First authorized by the Florida legislature in 1989, the first profile
was entered into the database in 1990. The original legislation authorized the
entry of profiles of persons convicted of certain sex offenses during or after
1990. Since then, the criteria have been expanded to include persons convicted
of homicide (1993); carjacking, home invasion robbery, and aggravated battery
(1995); adjudicated juveniles (1995); burglary (2000); robbery (2002); kidnapping
and manslaughter (2003); forcible felonies and firearm violations (2004); and all
felonies (2005). Amendments passed in 1995 also authorized the entry of pro-
files of persons convicted of qualifying offenses regardless of conviction date
provided the offender remained under the supervision of the state of Florida.

BACKGROUND

DNA databases leverage standardization and ubiquitous computer database and
networking technologies to make forensic science a formidable investigative
technology. A biological specimen (e.g., saliva, blood, semen, or skin cells) is
collected from a crime scene. Laboratory analysis extracts the DNA from the
nucleus of the cells in the specimen and, in a process known as short tandem
repeat (STR) analysis, identifies 13 specific segments from the sample DNA that
are known to be highly heterogeneous in the population. Information about
these 13 segments, or markers, is submitted as a DNA profile for entry into a
local DNA database. Profiles in local databases that meet the relevant criteria,
are included in the state’s DNA database.
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Each database is composed of two indexes, or sets of profiles. One index
includes profiles from identified persons (e.g., convicted or suspected offenders
compelled by state law to submit a profile to the database) and the other includes
profiles from samples collected from crime scenes where no suspect has been
identified. Thus, there are two means by which DNA evidence collected from
a crime scene may lead to the identification of a suspect: (1) the crime scene
evidence may be matched to the profile of a known offender or (2) the crime
scene evidence may be matched to a profile from another crime scene creating
an opportunity for investigators in both cases to collaborate.

MOTIVATION

There is no doubt that forensic evidence, particularly DNA profiles, have huge
probative value. Conviction of guilty offender because of DNA evidence, identi-
fication of suspects because of solved “cold cases”, and exoneration of the wrong-
fully convicted are well documented benefits of this trend. Given the near cer-
tainty with which DNA identifies and places suspects near the scene of a crime,
might these benefits not deter offenders who know that their DNA profile ex-
ists in a searchable database? Indeed, legislation sometimes explicitly identifies
specific deterrence as a reason for expanding the coverage of these DNA profile
databases.

Deterrence theory certainly suggest that specific deterrent effects should ma-
terialize. Owing to its demonstrated probative value, it is plausible to believe
that offenders are keenly aware that DNA evidence assists tremendously in solv-
ing crimes and in prosecuting suspects. The swiftness and the certainty of pun-
ishment is clearly many fold when DNA matched evidence is utilized. There-
fore, knowledge about the fact that one’s DNA profile exists in a database to be
conveniently searched at a later date should deter these offender (at least on the
margin). Hence, specific deterrence effects are very plausible.

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



Avinash Bhati — Quantifying the Specific Deterrent Effects of DNA Databases x

METHODOLOGY

Given the inherent difficulty (ethical and practical) in randomly assigning of-
fenders to cleverly conceived treatment and comparison groups for the purpose
of inferring specific deterrence and probative effects of DNA databases, this re-
search effort developed an alternate strategy for extracting these effects from
transactional data. The strategy is based on observational data.

Re-offending is a phenomenon typically recorded, modeled, and studied as
event histories. All event history data are measured from some reference point.
For the case of criminal recidivism, several clocks are possible to define. Ex-
amples include time since birth, time since first event, time since last event,
time since prison release, etc. The identification strategy used in this research
effort was based on linking the two simultaneous effects of DNA databases—
specific deterrence and probative—to different clocks measuring the same ob-
served events. The age-based clock was used to identify specific deterrent effects
and the spell-based clock to identify probative effects. These were motivated by
the observation that any interruption in the age-based clock that can be linked
to DNA databases could be construed as affecting the criminal career of an in-
dividual; and any interruptions in the spell-based clock that could be linked to
DNA databases could be construed as short-term changes in offending patterns
that were net of any criminal career changes. Since the unfolding of a criminal
career can most closely be associated with an individual’s choices, any changes
that DNA databases bring to these unfolding careers is identified as the specific
deterrence effect.

Since the two clocks are different ways of measuring the same events, the
multiple-clock models need to be estimated simultaneously. Moreover, a flexible
functional form is considered desirable as theory provides little guidance as to
the form of the trajectories other than that they are parabolic in shape. Conse-
quently, a semi-parametric approach was developed for estimating the models.
Despite its flexibility, the framework provides a sufficiently rich apparatus to
conduct hypothesis tests relating to the various processes.
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The hazard of recidivism within a three year follow-up period (after release
from prison) was the key outcome measure and the estimated models linked
this hazard to duration since release from prison as well as duration since birth.
Each of these processes were allowed to have a parabolic shape and each of them
was permitted to vary by treatment status—whether or not a released offender
had his/her DNA profile stored in a searchable database. The strategy allows
DNA databases to have three distinct effects on the evolution of the hazard as
time since release unfolds. First, the treatment and control groups are permitted
to differ, in the aggregate, for unexplained reasons (i.e., start at different inter-
cepts). Second, they are permitted to evolve differently as duration since release
unfolds. Finally, they are permitted to evolve differently as each of the sample
members age. Only those changes that affect the latter two dynamic processes
are identified as quantities of interest. Once isolated in this manner, the specific
deterrence and probative effects are then aggregated over the follow-up period
to estimate the net effects over the entire follow-up period.

DATA

All offenders released from the Florida Department of Corrections (FDOC) be-
tween January 1996 through December 2004 were considered eligible. For each
individual in the cohort, criminal history records from a matched criminal his-
tory file provided by the Florida Department of Law Enforcement (FDLE) were
obtained. A small number of sample members for whom matched criminal his-
tory records were not available were dropped from the study. Also, offenders
not released to Florida communities (i.e., those released to other states or coun-
tries) were also excluded from the analysis as the FDLE criminal history file only
contains Florida arrest records. For offenders released multiple times during the
1996–2004 period, all episodes were retained in the analysis.

The treatment group was composed of all releasees who had their DNA en-
tered in a database at some point prior to their release from prison. The control
group was composed of all releasees who did not have their DNA entered in a
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database until either being rearrested after release or as of the end of the three-
year follow-up period.

Two different outcomes were analyzed. First, the FDLE criminal history
records were used to define rearrest within three years of release as an outcome.
The arrest date was used to flag the recidivism event and compute duration on
various clocks. Second, court docket information maintained by the FDOC was
used to define a reconviction outcome, also within a three-year follow-up period.
For the reconviction outcome, the offense date was used to flag the recidivism
event and compute duration on various clocks. The reconviction outcome there-
fore flags re-offending events that ultimately led to a conviction.

Six offense groups were created to stratify the analysis by. These included of-
fenders who were released after being incarcerated primarily on Violent charges
(including murder, manslaughter, sexual offenses, and other violent offenses);
Robbery; Burglary; Other Property charges (including theft, fraud, and dam-
age); Drug related charges; and Other charges (including weapons and other
public order offenses). A host of demographic and related attributes were also
extracted from the data.

FINDINGS

Since interest centers around the estimation of multiple-clock models, condi-
tional on treatment status, the first step in the analysis was to assess the extent to
which the attributes of the two groups differed. If they did, then Inverse Proba-
bility of Treatment weights were used to balance the samples. Logistic regression
models were estimated (for each offense category and outcome type) that pre-
dicted the probability of each sample unit having DNA evidence in a database
prior to release. Predicted group membership probabilities were then inverted
and normalized to create the weights. All subsequent analysis were done using
these weights.

Available attributes included time served prior to release, age at release, crim-
inal history (total number of prior arrests), supervision status at release, gender,
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race, ethnicity, highest education level attained, and employment status (prior
to incarceration). Comparison of the attributes before and after weighting sug-
gest that the imbalance between the two groups (in terms of the observable at-
tributes) that did exist was largely accounted for.

Despite balancing on available attributes, the treatment and control groups
differred in the average recidivism rates, over and above what was attributable to
the specific deterrent and probative effects. Parameters related to the age-based
clock implied a traditional age-crime relationship whereas the spell-based clock
parameters were mixed across offense-specific models. That is, the age-based pro-
cess typically increased with age and then declined at some point. The spell-based
hazard paths were either increasing in spell length at a decreasing rate or were
decreasing in spell length at a decreasing rate. More importantly, however, pa-
rameters on the treatment indicator generally (not always) suggested that being
released from prison with DNA in a searchable database typically slowed down
the age-based process but sped up the spell-based process. These are consistent
with the specific deterrent and probative effects of DNA databases. Overall find-
ings are summarized below:

• There is evidence of the specific deterrence effect. Findings were particu-
larly interesting for robbery and burglary. They were both in the expected
direction—negative effects implying a deterrence effect—and were statisti-
cally significant.

• There was even stronger evidence for the probative effects. Findings
showed that most of the computed probative effects were in the expected
direction—positive effects implying increased recidivism—and were fairly
large. Most were statistically significant as well.

• Some of the specific deterrence effects recovered were perversely signed.
That is, the net effects of DNA databases that is attributable to specific de-
terrence was found to be positive. The probative effects were pretty con-
sistently in the correct direction.
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• Where they were in the correct direction, and statistically significant, the
specific deterrence effects and the probative effects were of a magnitude
very similar to findings reported by the U.K. Home Office (Home Of-
fice 2004). Specific deterrence effects were in the range of 2 to 3 percent
(the Home Office study documented roughly 1 percent) and the proba-
tive effects were in the 20 to 40 percent range (the Home Office study
documented about 20 percent).

IMPLICATIONS

This study was designed to assess and quantify the deterrent effects of DNA
databases on offender behavior. Based on the findings, we may answer the two
important, and related, policy questions:

1. Do DNA databases provide indirect benefits like deterring convicted of-
fenders from committing future crimes?

2. Should state legislatures continue to expand coverage of DNA databases?

The answer to the first question, based on this study, is mixed. Perhaps for
some types of crimes there are stronger deterrent effects than others. Clearly,
property crimes like robbery and burglary show deterrence effects. There is
nearly a 2 to 3 percent reduction in recidivism events over the follow-up period
that can be attributed to specific deterrence.

The answer to the second question is more clear. If, as was uncovered in this
study and in the U.K. Home Office study, the specific deterrence effects of DNA
databases are small, then sacrificing these effects for the huge probative benefits
that research (including this study) has clearly demonstrated time and again, may
be well worth it. As such, the trade-off is clearly in favor of future expansion of
the realm of crimes and category of offenders covered by DNA databases.
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Chapter 1

Introduction

The news brings almost daily affirmation of the potential of forensic science,
generally, and deoxyribonucleic acid (DNA) profiling, in particular, to aid crim-
inal investigations and exculpate the wrongfully convicted. The case of Jerry
Buck Inman, a registered sex offender in Florida and resident of Tennessee, is
illustrative. In June 2006, he was arrested in Tennessee in connection with the
kidnapping, rape, and murder of a Clemson University student in South Car-
olina after DNA evidence collected at the crime scene was matched to his pro-
files in DNA databases maintained by the states of Florida and North Carolina
(FDLE 2006).

The ability of DNA evidence to place persons at crime scenes with near
certainty is broadly accepted by criminal investigators, courts, policymakers,
and the public. In response to this premise, numerous law enforcement agencies
have established “cold case” units to use forensic evidence to investigate long-
unsolved serious crimes (Kirsch 2006) and have instituted policies calling for
the collection and preservation of forensic evidence from many types of crime
scenes. Court systems are generally accepting of the probative value of DNA
evidence (Palermo 2006). As a result, legislators in all 50 states have established
DNA databases and have gradually widened the categories of offenders and sus-
pects whose DNA profiles may be stored. Despite that, the public safety benefits

1
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of such large-scale investments are largely unknown and research attempting to
quantify these benefits is only gradually emerging.

In response to growing public awareness, and the numerous advances that
have been made in forensic sciences over the last decade, the National Institute of
Justice solicited applications for conducting research on a broad array of emerg-
ing social science issues in forensic science to inform precisely such unanswered
questions. The Urban Institute proposed and was awarded a grant to quantify
the specific deterrent effects of DNA databases.

This report documents findings from that project designed to quantify the
effect of the embrace of DNA technology on offender behavior. In particular, re-
searchers examined whether an offender’s knowledge that their DNA profile has
been entered into a database deters them from offending in the future. Briefly,
the logic of the hypothesis that DNA databases may exert specific deterrence
effects is as follows: The offender knows that his or her DNA profile has been
entered into a database and believes that this fact increases the probability that
he or she will be apprehended and punished for any future offense. Since the
perceived certainty of punishment for future offending is now greater, deter-
rence theory suggests that the offender will respond by reducing his/her rate
of offending. This study tests the hypothesis, and quantifies any specific deter-
rent effects, by examining the re-offense behavior of a cohort of offenders whose
profiles were entered into Florida’s DNA Investigative Support Database.

Unfortunately, because punishment can be swifter and more certain, it be-
comes very challenging to use recidivism data to isolate and identify the specific
deterrent effects of DNA databases from their probative effects. This study re-
lied on a multiple-clock model to help identify these two effects. In addition,
since it relied exclusively on observational data, it utilized an Inverse Probabil-
ity of Treatment Weighting procedure to balance the samples on all observable
and relevant attributes.

Findings are mixed. Small specific deterrent effects were uncovered for some
crime categories. This includes burglary and robbery. However, for some crime
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categories, the effects were perversely signed (positive effects). The probative
effects comported more with expectations. Most models suggested positive and
relatively large probative effects.

The report is organized as follows: The next chapter provides background in-
formation. This is followed by a description of the methodology used to identify
and estimate the effects of DNA databases in chapter 3. The data are described in
chapter 4. Main findings are reported and discussed in chapter 5. This includes
parameter estimates as well as the implied specific deterrent and probative ef-
fects of DNA databases. The report concludes with a discussion of the findings
and implications for policy and practice in chapter 6. Technical materials and
detailed models estimates are provided in appendices.
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Chapter 2

Background

2.1. DNA DATABASES

DNA databases leverage standardization and ubiquitous computer database and
networking technologies to make forensic science a formidable investigative
technology. A biological specimen (e.g., saliva, blood, semen, or skin cells) is
collected from a crime scene. Laboratory analysis extracts the DNA from the
nucleus of the cells in the specimen and, in a process known as short tandem
repeat (STR) analysis, identifies 13 specific segments from the sample DNA that
are known to be highly heterogeneous in the population (Kirsch 2006). Infor-
mation about these 13 segments, or markers, is submitted as a DNA profile for
entry into a local DNA database. Profiles in local databases that meet the rele-
vant criteria, are included in the state’s DNA database.

Each database is composed of two indexes, or sets of profiles. One index
includes profiles from identified persons (e.g., convicted or suspected offenders
compelled by state law to submit a profile to the database) and the other includes
profiles from samples collected from crime scenes where no suspect has been
identified. Thus, there are two means by which DNA evidence collected from
a crime scene may lead to the identification of a suspect: (1) the crime scene
evidence may be matched to the profile of a known offender or (2) the crime

4
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scene evidence may be matched to a profile from another crime scene creating
an opportunity for investigators in both cases to collaborate (Office of the U.S.
Attorney General n.d.).

Since 1990, the federal government has maintained a distributed DNA
database called the Combined DNA Index System (CODIS) that includes three
tiers of DNA profiles. The national tier is composed of profiles collected by fed-
eral law enforcement agencies, the state tier links the databases of the 50 states,
and the local tier does the same for participating local DNA databases (FBIa
n.d.). The hierarchy of the tiered system permits each state and locality to set
its own criteria for determining which profiles to include, and the distributed
nature of the database means that each participating state and locality maintains
direct control over its own profiles.

The national tier of CODIS includes more than 4 million offender profiles
and more than 150,000 forensic profiles from open investigations (FBIa n.d.).
The effectiveness of DNA databases as investigative tools is proportional to their
scale. Each new profile entered increases the probability that the next search will
yield a match.

This comes at a cost, though. The growth of the DNA database is limited
by the scarcity of laboratory capacity to process the samples. According to one
estimate, there is a national backlog of approximately 300,000 samples awaiting
analysis and entry (Zedlewski and Murphy 2006). As a result of the backlog and
the constant inflow of persons with new qualifying convictions, the number of
profiles in the DNA databases will continue to grow for the foreseeable future
even if no changes are made to the eligibility criteria and no additional resources
are devoted to expand laboratory capacity.

These increases can have other non-monetary costs as well. Taylor et al.
(2006) argue, for example, that widening the net too wide too fast can actually di-
minish any specific deterrent effects because of the sheer size of the backlog—in
effect overwhelming the system.
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2.2. FLORIDA CONVICTED OFFENDER DATABASE

Florida’s DNA database is among the oldest and largest of the 50 state DNA
databases. According to the FBI, Florida’s database contributes more than
325,000 profiles of convicted offenders to the national tier of CODIS, and
Florida’s database has aided more than 5,000 investigations (FBIb n.d.). First
authorized by the Florida legislature in 1989, the first profile was entered into
the database in 1990. The original legislation authorized the entry of profiles of
persons convicted of certain sex offenses during or after 1990. Since then, the
criteria have been expanded to include persons convicted of homicide (1993);
carjacking, home invasion robbery, and aggravated battery (1995); adjudicated
juveniles (1995); burglary (2000); robbery (2002); kidnapping and manslaugh-
ter (2003); forcible felonies and firearm violations (2004); and all felonies (2005).
Amendments passed in 1995 also authorized the entry of profiles of persons
convicted of qualifying offenses regardless of conviction date provided the of-
fender remained under the supervision of the state of Florida (FDLE n.d.). The
Florida Department of Law Enforcement (FDLE), which maintains the state’s
DNA database, expects to add 36,000 profiles to the database in each of the next
several years (FDLE 2006).

2.3. DETERRENCE THEORY

Cesare Beccaria is often cited as the progenitor of deterrence theory. Beccaria
(1764) argued that deterrence was the fundamental justification for punishment:
“The aim, then, of punishment can only be to prevent the criminal committing
new crimes against his countrymen, and to keep others from doing likewise”
[49]. He also pointed to three characteristics of punishment that contribute to
its effectiveness as a deterrent: severity (“For a punishment to be efficacious, it is
enough that the disadvantage should exceed the advantage anticipated from the
crime” [50]), certainty (“One of the greatest checks upon crime is not the cru-
elty of punishment but its inevitability” [68]), and celerity (“The more prompt
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the punishment and the sooner it follows the crime, the more just it will be and
the more effective” [65]).

Since Beccaria’s time, scores of empirical studies have tested elements of his
theory. Paternoster (1987) concluded, based on his review of the literature, that
punishment severity was unlikely to deter offending. Consistent with this view,
subsequent research has found that the certainty of sanction is a greater deter-
rent to offending than either the severity (Nagin and Pogarsky 2001, 2003) or
swiftness of the sanction (Nagin and Pogarsky 2001). Paternoster (1987) also con-
cluded that the time ordering of the variables is vital to any test of the deterrence
hypothesis. Deterrent effects, which are the influence of present perceptions of
punishments and rewards on future offending, must be distinguished from “ex-
periential effects” (i.e., the effect of prior offending on present perceptions).

Deterrence and experiential effects have very different implications for poli-
cymaking, and Carmichael and Piquero (2006) recently found evidence of both
an experiential effect and a deterrent effect of sanction certainty in a single sam-
ple. The evidence suggesting that both deterrent and experiential effects may be
at play, combined with evidence that individuals’ perceptions of sanction risk
are not stable over time, suggests that cross-sectional tests of deterrence are inad-
equate (Paternoster 1987).

More recently, the deterrence literature has produced evidence of population
heterogeneity on several key constructs relevant to deterrence theory. One such
finding suggests that persons may vary in the malleability of their perceptions of
sanction risk (Marlowe et al. 2005). Persons also differ in the responsiveness of
their offending behavior to their perceptions of sanction risk (Pogarsky, 2002).
This emerging research suggests that the least deterrable persons are those with
strong moral inhibitions against offending (Pogarsky 2002; Pogarsky, Kim, and
Paternoster 2005; Tittle and Botchkovar 2005) and that more crime-prone per-
sons may be more sensitive to deterrence (Wright et al. 2005; Tittle and Botchko-
var 2005). Pogarsky (2002) also found that punishment severity may be as or
more important than punishment certainty among the most deterrable persons.
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Another facet of the theme of population heterogeneity in deterrability con-
cerns the process by which information about official sanctions affects percep-
tions of sanction risk. Pogarsky, Piquero, and Paternoster (2004) modeled this
process and found that it is conditioned by the level of sanction risk perceived
at baseline, as well as information about the offending and sanctioning of peers.
Persons with low perceptions of sanction risk at baseline and who subsequently
offended and were arrested showed large changes in their perceptions of sanction
risk at follow-up. This is consistent with the authors’ hypothesis that the expe-
rience would yield a large change in perceived risk because the sanction was at
odds with expectations. Pogarsky et al. (2004) also found that persons with little
offending experience of their own tended to rely on peer experiences to inform
their perceptions of sanction risk, while persons with more personal offending
experience tended to discount peer experiences.

The literature clearly suggests then that persons vary in the malleability of
their perceptions of sanction risk and that contextual considerations (e.g., per-
sonal offending experience and peer offending experience) may affect the for-
mation of sanction risk perceptions. Carmichael and Piquero (2004) found that
situational factors, particularly emotional arousal, may also affect perceptions of
sanction risk. Among subjects who perceived that they would be greatly angered
by the circumstances in a vignette describing an assaultive scenario, formal sanc-
tion threat did not correlate with intention to attack (Carmichael and Piquero
2004). Perhaps this helps to explain Kane’s (2006) finding that crimes motivated
by pecuniary gain and which commonly occur in public view (i.e., robbery and
burglary) may be more affected by deterrence than other types of offenses (e.g.,
assault) that are commonly perpetrated during moments of emotional arousal.

2.4. DETERRENCE AND DNA

Although questions about what types of persons and what types of circum-
stances will yield deterrence effects have been researched in some detail, little
research has been done to investigate the effects of DNA evidence on investi-
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gations, case processing, and criminal offending. The United Kingdom’s Home
Office sponsored an evaluation of the effects of expanded forensic investigation
of burglary, motor vehicle theft, and vehicle break-ins. The evaluation consid-
ered whether expanded use of DNA, tool mark, and footwear evidence collec-
tion would lead to higher rates of case closure and conviction and lower rates
of crime. Of the forensic techniques studied, expanded use of DNA evidence
yielded the largest improvements in outcomes. The evaluation found that ex-
panded use of forensic techniques to the targeted crimes would lead to a 21 per-
cent increase in suspect identifications and a 19 percent increase in convictions
(Home Office 2004). The targeted categories of crime decreased about 1 percent
in the treatment areas as compared with the comparison areas, but changes in
overall crime levels favored the comparison areas (Home Office 2004). It is un-
clear whether public awareness of the evaluation, the targeted crimes, and the
study area boundaries was sufficient to attribute these shifts to deterrent effects.

A second, small (n = 150) case-control study examined the effects of DNA
evidence on court outcomes in homicide cases in Queensland, Australia. Briody
(2004) found that cases with DNA evidence were more likely to be accepted for
prosecution and more likely to end in conviction.

Similarly, in a more recent study undertaken by the Urban Institute, re-
searchers conducted a prospective, randomized study of the cost-effectiveness of
DNA in investigating high-volume crimes, including residential burglary, com-
mercial burglary, and theft from automobiles (Roman et al. 2008). Biological
evidence was collected at up to 500 crime scenes in each site between Novem-
ber 2005 and July 2007, and cases were randomly assigned to the treatment and
control groups, producing a roughly equal split of cases within each site. In the
treatment group, DNA processing as well as traditional practices were used to
investigate the case. In the control group, biological evidence was not initially
tested, and case outcomes were due only to traditional investigation. The study
found, among other things, that (i) property crime cases where DNA evidence
was processed have more than twice as many suspects identified, twice as many

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



Avinash Bhati — Quantifying the Specific Deterrent Effects of DNA Databases 10

suspects arrested, and more than twice as many cases accepted for prosecution
compared with traditional investigation, and (ii) DNA was at least five times as
likely to result in a suspect identification compared with fingerprints.

These findings confirm that, as a prerequisite for the specific deterrent hy-
pothesis, DNA evidence does increase the certainty and celerity of punishment
at certain points in criminal case processing. Indeed the probative value of DNA
evidence has been proven time and again.

Prior research on specific deterrence, in general, supports the plausibility
of the hypothesis that an offender’s knowledge that his/her DNA profile has
been entered into a searchable database may increase the offender’s perceived
certainty of sanction and thereby deter their future offending. In other words,
DNA databases ought to yield specific deterrent effects.
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Chapter 3

Methods

As highlighted in the previous chapter, there are two—possibly simultaneous—
effects that recording an individual’s DNA profile into a database can create.
First, there is the specific deterrent effect. Individuals who would have re-
offended may now choose not to re-offend for fear of receiving swifter and more
certain punishment. Second, there is the probative effect. Individuals that do re-
offend will receive sanctions quicker and with more certainty.

Unfortunately, comparing the recidivism rates of individuals with and with-
out DNA profiles entered in a searchable databases will yield some combination
of these two effects. Furthermore, individuals with DNA profile entered in a
databases may be markedly different from those whose DNA profile is not en-
tered in the database. Hence, a third reason why individuals with or without
DNA profiles entered in a searchable database may have different recidivism
rates is because they may be sufficiently different in important attributes like
criminal history, age, gender, and offense. This makes the task of identifying the
specific deterrent effects of DNA databases particularly challenging.

This chapter describes the strategy used for identifying these distinct effects
and then describes the strategy used for estimating the parameters needed to
quantify these effects.
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3.1. IDENTIFICATION STRATEGY

Let r (t ) denote the hazard of the recidivism outcome of interest (e.g., rearrest,
reconviction, or reincarceration) at a particular time (t ). Typically, the outcome
of interest is measured over a finite follow-up period (e.g., three years) and the
cohort of interest is defined in some manner (e.g., prison release or probation
intake). For ease of exposition, in this chapter these definitions are left generic
(they will be clarified in the data chapter). Let τ denote the treatment indicator—
having one’s DNA entered into a DNA database prior to becoming at risk of the
recidivism event (e.g., prior to being released from prison).

3.1.1. A Thought Experiment

As a point of departure, consider the following thought experiment. Assume
a randomized experiment was possible to implement. Assume that for all in-
dividuals being released from prison during a particular period, half were in-
structed to provide their biological samples for the purpose of extracting DNA
profiles that would be recorded in a database and the other half were not re-
quired to provide any biological evidence. Assume also that the individuals in
these groups were selected completed at random. As time since release unfolds,
assume researchers tracked both groups and recorded their first recidivism event
(e.g., reconviction or rearrest that eventually lead to a reconviction). Follow-
ing standard investigative practices, assume that criminal justice authorities had
made full use of the DNA databases in solving crimes and prosecuting suspects.

Despite the random experiment, using recidivism data alone it would not
be possible to identify the deterrent effects of the database from their probative
effect. If the deterrent effect exceeded the probative effect, then one would find
that τ reduced recidivism rates. If, on the other hand, the deterrent effect was
small compared to the probative effect, then one would find that τ increased
recidivism rates. Therefore, a pure randomization, were it feasible, would help
identify only the overall effect of DNA databases.
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Could one devise an experiment that distinguishes the deterrent effects from
the probative effects? In order to identify the pure probative effect, one could,
for example, devise an experiment whereby DNA profiles were collected from
all individuals but a randomly selected half were entered into a database and
made available to criminal justice authorities. Hence all individuals would as-
sume that their profile was available in a searchable databases so that any spe-
cific deterrent effect would be controlled for adequately. Now the difference be-
tween the treatment and comparison groups would identify the probative effect
of DNA databases. Indeed the Urban Institute’s prospective randomized exper-
iment (Roman et al. 2008) was based on this identification strategy.1

Similarly, to identify the deterrent effects of DNA databases, one could de-
vise an experiment whereby DNA evidence was collected from a random group
of the subjects but the evidence was not entered into any databases (without
their knowledge). Hence there would be no probative effect to be realized and
any difference between the treatment and control groups could be identified as
a specific deterrence effect.

These thought experiments suggest that the effects of DNA databases can be
identified and isolated. However, conducting these experiments could be very
costly and, in some cases, infeasible. It would be hard to justify holding back
potential evidence (where available) for solving crimes and aiding prosecution,
especially for prolonged periods of time (e.g., three year) while the study was
conducted.2 Moreover, if randomization itself was not possible, then there is the

1In the Urban Institute’s randomized field experiment, biological evidence thought to con-
tain human cells was collected from 500 property crime scenes. Researchers randomly divided
the cases into treatment and control groups. In the treatment group, evidence was analyzed for
DNA and if found, this was run through CODIS for a match. Therefore, traditional investi-
gation techniques as well as DNA evidence was used. In the control group, only traditional
investigation techniques were used (for a limited amount of time).

2For example, in the Urban Institute’s field experiment, the crime scene evidence of the
control group was not tested for DNA only for a period of two months. Officers were not told
which cases were treatment and which were control. Traditional investigation techniques were
employed in both cases: the only difference was whether DNA evidence was performed during
the first two months (Roman et al. 2008:20).
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possibility that the treated and untreated groups were different in unobservable
ways thereby providing misleading inferences.

3.1.2. Multiple Clock Models

Are there other strategies that may help identify the deterrent effects from the
probative effects of DNA databases? This study utilizes one such strategy. It
relies on the concept of multiple-clocks to help identify the three effects of DNA
databases on the recidivism hazards. That is, it first makes the case for linking the
specific deterrent effects and the probative effects of DNA databases to different
clocks measuring the same events. Multiple clock models then make it possible
to extract the distinct effects from the same recidivism data.

Multiple clock models are simply a means of studying duration to failure
measured on different clocks (Yamaguchi 1991:53; Lillard 1993). For example,
when studying duration to first recidivism event—as is typically done in crimi-
nal justice research—one is implicitly measuring the duration to the event from
the date of release (setting the clock to 0 at the time of release). If, instead, one
were to study age at the first recidivism event, one would implicitly be mea-
suring duration to the event from the date of birth (setting the clock to 0 on
the individual’s date of birth). Multiple-clock models allow one to study these
two processes—the spell-based and the age-based—simultaneously as they unfold
over the follow-up period to produce the recidivism events. Figure 3.1 shows
how the same event can produce two different manifestations of the same un-
derlying stochastic process.

How the hazard unfolds with age captures the criminal career-long compo-
nent of the stochastic process, whereas its evolution with the spell-length is more
immediate and narrow in scope. Both components are sub-trajectories that si-
multaneously result in the observed recidivism events. However, because the
age-based component captures an unfolding career, one may associate that more
directly with the offender’s decision-making process. The spell-based process
may be associated more directly with decisions made by others. Note that the
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Date of Birth

Date of Prison Release

Date of Re-arrest

Age-Based Clock Spell-Based Clock

Figure 3.1: Measuring the same event on two clocks provides two related man-
ifestations of one underlying stochastic process.

two are linked: distinctly associating each component with offenders and others
is only possible if both are modeled simultaneously. Multiple-clock models are
ideally suited to do just that—study stochastic processes along multiple clocks.

As a result, the effects of τ in modifying the age-based trajectory is used to
identify the specific deterrent effect because it provides a way to quantify the
criminal career difference between the treated and the untreated groups while
controlling the effects of τ on the spell-based clock. Similarly, the effects of τ on the
spell-based trajectory is used to identify the probative effect because it provides
a way to quantify the pure immediate-term difference between the treated and
the untreated groups while controlling the effect of τ on the criminal career.

It is also very likely—due to jurisdiction laws pertaining to the collection
of DNA profiles—that important attributes are very different across the treated
and the untreated groups. For example, current charge—which triggers collec-
tion of DNA in most states—is typically related to prior criminal history, age,
and a host of other factors that are consistent predictors of the outcomes (recidi-
vism). Therefore, in addition to the multiple-clock model, one needs to allow
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for these differences as well.
This study used two strategies to mitigate the ill-effects of sample

imbalance—a drawback of most observational studies. First, Inverse Probability
of Treatment Weights (IPTW) were developed and applied to all models to en-
sure that observable attributes were balanced across the two groups (Wooldridge
2007). Second, in addition to allowing the stochastic process to evolve over mul-
tiple clocks, and letting these components be affected by τ, all hazard models
included a fixed component that was also allowed to vary across τ. Hence, this
component captured any fixed differences between the treatment and control
groups that are not attributable to the age-based or spell-based processes.

3.1.3. Model Implications and Effect Quantification

Let a(t ) and δ(t ) denote the age-based and the spell-based clocks being used to
measure the events. Generically, the multiple-clock stochastic process r (t ) may
be denoted as:

r (t ) = g
�

f0

�

τ
�

, f1

�

a(t ),τ
�

, f2

�

δ(t ),τ
�

�

(3.1)

where, g , f0, f1, and f2 are generic functions and a(t ) and δ(t ) are the two
clocks.3

Since the hazard is a positive quantity, its functional form can be fixed as
g (·)≡ exp(·). This will be derived explicitly in the next section. Lastly, one criti-
cal simplifying assumption needs to be made about how f0, f1, and f2 enter g (·).
It is assumed that the multiple-clock components enter the g (·) in an additively-
separable form. Without this assumption, the specific deterrent effects and the
probative effects would be difficult to isolate. These assumptions yield

r (t ) = exp
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(3.2)

3For ease of exposition, a(t ) and δ(t ) are left abstract here although in the application they
will be specified as a(t ) = a∗+ t and δ(t ) = t where a∗ is age at release and t is time since release
from prison.
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or
log r (t ) = f0
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(3.3)

where f0, f1 and f2 capture the fixed, the age-based, and the spell-based compo-
nents of the hazard process respectively.

The evolution of the process with age (or spell-length) can now be captured
by computing the first partial derivative of the log-hazard with respect to each
component. That is:

∂ log r (t )

∂ a(t )
= f ′1

�

a(t ),τ
�

(3.4)

∂ log r (t )

∂ δ(t )
= f ′2

�

δ(t ),τ
�

(3.5)

where ∂ log r (t ) = 1
r (t )∂ r (t )measures the percent change in r (t ). Note that the

additively separable assumption implies that there are no cross-effects across the
two clocks.

Next, the specific deterrent effects (SDE) and the probative effects (PRE) of
DNA databases (τ) at any point of time can be computed as the second partial
derivates of the log-hazard rates with respect to τ. That is, the SDE and PRE
capture how the processes in (3.4) and (3.5) are modified by τ.

SDE(t ) =
∂ f ′1

�

a(t ),τ
�

∂ τ
(3.6)

PRE(t ) =
∂ f ′2

�

δ(t ),τ
�

∂ τ
(3.7)

Finally, the net specific deterrent effect (NSDE) and the net probative effects
(NPRE) over any horizon (e.g., the follow-up period) may be computed by inte-
grating the above curves over the relevant domain. For example, the NSDE and
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NPRE over the three-year follow-up period would be computed as:

NSDE =
∫ 3

0

∂ f ′1
�

a(t ),τ
�

∂ τ
d t (3.8)

NPRE =
∫ 3

0

∂ f ′2
�

δ(t ),τ
�

∂ τ
d t (3.9)

where NSDE captures the percent change in recidivism events over the three-
year follow-up period that is attributable to the specific deterrent effects of DNA
databases and NPRE captures the percent change in the recidivism events over
the three-year follow-up period that is attributable to the probative effects of
DNA databases. Although not explicitly derived, the effects of unobserved dif-
ferences between the treatment and control groups is explicitly allowed for in
these models so that the NSDE and the NPRE are net of those differences.

3.2. ESTIMATION STRATEGY

In this section, an estimation strategy that will permit the estimation of param-
eters needed to quantify the NSDE and NPRE is described.

Assume a cohort of individuals is released from prison and followed for a pe-
riod of T years. Suppose rearrest is defined as the appropriate recidivism event.
If an individual is rearrested within the follow-up period T , then let b denote a
binary outcome coded 1 and let d denote the duration to the first rearrest event.
If the individual is not rearrested during this period, let b and d be set to 0. Now,
define

y(t ) = 1[t = d] and f (t ) = 1[t ≤min(d ,T )] ∀t ∈ T

where T = R+ and 1[·] is an indicator function returning 1 if the condition
inside [·] is satisfied, else 0. Consequently, y(t ) is simply a function flagging
when the event actually occurs and f (t ) is a function flagging when the event is
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at risk of occurring.4

Let r (t ) continue to denote the unknown hazard that reflects the stochastic
process resulting in the event flagged by y(t ). Since an individual cannot fail if
(s)he is not at risk of failing, both y(t ) and f (t ) can be used to derive conditional
links between the hazard and the event as:

f (t )y(t )≈ f (t )r (t ) ∀t ∈ T . (3.10)

Note that this approximation allows one to derive a non-parametric estimate
of the hazard rate. To see this, assuming that the hazard is fixed across individ-
uals. Then taking unconditional expectations of (3.10) and re-arranging terms
yields r̂ (t ) = E[ f (t )y(t )]/E[ f (t )] ∀t ∈ T . This is a non-parametric estimate
of the hazard rate—the number of people expected to fail at t divided by the
number of people expected to be at risk of failing at t .

Besides yielding the familiar non-parametric hazard rate estimates, this ap-
proximation allows one to derive analogous links between the hazard rate and
its manifestations along several clocks.

3.2.1. Specifying Distinct Processes

First, suppose that both sides of (3.10) are integrated over the domain T and
assume that this procedure converts the approximation into an equality. Since
y(t ) = 1 if and only if f (t ) = 1, clearly, this integration will yield the binary
outcome b on the left hand side. Hence, this procedure yields the first analogy
linking the hazard to a manifestation.

b =
∫

T
f (t )r (t )d t (3.11)

Next, consider, pre-multiplying both sides of (3.10) by t and then taking the

4By altering the definition of y(t ) and f (t ) one can characterize multiple events and by
re-defining f (t ) appropriately one can characterize spells when an individual is not at risk of
experiencing the event. For ease of exposition, these nuances are omitted here.
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integral. The left hand side of this equation would now yield d—the duration
to first rearrest (and 0 if the observation is censored)—since the only time when
f (t ) = y(t ) = 1 is when t = d . Consequently, another analogy—linking the
hazard to spell-length—would be identified.

d =
∫

T
t f (t )r (t )d t (3.12)

As was argued above, there may be reason to believe that the hazard of re-
cidivism is independently affected by a stochastic process that progresses with
age. Hence, the age at first rearrest event, and not just duration to first rearrest
event, may be an additional manifestation to model. Multiplying both sides of
(3.10) by a∗+ t and integrating yields this analogy linking the hazard to age at
first rearrest

a =
∫

T
[a∗+ t] f (t )r (t )d t (3.13)

because a∗+ d = a (age at release plus duration to first rearrest is the same as age
at first rearrest). Note the functions t and a∗+ t were defined generically as δ(t )
and a(t ) in the previous section.

Non-linear transformation of these outcomes can also be introduced in a
parallel fashion. For example, to mimic a generalize Poisson process, one may
pre-multiply and integrate both sides of (3.10) by t log t to get

d log d =
∫

T
t log t f (t )r (t )d t (3.14)

and, performing the same operation with [a∗+ t], to get

a loga =
∫

T
[a∗+ t] log[a∗+ t] f (t )r (t )d t (3.15)

In general, of course, one can derive a host of other links (with a host of other
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clocks). Let this set of analogous claims, say J of them, be generically written as:

µ j =
∫

T
φ j (t ) f (t )r (t )d t ∀ j ∈ J (3.16)

where φ j (t ) are appropriate transformation of t and µ j are the correspond-
ing manifestations. Provided that the analogies satisfy the basic identifying
restriction—that none of them are exactly implied by, or imply, another—each
of them provides information about a different piece of the model that one may
be attempting to construct. In addition to the direct analogies derived above,
each of them can be conditioned on the treatment indicator τ to study how τ

affects the hazard process through each of the different clocks.
The analogies derived above merely provide restrictions on the shape and val-

ues that the hazard function can take. They are constraints that the final hazard
model should satisfy in the sample. One still needs a way to recover information
from them (i.e., convert them into parameters that can be estimated and used to
test hypotheses). Fortunately, information theory provides a foundation from
which to approach this problem.

3.2.2. Learning from Multiple Processes

Information theory builds on the pioneering work of Shannon (1948). He de-
rived a measure of uncertainty—which he called Information Entropy—for quan-
tifying a channel’s capacity to communicate information. Faced with the prob-
lem of inferring individual features from aggregate properties, Edwin Jaynes, an-
other pioneer in this field, proposed to use Shannon’s Information Entropy as
an agnostic criterion to maximize (since it measures uncertainty) in order to be
very conservative in what one can (or cannot) infer from these aggregate proper-
ties (Jaynes 1957a,b). Viewing an experiment (or a sample) as a communication
device, the Maximum Entropy procedure—as it has come to be known—is there-
fore a very general and powerful procedure for learning from statistical evidence
(e.g., the type of analogies that have been derived above).
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The links between Information Theory and statistics have been very thor-
oughly explored (Diamond 1959; Kullback 1959; Jaynes 1979, 1986, 1988; Justice
1986; Levine and Tribus 1979; Mathai 1975; Skilling 1989; Zellner 1988; Soofi
1994, 2000). Since Shannon’s measure of uncertainty was probabilistic, natu-
rally, much of this literature develops and uses measures of information based
on proper probabilities. However, if one is to learn from analogies of the type
defined in (3.16), what one needs is a measure of information that is based on
the hazard rate.5

There is a growing statistical literature utilizing information theoretic
concepts in reliability analysis (Ebrahimi, Habibullah and Soofi 1992; Soofi,
Ebrahimi and Habibullah 1995; Ebrahimi and Kirmani 1996; Ebrahimi and
Soofi 2003; Asadi et al. 2005). These scholars derive hazard models by utilizing
the links between the hazard rates and probability functions (or survival rates)
thereby converting the information-recovery problem about the hazard into one
about proper probabilities. Unfortunately, this strategy is less than helpful in
the current situation since any transformation of the derived analogies would
result in intractable transformation of the manifestations themselves (µ j ). What
is needed is a criterion that measures information in the hazard rate directly.

Denoting r̄ (t ) as a prior (pre-sample or pre-experiment) belief about the haz-
ard rate, and using a simple set of plausibility assumptions, one can derive such
a measure (see appendix A). Other than a constant scaling factor, the net infor-
mation acquired by the analyst in terms of the hazard rate itself can be computed
as:

I =
∫

T
f (t )

�

r (t ) log
r (t )

r̄ (t )
− r (t )+ r̄ (t )

�

d t . (3.17)

The inferential task of learning from the derived constraints (the several
analogies) can now be converted into the mathematical problem of minimizing

5Some measures of information relying on positive quantities (that do not integrate to 1) have
been informally proposed in the literature. They are used, for example, in image reconstruction
problems (Gull and Daniell 1978; Gull 1989; Donoho et al. 1992) or for recovering regression
functions (Ryu 1993).
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(3.17), subject to the constraints (3.16). This is a standard variational problem
that can be solved by the method of lagrange. The primal objective function is
set up as

L =
∫

T
f (t )

�

r (t ) log
r (t )

r̄ (t )
− r (t )+ r̄ (t )

�

d t

+
∑

j

β j

�

µ j −
∫

T
φ j (t ) f (t )r (t )d t

�

where β j are the Lagrange Multipliers associated with each of the J constraints.
Solving the first order conditions provides the solution

r (t ) = r̄ (t )exp
�

∑

j

φ j (t )β j

�

∀t ∈ T (3.18)

and setting r̄ (t ) = 1∀t ∈ T removes the possibility of analyst-induced subjec-
tivity by making the priors completely uninformative.

The solution in (3.18) can be used to derive a dual representation of the op-
timization problem—an unconstrained optimization problem in β j —that can
be solved using standard software with optimization routines. The dual (uncon-
strained) optimization problem is

F =
∑

j

β jµ j −
∫

T
f (t )r (t )d t +

∫

T
f (t ) r̄ (t )d t (3.19)

where r (t ) is as derived in (3.18). Note also that since r̄ (t ) is not a function of
any of the β j , the last component of the objective function is really irrelevant
in the optimization problem.

Individual attributes may be introduced into the strategy in a straightfor-
ward manner by replacing the µ j with the products of individual manifestations
and attributes (e.g.,µ j n xkn); by introducing subscripts of n (e.g., rn(t ) and fn(t ));
and by summing the dual objective function over all individuals in the sample.
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The dual objective with individual attributes included is defined as

F =
∑

n

�

∑

k j

βk jµ j n xkn −
∫

T
fn(t )rn(t )d t +

∫

T
fn(t ) r̄n(t )d t

�

(3.20)

where each individual’s hazard solution (path) is now defined as

rn(t ) = r̄n(t )exp
�

∑

j

φ j n(t )
∑

k

xknβk j

�

∀t ∈ T . (3.21)

The unconstrained maximization problem derived in (3.20) falls under the
general class of extremum estimators, β̂ = argmaxβF (β,µ, X). The consis-
tency and asymptotic normality of these estimators can be established under
fairly general regularity conditions (Mittelhammer, Judge, and Miller, 2000:132–
139).

Assuming that standard regularity conditions are met, one can obtain an
estimate of the asymptotic covariance matrix of the Lagrange Multipliers by
computing the negative inverted Hessian of the dual objective function. This
covariance matrix can then be used to estimate asymptotic standard errors and
conduct hypothesis tests for each of the Lagrange Multipliers (β).

3.2.3. Implications

Based on the multiple-clocks that were derived earlier, this final equation can be
written more specifically as:

log rn(t ) = β0+β
∗
0×τn

+ β1[a
∗
n + t]+β∗1[a

∗
n + t]×τn

+ β2[a
∗
n + t] log[a∗n + t]+β∗2[a

∗
n + t] log[a∗n + t]×τn

+ β3t +β∗3t ×τn

+ β4t log t +β∗4t log t ×τn (3.22)
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so that testing the statistical significance of β∗0, . . . ,β
∗
4 will help accept/reject

hypothesis regarding the various multiple-clock processes. Moreover, based on
this functional form, the derived NSDE and NPRE may be computed as:

NSDE =
∫ 3

0
β∗1+β

∗
2

�

1+ log[a∗n + t]
�

d t (3.23)

NPRE =
∫ 3

0
β∗3+β

∗
4

�

1+ log[t]
�

d t (3.24)

Since a∗n is different for each individual, the NDSE needs to be evaluated at some
value of a∗ (e.g., at the mean of the sample). The asymptotic standard errors for
the NSDE and NPRE can be estimated from the asymptotic covariance matrix
of the underlying β parameter using the δ-method (see Appendix A).

3.3. SUMMARY

This chapter described the identification and estimation strategy used in this re-
search effort. Given the inherent difficulty (ethical and practical) in randomly as-
signing offenders to cleverly conceived treatment and comparison groups for the
purpose of inferring specific deterrence and probative effects of DNA databases,
this chapter developed an alternate strategy for extracting these effects from
transactional data. The strategy is based on observational data.

All event history data are measured from some reference point. For the case
of criminal recidivism data, several clocks are possible to define. Examples in-
clude time since birth, time since first event, time since last event, time since
prison release, etc. The identification strategy used in this research effort was
based on linking the two simultaneous effects of DNA databases—specific de-
terrence and probative—to different clocks measuring the same observed events.
The age-based clock was used to identify specific deterrent effects and the spell-
based clock to identify probative effects. These were motivated by the observa-
tion that any interruption in the age-based clock that can be linked to DNA
databases could be construed as affecting the criminal career of an individual;
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and any interruptions in the spell-based clock that could be linked to DNA
databases could be construed as short-term changes in offending patterns that
were net of any criminal career changes. Since the unfolding of a criminal ca-
reer can most closely be associated with an individual’s choices, any changes
that DNA databases bring to these unfolding careers is identified as the specific
deterrence effect.

Since the two clocks are different ways of measuring the same events, the
multiple-clock models need to be estimated simultaneously. Moreover, a flexible
functional form was considered desirable as theory provides little guidance as
to the form of the trajectories other than that they are parabolic in shape. Con-
sequently, a semi-parametric approach was devloped for estimating the models.
Despite its flexibility, the framework provides a sufficiently rich apparatus to
conduct hypothesis tests relating to the various processes.

The hazard of recidivism within a three year follow-up period (after release
from prison) was the key outcome measure and the models linked this hazard to
duration since release from prison as well as duration since birth. Each of these
processes were allowed to have a parabolic shape and each of them was permitted
to vary by treatment status. In addition, the hazard for the treatment and control
groups was also allowed to be different without operating through either of the
clocks. Hence the strategy allows DNA databases to have three distinct effects
on the evolution of the hazard as time since release unfolds. First, the treatment
and control groups are permitted to differ, in the aggregate, for unexplained
reasons (i.e., start at different intercepts). Second, they are permitted to evolve
differently as duration since release unfolds. Finally, they are permitted to evolve
differently as each of the sample members age. Only those changes that affect the
two dynamic processes are identified as quantities of interest. Once isolated in
this manner, the specific deterrence and probative effects can be aggregated to
estimate the net effects over the entire follow-up period.
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Chapter 4

Data

4.1. DATA SOURCE

Data for this study was obtained from the Florida Department of Corrections
(FDOC). As noted elsewhere, Florida’s DNA databases is one of the largest in
the country. Further, FDOC also maintains a very rich database for tracking of-
fenders entering and leaving FDOC confinement and supervision. The Florida
Department of Law Enforcement (FDLE) provided criminal history informa-
tion. This chapter describes the sources of these data as well as the definition of
the cohort, the outcomes, and the attributes of interest. It then presents descrip-
tive and trend data on some important variables.

4.1.1. OBIS, Florida Department of Corrections

The Offender Based Information System (OBIS) maintained by the FDOC con-
tains detailed information on all offenders who are sentenced to state prison or
community supervision (probation, community control, etc.). All of the sen-
tencing information recorded on the Sentence and Judgment Form completed
by the court when an offender is convicted, including the specific offense, date of
the offense and sentencing, and details as to the specific sentence is stored in this
database. The OBIS also contains very specific data on all movements within and
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in and out of prison and all events related to community supervision outcomes
(absconding, technical violations, and new offenses). There is also comprehen-
sive data relating to the demographic characteristics of the offender; identifying
numbers such as their FDLE number, social security number, and FBI num-
ber; as well as their prison experience, including disciplinary actions, programs
completed, educational level, and custody classification.

The OBIS was created in 1979 and historical information on many offend-
ers under DOC’s jurisdiction was entered at that time. Also, the DOC has a
unique individual identifying number for each offender, allowing one to track
offenders over time in and out of the prison or community supervision systems
in Florida. The OBIS also records, for each offender, whether (and a date when)
the offender’s DNA profile was entered into the Florida Convicted Offender
database.

Since 1996, the DOC’s Bureau of Research and Data Analysis has built a
SAS data warehouse of over 125 research files that are extracted from OBIS and
contain detailed information relating to prison and supervision admissions, re-
leases, and status populations. Additionally, the warehouse contains event files
such as prison movements, supervision gains and losses, disciplinary infractions,
prison and supervision program information, etc. These files can be linked using
the offender identification number and are routinely used by DOC and external
researchers to build cohorts of offenders released from prison and supervision.

4.1.2. CCH, Florida Department of Law Enforcement

The Computerized Criminal History (CCH) database maintained by the
Florida Department of Law Enforcement (FDLE) contains information on all
arrests in Florida that result in a suspect being booked and fingerprinted at a
local jail facility and is the basis of “rap sheets” used by law enforcement, the
courts, and corrections to capture historical criminal history information about
suspects and offenders. The CCH database was centralized at FDLE in the early
1970’s, but also contains data from as far back as the 1920’s.
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There are four segments that make up the CCH database. First, the Iden-
tification segment includes standard demographic information and identifying
numbers such as offender’s social security number, FBI number, Florida’s DOC
number, etc. Second, the Arrest segment contains information relating to each
arrest charge, such as the specific crime, data of the crime and arrest, arresting
agency, county of arrest, and statutory degree of the alleged crime. Third, the
Judicial segment contains information relating to the court disposition of each
arrest charge (nolle prossed, pled guilty, convicted at trial, etc.), and details on
the sentence received, if applicable. Fourth, the Custody segment contains infor-
mation on the length of prison sentence and dates entering and exiting prison.

Arrestees are given a unique identifying number upon their first arrest in
Florida; that number is used for all subsequent arrests and is used to link the
information across the four segments of the CCH database for each individual.

Like DOC, FDLE’s Statistical Analysis Center (SAC), has built a SAS data
warehouse that contains research files of all four segments of the entire CCH
database. Additionally, the SAC has been very successful in matching their CCH
data to DOC’s OBIS data using a host of offender identifiers, including name,
date of birth, gender, race, DOC number, FDLE number, and social security
number. This affords the opportunity to build a dataset for research purposes
that contains comprehensive and detailed information relating to complete ar-
rest and conviction information for all offenders who have been under the juris-
diction of DOC (prison or community supervision).

4.2. COHORT, OUTCOME, AND VARIABLE DEFINITIONS

Data obtained from the FDOC and the FDLE were combined to create an anal-
ysis file. All offenders released from FDOC between January 1996 through De-
cember 2004 were considered eligible.1 For each individual in the cohort, crimi-

1Initially all offenders entering probation were also considered eligible for a seperate cohort.
However, the proportion of the probation intake cohort that had DNA profiles stored in a
database was very small. This cohort was subsequently dropped from the analysis.

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



Avinash Bhati — Quantifying the Specific Deterrent Effects of DNA Databases 30

nal history records from a matched criminal history file provided by the FDLE
were obtained. A small number of sample members for whom matched crimi-
nal history records were not available were dropped from the study. Moreover,
offenders not released to Florida communities (i.e., those released to other states
or countries) were also excluded from the analysis as the FDLE criminal history
file only contains Florida arrest records. For offenders released multiple times
during the 1996-2004 period, all episodes were retained in the analysis.

Identifying the treatment and comparison group for this large cohort was
somewhat tricky. Because of the evolution of Florida’s DNA legislation over
the study period, releasees from more recent years typically were more likely
to have their DNA profiles stored—i.e., to be part of the treatment group. As
a result, the same individuals could be in the treatment group and the control
group. If their DNA was collected as a result of a recidivism event from an earlier
release, for example, then for the initial release episode they were considered
as part of the control group. If they were then convicted and received a new
sentence, then for the subsequent release episode they would be treated as part of
the treatment group. To ensure that the treatment and control groups reflected
the then current DNA database status, the treatment group was composed of all
releasees who had their DNA taken at some point prior to their release from
prison. The control group was composed of all releasees who did not have their
DNA entered in a database until either being rearrested or as of the end of the
three-year follow-up period.

Two different outcomes were analyzed. First, the FDLE criminal history
records were used to define rearrest within three years of release as an outcome.
The arrest date was used to flag the recidivism event and compute duration on
various clocks. Second, court docket information maintained by the FDOC was
used to define a reconviction outcome, also within a three-year follow-up period.
For the reconviction outcome, the offense date was used to flag the recidivism
event and compute duration on various clocks. The reconviction outcome there-
fore flags re-offending events that ultimately led to a reconviction.
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The two outcomes were not sequential linked. They were derived from two
different sources and no attempt was made to reconcile the sequencing of events.
They were analyzed as separate outcomes in distinct analyses.

In addition to the two outcomes of interest and the treatment indicator, a
host of potentially relevant attributes were extracted and used to balance the
samples. These attributes are summarized below:

TIMESERVED The total amount of time offenders had served in prison prior
to their release from FDOC.

AGEREL Age at time of release from FDOC.

CHIST The criminal history measure. This includes all prior arrests (including
felony and misdemeanor offenses) found in the matched arrest history file
provided by FDLE.

SUPERVISION A flag identifying the supervision status of offender upon re-
lease from FDOC (whether they were to be supervised upon release).

MALE A flag identifying the gender of a releasee.

RACE_BLACK A flag identifying African American offenders (other race was
the omitted category).

RACE_WHITE A flag identifying white offenders (other race was the commit-
ted category).

ETH_HISP A flag identifying offenders of Hispanic ethnicity (other ethnicity
was the omitted category).

ETH_EURO A flag identifying offenders of European/Caucasian ethnicity
(other ethnicity was the omitted category).

ETH_AFRI A flag identifying offenders of African ethnicity (other ethnicity
was the omitted category).
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ED_SCH A flag identifying high school as the highest level of education
claimed (less than high school was the omitted category).

ED_COL A flag identifying some college as the highest level of education
claimed (less than high school was the omitted category).

MAR_SINGLE A flag identifying single as the current marital status (other or
unknown marital status was the omitted category).

MAR_MARRIED A flag identifying married as the current marital status
(other or unknown marital status was the omitted category).

MAR_SEPDIVW A flag identifying separated, divorced, or widowed as the
current marital status (other or unknown marital status was the omitted
category).

EMP_UNEMP A flag identifying unemployed as the employment status at
time of prison admission (unknown status was the omitted category).

EMP_FULL A flag identifying full-time employed as the employment status at
time of prison admission (unknown status was the omitted category).

EMP_PART A flag identifying part-time employed as the employment status
at time of prison admission (unknown status was the omitted category).

Finally, the most serious current offense was recovered from the FDOC
data files. To recover the most serious offense, when offenders were incarcer-
ated for more than one charge, the longest sentence length was used as a way
to identify the most serious charge. Using this criteria, six offense categories
were created by which to stratify the analysis. These included offenders who
were released after being incarcerated primarily on Violent charges (including
murder, manslaughter, sexual offenses, and other violent offenses); Robbery;
Burglary; Other Property charges (including theft, fraud, and damage); Drug
related charges; and Other charges (including weapons and other public order
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Table 4.1: Descriptive statistics of the sample analyzed, by most serious cur-
rent charge.

Violent Robbery Burglary OthProp Drug Other

N 30,816 11,297 20,883 26,417 37,812 14,472
UTX 0.695 0.489 0.556 0.408 0.308 0.422
RECID_ARR 0.437 0.571 0.611 0.603 0.608 0.565
RECID_CON 0.292 0.397 0.466 0.469 0.440 0.422
TIMESERVED 3.254 4.184 2.780 2.229 2.068 2.256
AGEREL 34.211 30.032 31.362 33.228 34.068 34.400
CHIST 4.334 4.906 6.387 6.686 6.785 5.965
SUPERVISION 0.468 0.437 0.628 0.694 0.784 0.712
MALE 0.919 0.945 0.960 0.864 0.873 0.936
RACE_WHITE 0.486 0.293 0.514 0.551 0.252 0.496
RACE_BLACK 0.494 0.688 0.462 0.430 0.736 0.489
ETH_HISP 0.061 0.054 0.074 0.055 0.044 0.048
ETH_EURO 0.452 0.278 0.470 0.521 0.243 0.472
ETH_AFRI 0.475 0.660 0.447 0.415 0.705 0.469
ED_SCH 0.702 0.734 0.735 0.732 0.761 0.742
ED_COL 0.059 0.043 0.041 0.063 0.044 0.048
MAR_SINGLE 0.424 0.528 0.494 0.445 0.488 0.430
MAR_MARRIED 0.138 0.099 0.093 0.125 0.107 0.134
MAR_SEPDIVW 0.175 0.095 0.124 0.166 0.127 0.165
EMP_UNEMP 0.256 0.313 0.298 0.296 0.353 0.265
EMP_FULL 0.568 0.496 0.528 0.543 0.468 0.574
EMP_PART 0.089 0.113 0.103 0.083 0.107 0.083

offenses). Table 4.1 provides the mean values for each of the variables by each of
the offense categories during the study period.

4.3. UNIVARIATE TRENDS FOR KEY VARIABLES

This section discusses temporal variation in the proportion of offenders released
from FDOC during the period 1996–2004 as well as the recidivism rates ob-
served during the same periods. Based on legislation passed between these years,
there were many sudden shifts in the proportion of sample members being in-
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cluded in the treatment group. Most of these actual “jumps” can be tied to spe-
cific legislation passed in Florida.

Figure 4.1 provides a picture of the trends in the sample of offenders released
from a violent charge. Notwithstanding a few sudden shifts (notably during
2000 and 2004), the proportion of the released population that was contributing
DNA to databases was increasing gradually. During 2004 legislation was passed
expanding the collection of DNA evidence from a number of violent offenses
(including forcible felonies, aggravated child abuse, and aggravated abuse of el-
der or disabled adult). At the start of the data analysis period (1996) nearly 60
percent of those released from FDOC had their DNA entered in a database. By
2004, it was nearly 95 percent.

During the same period, for this group, there was almost no change in the
recidivism rates (both rearrest rates and reconviction rates). For the entire pe-
riod, the rearrest rate hovered between 40 and 50 percent whereas the reconvic-
tion rate hovered about 30 percent. It was only in the last two years that one
sees a small decline in the reconviction rate. Note that the recidivism events are
recorded in the three years following the date of release. Hence, the recidivism
events for offender released in December 2004 would have occurred between
January 2005 and December 2007.

Figure 4.2 shows the same trends for those released from FDOC after serv-
ing time on robbery charges. Among this cohort, there are two distinct shifts
in the proportion of offenders released from prison who have DNA recorded in
a database. The first, in 2000, probably reflects offenders on robbery as well as
burglary charges (as DNA collection was authorized for burglars in a 2000 legis-
lation). The second was in 2002 when legislation specifically targeting offenders
with robbery charges was enacted.

The recidivism rates of this cohort was declining gradually over the entire
study period. Starting from a high of about 60 percent rearrest rate and 45 per-
cent reconviction rate in 1996, recidivism rates dropped gradually by about 10
percent points over the next nine years. From a macro perspective, this is more
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persuasive of a specific deterrent effect than the trends in the violent offense cat-
egory. At a minimum, increases in the proportion of offenders leaving prison
with their DNA profile in a database are associated with declining rearrest rates.
This graphical analysis is only suggestive, though.

Figure 4.3 shows the same trends for offenders released after serving time
on primarily burglary charges. During 2000, legislation was passed authorizing
the recoding of DNA profiles of all convicted burglars. This legislation yields
the dramatic shift upwards in the proportion of released offenders with DNA
profiles in a database from about 15 percent to nearly 100 percent within a pe-
riod of a few months. No accompanying sudden shift in recidivism rates are
observed, however. As with the robbery category, there is a gradual decline in
the recidivism rates of this cohort over the 9-year period. The three-year rearrest
rate dropped from about 65 percent to about 55 percent whereas the three-year
reconviction rate dropped from about 55 percent to about 40 percent.

The next three charts, figures 4.4, 4.5, and 4.6, show the same trends for
prison exit cohorts released after being incarcerated primarily for other prop-
erty charges, drug charges, and other public order charges respectively. In each of
these, the proportion of the release cohort that had DNA entered in a database
is fairly low and stable untill 2000 when it spikes upwards. This is, more than
likely, a result of offenders on multiple charges where subsidiary charges in-
cluded burglary. In the case of other public order offenses, figure 4.6, there is
an additional surge in 2004 that is attributable to passage of legislation autho-
rizing the collection of DNA profiles from offenders convicted of the use and
possession of firearms.

With the exception of offenders released from drug related incarcerations,
the recidivism rates for other property and other public order offense cohorts
remained fairly stable through the study period. The recidivism rates of the drug
cohort dropped continuously throughout the period. The rearrest rate dropped
from nearly 70 percent in 1996 to about 55 percent in 2004. Similarly, the recon-
viction rate dropped from 50 percent in 1996 to about 35 percent in 2004.
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Figure 4.1: Proportion of prison releasees who had DNA evidence in a database
and recidivism rates, current offense: Violent, 1996–2004.
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Figure 4.2: Proportion of prison releasees who had DNA evidence in a database
and recidivism rates, current offense: Robbery, 1996–2004.
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Figure 4.3: Proportion of prison releasees who had DNA evidence in a database
and recidivism rates, current offense: Burglary, 1996–2004.
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Figure 4.4: Proportion of prison releasees who had DNA evidence in a database
and recidivism rates, current offense: Other property, 1996–2004.
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Figure 4.5: Proportion of prison releasees who had DNA evidence in a database
and recidivism rates, current offense: Drug, 1996–2004.
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Figure 4.6: Proportion of prison releasees who had DNA evidence in a database
and recidivism rates, current offense: Other, 1996–2004.
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Chapter 5

Findings

This chapter presents and discusses main findings. The chapter is organized
as follows. The models used to create the IPTW (inverse probability of treat-
ment weights) in order to balance the samples are first discussed. Pre- and
post-balancing comparisons of the characteristics are provided. Results of the
multiple-clock models estimated to recover the deterrent and probative effects
of DNA databases are provided and discussed next. Finally, the implied NSDE
and the NPRE estimates are presented.

5.1. INVERSE PROBABILITY OF TREATMENT WEIGHTS (IPTW)

Since interest centers around the estimation of conditional multiple-clock mod-
els with just the treatment dummy τ included, the first step in the analysis was
to assess the extent to which the attributes of the two groups differed. If they
did, then Inverse Probability of Treatment weights were used to balance the
samples (Wooldridge 2007). To do so, logistic regression models were estimated
(for each offense category and outcome type) that predicted the probability of
each sample unit having DNA evidence in a database prior to release. Available
attributes included time served prior to release, age at release, criminal history
(total number of prior arrests), supervision status at release, gender, race, ethnic-
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ity, highest education level attained, and employment status (prior to incarcer-
ation). Detailed model estimates are provided in Appendix B. Let pn(τ) denote
the estimated probability (propensity) that individual n was in the treatment
group. The inverse probability of treatment weights were computed as:

wn = τn ×
1

pn(τ)
+ (1−τn)×

1

1− pn(τ)
(5.1)

and normalized appropriately to ensure that the weighted and unweighted sam-
ple sizes were identical. Tables 5.1 and 5.2 provide detailed comparisons of the
attributes of the treated and the untreated groups—with and without the IPT
weights.

There are 6 columns for each of the offense categories displayed in these ta-
bles. The first two columns under any offense category provide the unweighted
means of each of the attributes included. The third column provides the statisti-
cal significance of the difference between the two groups. Significant differences
are indicated with stars—two stars for 95 percent confidence and a single star
for 90 percent confidence. Note because of rounding, some differences appear to
be small when in fact they are statistically significant. The next three columns
provide the same comparison using the IPTW to weight the data.

In almost all of the models, the weighting makes the differences insignifi-
cant. There are a few notable exceptions. In the violent and the other offense
models, the time served variable could not be balanced. Similarly, in the drugs
model the criminal history variable could not be balanced. However, some of
the remaining differences are very small despite being statistically significant.

In order for propensity scores to provide an appropriate basis for creating
weights, there are two critical assumptions that need to be satisfied (Wooldridge
2007). First, there needs to be sufficient overlap in the range of estimated propen-
sity scores in the treatment and the comparison groups. To assess the overlap,
figure 5.1 shows the distribution of the estimated propensity scores across the
six offense categories considered. The gray bars represent the distribution of the
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Figure 5.1: Propensity score overlap in offense specific models.
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estimated propensity score in the control group (τ = 0) and the hollow outlined
bars represent the distribution of the propensity scores in the treatment group
(τ = 1). The overlap seems adequate.

A second assumption concerns the actual value of the estimated propensity
score. Since weights need to be created by inverting the scores, propensity scores
in the treatment group need to be away from 0 (otherwise the inverse will create
a very large weight) and scores in the control group need to be away from 1 (oth-
erwise the inverse of one minus the score will create a very large weight). Based
on the distributions displayed in figure 5.1, with the exception of violent offense
category models, this assumption seems to generally be satisfied. Despite that,
in all models, the normalized weight was top-coded to a value of 4 (all weights
larger than 4 were set to 4). This ensures that none of the raw observations con-
tribute to more than 4 weighted observations in any of the ensuing analysis.

Is the IPTW methodology appropriate to use in the current context? In a re-
cent critique of the methodology, Bjerk (2009) showed that the IPTW method-
ology and, more generally, fixed effects models can yield misleading inference in
the presence of dynamic selection bias.1 Bjerk (2009) summarizes the critique as
follows:

“In general, fixed-effects type estimators can only provide an unbi-
ased estimate of the causal effect of some individual characteristic
x on individual criminality if one can truly believe that the reason
individuals obtain that characteristic x at a given point in time is
because an opportunity for obtaining that characteristic randomly
arose at a given point in time that was not available previously. If,
on the other hand, the opportunity for some individuals to obtain
characteristic x was always there to some extent, and it is simply
that something changed within or around the individual that causes
him to choose to act on the opportunity to obtain characteristic x
at a given point of time, then estimated fixed-effects relationships

1I thank an anonymous reviewer for raising this point.
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will likely overstate the causal effect of characteristic x on individ-
ual criminality ” [394]

As it relates to this report, the individual characteristic x that Bjerk (2009)
is referring to is the treatment indicator τ—having one’s DNA entered into a
DNA database prior to release from prison. Since the passage of laws in the state
of Florida are largely exogenous to an individual’s choices, it is difficult to con-
ceptualize how the individual could have had the opportunity to obtain τ prior
to the passage of the law. Additionally, although not random, the opportunity
to obtain τ arose exogenously for the individual. Nothing changed within an
individual for the individual to choose to acquire τ. Hence, it is unlikely, in the
opinion of this author, that dynamic selection bias will reduce the utility of the
IPTW methodology in the context of the current research effort.

5.2. MODEL ESTIMATES

Table 5.3 provides a summary of the main multiple clock models. All mod-
els were weighted using the IPT weights discussed in the last section. This ta-
ble summarizes the sign and significance of the parameters identified in (3.22).2

With rearrest or reconviction as the outcome of interest, there is clear evidence
in most offense categories that there are multiple processes operating simulta-
neously. Moreover, it is evident that having one’s DNA profile recorded in a
database (τ) does affect these processes in distinct and interesting ways. A brief
explanation of the parameter values follows.

The first set of parametersβ0 andβ∗0 related to the fixed (non-temporal) part
of the hazard process ( f0). Here it is interesting to note that despite balancing
the data on almost all of the attributes, the treatment group has a higher hazard
than the untreated group (that is not associated with either of the clocks). This is
indicated by the positive and statistically significant coefficients onβ∗0 in most of

2Two pluses (minuses) implies a positive (negative) coefficient with a p-value of less than or
equal to 0.05; a single plus (minus) indicates a positive (negative) coefficient with a p-valules of
less than or equal to 0.1. A zero idicates a statistically insignificant coefficient.

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.



Avinash Bhati — Quantifying the Specific Deterrent Effects of DNA Databases 49

Table 5.3: Parameter estimates (sign and statistical significance),
multiple-clock models, all offense types.

Component β’s Violent Robbery Burglary OthProp Drug Other

Rearrest Models
1 β0 −− −− −− −− −− −−
τ β∗0 ++ ++ ++ ++ 0 0
a β1 ++ + ++ ++ −− 0
a×τ β∗1 −− −− −− −− 0 0
a loga β2 −− −− −− −− 0 0
a loga×τ β∗2 ++ + ++ ++ 0 0
t β3 0 −− −− −− −− −−
t ×τ β∗3 −− 0 ++ + ++ ++
t log t β4 −− −− 0 0 −− 0
t log t ×τ β∗4 ++ 0 0 0 − 0

Re-conviction Models
1 β0 −− −− −− −− −− −−
τ β∗0 0 ++ ++ ++ 0 0
a β1 ++ ++ ++ ++ 0 0
a×τ β∗1 0 −− −− −− 0 0
a loga β2 −− −− −− −− 0 0
a loga×τ β∗2 0 ++ ++ ++ 0 0
t β3 − −− −− −− −− −−
t ×τ β∗3 0 0 ++ 0 ++ ++
t log t β4 −− 0 0 0 0 0
t log t ×τ β∗4 0 0 −− 0 −− −−

++(β> 0, p ≤ 0.05); +(β> 0, p ≤ 0.10); −− (β< 0, p ≤ 0.05);
−(β< 0, p ≤ 0.10); 0(p > 0.1).

the model. The exceptions are Drug and Other offense categories in the rearrest
and the reconviction models and, additionally, the Violent offense category in
the reconviction models.

The parameters β1 and β2 capture how the hazard unfolds with age—the
age-based clock. In most of the models, β1 is positive and β2 is negative. This
indicates a process that increases with age at a decreasing rate. This shape is con-
sistent with the traditional age-crime curve. The β∗1 and β∗2 coefficients, on the
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other hand, reflect how treatment affects the age-based process. In most of the
models, these coefficients take on signs opposite to the age-crime curve suggest-
ing that treatment slows down the process. This is what one would expect if a
specific deterrent effect actually existed. That is, offenders who have their DNA
recorded in a database are on a lower hazard path than those in the control
group. However, the actual values of the SDE and the NSDE are dependent on
the data points at which they are evaluated. More on this later.

The probative effect is computed from the spell-based clock. The β3 and β4

parameters reflect this second process. Here, one finds that the parameters are
typically negative (or 0). Hence, either the spell-based process decreases at a con-
stant rate or decreases at a decreasing rate. In either case, the spell-based process
is decreasing in intensity. The β∗3 and β∗4 parameters now reflect the effects of
treatment on this spell-based process—capturing the probative effects of DNA
databases. Here one finds that β∗3 is typically positive when it is significant indi-
cating that treatment slows down the decaying process. This means, treatment
actually increases the hazard rate compared to non-treatment. This is the pro-
bative effect of DNA databases. Offenders who have their DNA recorded in
a database are likely to be rearrested and reconvicted quicker than the control
group.

5.3. IMPLIED DETERRENT AND PROBATIVE EFFECTS

The net specific deterrent and probative effects, as derived in (3.23) and (3.24)
respectively, implied by the estimated parameters summarized in table 5.3 are
presented in table 5.4 and discussed next. These effects are computed at the mean
age at release for each of the offense specific samples. Also, they are integrated
over the three year follow-up period.

Since the computations are based on the log-transformed hazard rate, each
of them represents a percent change. For example, a NSDE of −0.05 implies a
5 percent reduction in the recidivism events over the follow-up period that is
attributable to specific deterrence. Similarly, a NPRE of 0.05 implies a 5 percent
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Table 5.4: Implied net specific deterrent effects (NSDE) and net probative
effects (NPRE) of DNA databases.

Violent Robbery Burglary OtherP Drug Other
Rearrest Models

NSDE (3 year) 0.012∗ -0.029∗∗ -0.025∗∗ 0.021∗∗ -0.004 0.017∗∗

NPRE (3 year) 0.276∗∗ 0.308∗∗ 0.387∗∗ 0.337∗∗ 0.403∗∗ 0.124
Re-conviction Models

NSDE (3 year) 0.001 -0.032∗∗ -0.028∗∗ 0.020∗∗ -0.005 0.001
NPRE (3 year) 0.182∗ 0.071 0.078 0.243∗∗ 0.271∗∗ 0.028
∗∗ p ≤ 0.05; ∗ p ≤ 0.10

increase in recidivism events over the follow-up period that is attributable to the
probative effects of DNA databases.

For the rearrest models, the NSDE findings are mixed and offense-category
specific. For all of the models, the NSDE is in the one to three percent range.
However, three of the models produce net increases in recidivism events—
contrary to a specific deterrence hypothesis. These include violent, other prop-
erty, and the other categories. It is comforting, however, to see that for bur-
glary and robbery—the types of crimes for which biological evidence is easy to
obtain—the effects are negative and consistent across both outcomes. The find-
ings are similar but somewhat more encouraging for the reconviction models.
Here, the NSDE effects for robbery and burglary continue to remain negative
and statistically significant. The positive NSDE effects (contrary to the specific
deterrence hypothesis) for violent and other crime categories are no longer sig-
nificant, though.

The probative effects largely comport to expectations. All effects across the
two outcomes are positive. With the exception of the other crime category, the
rearrest models produce NPRE effects in the 30 to 40 percent range. Moreover,
with the exception of the other crime category, all of the effects were found to be
statistically significant. Findings are less consistent for the reconviction models.
Typically, the probative effects as computed from the rearrest models are larger
in magnitude than those computed from the reconviction models. Surprisingly,
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the NPRE were not statistically significant for the robbery and burglary models.
Four aspects of these results are worth elaborating on. First, in some in-

stances, the NDES and NPRE models take on the same sign across two or
more models when the underlying β parameter signs are different. For exam-
ple, the NPRE from all rearrest models are positive despite the fact that β∗3 and
β∗4 parameters for various crime cateories taking on different signs. This is en-
tirely plausible. Recall that the NSDE and the NPRE are computed as integrals
over the follow-up period. As such, they reflect the area under a curve (the sub-
trajectories). The underlyingβ parameters reflect the slopes of these curves. Up-
ward sloping and downward sloping curves can both have positive areas under
them over the follow-up period.

Second, the strongest and most consistent findings regarding the NSDE
emerge for the robbery and burglary rearrest models. One reason why that
might be is that robbery and burglary are the types of crimes for which biologi-
cal evidence is relatively easier to obtain. Another reason why these effects may
be particularly strong is that the passage of legislation in Florida clearly demar-
cated the treatment and control regimes. Of all the crime categories considered,
the sharpest and most complete coverage relate to robbery and burglary. For
example, figure 4.2 shows that the proportion of offenders released from prison
who had DNA evidence stored in a database went from about 20 percent to 60
percent in July 2000, and then from 60 percent to nearly 100 percent in July
2002. Thereafter it remained at or about 100 percent. Similarly, figure 4.3 shows
that that proportion of offenders released from prison who had DNA evidence
entered in searchable databases rose from 15 percent to about 95 percent in July
2000, and has remained near 100 percent ever since then. Although other crime
categories show similar increases tied to passage of legislation, the demarcation
is not so clear and complete.

Third, although the signs of the NSDE and NPRE are always consistent
across the two outcomes, the size of the effects and inference about them are
not always similar. For example, the size of the NPRE for robbery and burglary
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drops by a factor of 4 between the rearrest and the re-conviciton model and the
effects are not significant in the reconviction models (although they continue to
have the same signs). Given that reconviction usually takes longer than rearrest,
reconvictions are more rare in the data. As such, it is possible that the different
base rates in the samples have an effect on the inconsistencies. However, this is
an anomaly that deserves further scrutiny.

Fourth, the only other study where comparable estimates have been re-
ported appears to be the U.K. Home Office sponsored evaluation (Home Office
2004). Interestingly enough, their reported probative effects are in the 19 to 20
percent range whereas a 1 percent reduction of crime was realized in the target
area. The findings reported in this study are on the same scale. However, it is im-
portant to note that the specific deterrent effects from this study are somewhat
larger but are computed as reduction in recidivism not general crime.

These findings and their implications are further summarized in the next
chapter.
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Chapter 6

Conclusion

6.1. SUMMARY

The main goal of this research effort was to quantify the specific deterrent ef-
fects of DNA databases. All states in the United States currently require some
categories of convicted offenders to submit biological samples for DNA analysis.
Profiles extracted from these samples are stored in a searchable database that aids
law enforcement authorities in solving crimes, prosecuting suspects, and in ex-
onerating the wrongfully convicted. The general trend among state legislatures
is to expand the coverage of these databases. More crime categories are included
by legislation and more funds have been made available to clear backlogs. Are
there benefits to be accrued from this massive investment?

There is no doubt that forensic evidence, particularly DNA profiles, have
huge probative value. Conviction of guilty offender because of DNA evidence,
identification of suspects because of solved “cold cases,” and exoneration of the
wrongfully convicted are well documented benefits of this trend. Given the
near certainty with which DNA identifies and places suspects near the scene
of a crime, might these benefits not deter offenders who know that their DNA
profile exists in a searchable database? Indeed, legislation sometimes explicitly
identifies specific deterrence as a reason for expanding the coverage of these
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DNA profile databases (Taylor et al. 2007). Deterrence theory certainly sug-
gest that specific deterrent effects should materialize. Owing to its demonstrated
probative value, it is plausible to believe that offenders are keenly aware that
DNA evidence assists tremendously in solving crimes and in prosecuting sus-
pects. The swiftness and the certainty of punishment is clearly many fold when
DNA matched evidence is utilized. Therefore, knowledge about the fact that
one’s DNA profile exists in a database to be conveniently searched at a later date
should deter these offenders (at least on the margin). Hence, specific deterrence
effects are very plausible.

This study utilized a large cohort of offenders released from Florida De-
partment of Corrections between 1996 and 2004 to test this hypothesis. Given
that the study relied exclusively on observational data, the simultaneous na-
ture of the specific deterrence effects, probative effects, and the effects of unbal-
anced attributes—observed or unobserved—needed to be identified distinctly.
This study relied on multiple-clock models to identify the three distinct pro-
cesses.

Multiple clock models provide a convenient means of measuring the same
event on multiple clocks, and then modeling these processes distinctly. If a rea-
sonable case can be made for linking different theoretical claims to the different
clocks, then it is possible to use these models to identify the distinct effects. This
study linked the specific deterrent effects to the age-based clock, the probative
effects to the spell-based clock, and the residual (unexplained) effects to a fixed
non-temporal component. The analysis shed some light on the various hypothe-
ses considered.

First, there is evidence of the specific deterrence effect. Findings were par-
ticularly interesting for robbery and burglary. They were both in the expected
direction—negative effects implying a deterrence effect—and were based on com-
putations using statistically significant parameter estimates.

Second, there was even stronger evidence for the probative effects. Find-
ings show that most of the computed probative effects were in the expected
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direction—positive effects implying increased recidivism—and were fairly large.
Third, some of the specific deterrence effects recovered were perversely

signed. That is, the net effects of DNA databases that is attributable to specific
deterrence was actually positive. The probative effects were pretty consistently
in the correct direction.

Fourth, where they were in the correct direction and statistically significant,
the specific deterrence effects and the probative effects were of a magnitude very
similar to findings reported by the U.K. Home Office (Home Office 2004). Spe-
cific deterrence effects were in the range of 2 to 3 percent (the Home Office
study documented roughly 1 percent) and the probative effects ranged in the 20
to 30 percent range (the Home Office study documented about 20 percent.

6.1.1. Limitation

All non-experimental studies are sub-optimal compared to experiments. How-
ever, they are typically cheaper and can be used to provide some guidance to
policy makers. Moreover, sometimes analysis can be conducted using readily
available transactional datasets. To the extent that experiments can be conducted
to confirm or reject the general findings from this study, they would be valuable
to conduct.

The data used for this study contain a finite number of attributes that could
be extracted and balanced on. As with all matching or weighting estimators, the
crucial unconfoundedness assumption must be maintained. That is, it is implic-
itly assumed that once all the available attributes are balanced on, the treatment
and control groups are no longer unbalanced on relevant (or crucial) attributes
thereby permitting causal interpretations (Rubin 1990). This is typically an un-
verifiable assumption. Only well conducted experiments can guarantee that the
treatment and control groups are balanced on all observed and unobserved at-
tributes.

Moreover, given the nature of the intervention (DNA legislature) that cov-
ers everyone eligible, the treatment and control groups come from different time
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periods. Hence, implicitly, the comparisons of the hazard paths are between of-
fenders released in more recent years (the treatment group) to offenders released
in past years (the control group). Although attempts were made to balance the
samples on all available attributes, all aspects of the judicial environment are
probably not balanced. For that reason, fixed effects for the two groups were
permitted. That is, the NSDE and the NPRE effects are net of any fixed differ-
ences between the two groups. Despite this possibility, one cannot rule out that
there may have existed other policy trends that coincided with the passage of the
DNA legislation. One possibility for future research is to assess if DNA legisla-
tion was adhered to more/less strictly in different parts of the state and assess
these differences while controlling for other common justice policies. Applying
the multiple-clock framework utilizing knowledge of such natural experiments
may provide clearer insights.

6.2. IMPLICATIONS FOR POLICY AND PRACTICE

Do DNA databases provide indirect benefits like deterring convicted offenders
from committing future crimes? Should state legislatures continue to expand
coverage of DNA databases?

The answer to the former question, based on this study, is mixed. Perhaps for
some types of crimes there are stronger deterrent effects than others. Clearly,
property crimes like robbery and burglary show deterrence effects. There is
nearly a 2 to 3 percent reduction in recidivism events over the follow-up period
that can be attributed to specific deterrence. But is that sufficient? This research
was not designed to address this latter question. It is safe to say, however, that
if at all the expansion is to continue, it should be focused on property related
crimes like burglary or robbery. Moreover, such crimes are usually the scenes
where high volumes of biological evidence may be collected.

On the other hand, one can argue that the specific deterrent effects uncov-
ered in this study are too small to warrant serious attention. Why are the effects
so small? Taylor et al (2007) make a convincing case that overwhelming the sys-
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tem may indeed have the perverse effect of diminishing whatever specific deter-
rence effects may have existed. However, these negative effects must be placed
in the correct context. If, as was uncovered in this study and in the U.K. Home
Office study, the specific deterrence effects are small, then sacrificing these ef-
fects for the huge probative benefits that research has clearly demonstrated time
and again, may be well worth it. There is, after all, no theoretical claim that
recording an individual’s DNA profile in a database has any criminogenic effects
on the individual. As such, the trade-off is clearly in favor of future expansion of
the realm of crimes and category of offenders covered by DNA databases.
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Appendix A

Mathematical Appendix

A.1. DERIVING THE INFORMATION CRITERION

Since a key component of the procedure for learning from multiple processes
outlined in the narrative was the functional form of the information criterion
(3.17), this appendix provides a brief derivation of this measure based on a min-
imal set of plausible assumptions.

Let the information acquired about a counting process at time t be some
function of the divergence between the prior (pre-sample or pre-experiment) as-
sessment of the hazard, r̄ (t ), and its posterior (post-analysis or post-experiment)
assessment, r (t ). Let us denote this quantity as I (t ) = f (r (t ), r̄ (t )). What is
reasonable to assume about this function? In other words, what are reasonable
properties for the function f to possess?

The first set of assumptions pertain to the range of values information can
take. Keeping in mind that all quantities are indexed by t (i.e., we are talking
about information at a particular t ), let

f ≥ 0 ∀r, r̄ > 0 (A.1a)

f = 0 ∀r = r̄ (A.1b)

Here, (A.1a) states that information is a non-negative quantity for all values of
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the prior and posterior hazard rates and (A.1b) states that if the posterior is
exactly the same as the prior, then no information has been acquired.

The second set of assumptions deal with how information changes as the
absolute value of the posterior increases. Let

d f

d r
> 0 ∀r > r̄ (A.2a)

d f

d r
< 0 ∀r < r̄ (A.2b)

d f

d r
= 0 ∀r = r̄ (A.2c)

These assumptions simply state that the amount of information increases if the
posterior moves further away from the prior—whether or not r is higher or
lower than r̄ . For example, (A.2a) implies that if r > r̄ then an increase in r adds
to information since it takes the analyst further away from the prior. Similarly,
(A.2b) implies that if r < r̄ then an increase in r brings the analyst closer to the
prior. (A.2c) implies that f is continuous in r .

The last set of assumptions deal with the notion of diminishing marginal
returns. The idea is that the same increase in the posterior hazard should imply
smaller informational gains if the hazard is already high, compared to if the
hazard were low. This assumptions translates to

d f

d r

�

�

�

�

r=r1

>
d f

d r

�

�

�

�

r=r2

∀r1 < r2 (A.3a)

or, put another way, it translates to the second order differential equation

d 2 f

d r 2
=
κ0

r
∀r (A.3b)

where κ0 is the constant of proportionality that can be set to any arbitrary con-
stant without loss of generality. Since the ultimate goal is to derive a measure
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that will be optimized (maximized or minimized), a scaling constant will make
no difference to the final solution of this optimization problem.

Given these assumptions, and setting the constant of proportionality to 1,
we can start by integrating (A.3b) to get

d f

d r
=
∫

R

1

r
d r = log(r )+κ1

where the constant of integration, κ1, can be solved using the initial condition
(A.2c) to get κ1 =− log( r̄ ). This yields the result

d f

d r
= log

r

r̄

which, it can be verified, satisfies each of the conditions (A.2a)–(A.2c). This so-
lution can be further integrated to obtain

f =
∫

R
log

r

r̄
d r = r log

r

r̄
− r +κ2

where the constant of this integration, κ2, can be solved using the initial condi-
tion (A.1b) to get κ2 = r̄ .

This procedure yields the final functional form for f , and recognizing the
conditional (on t ) aspect of this measure, we can compute the net information
acquired over the entire domain T as

I =
∫

T
I (t )d t =

∫

T

�

r (t ) log
r (t )

r̄ (t )
− r (t )+ r̄ (t )

�

d t (A.4)

Since the analyst modeling criminal recidivism has information only on a
limited support of the domain T (e.g., the follow-up period) the measure in
(3.17) appropriately restricts the computation in (A.4) to a limited support.

Note that (A.4) is a more general measure of information than the Kullback-
Leibler directed divergence measure commonly used in Information Theory
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(Kullback 1959). To see this, note that if the prior and posteriors were in fact
proper probabilities (integrating to 1) then the measure in (A.4) could be simpli-
fied to

I =
∫

T
r (t ) log

r (t )

r̄ (t )
d t −

∫

T
r (t )d t +

∫

T
r̄ (t )d t =

∫

T
r (t ) log

r (t )

r̄ (t )
d t

which is the Kullback-Leibler directed divergence measure between two proper
densities. Moreover, with an uninformative or constant (over the domain) prior,
the minimization of information amounts to the maximization of Entropy—
precisely the procedure Edwin Jaynes initially proposed (Jaynes 1957a,b).

A.2. NSDE AND NPRE ASYMPTOTIC STANDARD ERRORS

The NSDE and NPRE as derived in (3.23) and (3.24) can each be written as
functions of the parameter vector β generically as:

NSDE = Ψ1(β) (A.5)

NPRE = Ψ2(β) (A.6)

With Σβ denoting the asymptotic covariance matrix of the parameters β, one
can use theδ-method (Greene 2000:357) to approximate the asymptotic variance
of the NSDE and the NPRE as:

σ2
NSDE =

�

∂ Ψ1(β)

∂ β

�′

Σβ

�

∂ Ψ1(β)

∂ β

�

(A.7)

σ2
NPRE =

�

∂ Ψ2(β)

∂ β

�′

Σβ

�

∂ Ψ2(β)

∂ β

�

(A.8)

and the asymptotic standard errors are the square-roots of these estimates.
Note that theδ-method provides a first order approximation for the estimate

if the functionΨ1 orΨ2 are non-linear. In our case, they are linear and therefore
the transformations are exact.
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The asymptotic covariance matrix for the underlying parameters (Σβ) is
computed as the negative inverted Hessian of the dual objective function (evalu-
ated at the optimal parameter values).

Σβ =−
�

∂ 2F
∂ β∂ β′

�−1

(A.9)

whereF is defined in (3.20).
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Appendix B

Tables

This appendix provide detailed parameter estimates from models designed to
estimate the IPT weights as well as the multiple-clock models summarized in
the findings chapter.
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Table B.1: Logistic regression results of using available at-
tributes to predict τ = 1, current offense: Violent.

Attribute β̂ a.s.e Wald χ 2 p-value

INTERCEPT -1.25 0.2002 38.85 0.00
TIMESERVED 0.17 0.0065 679.78 0.00
AGEREL 0.02 0.0017 90.11 0.00
CHIST -0.03 0.0043 36.38 0.00
SUPERVISION -0.34 0.0316 119.05 0.00
MALE 0.44 0.0558 60.83 0.00
RACE_WHITE -0.10 0.1252 0.65 0.42
RACE_BLACK 0.06 0.1551 0.14 0.70
ETH_HISP 0.30 0.1567 3.67 0.06
ETH_EURO 0.10 0.1462 0.51 0.48
ETH_AFRI 0.03 0.1627 0.04 0.84
ED_SCH 0.07 0.0378 3.46 0.06
ED_COL -0.03 0.0703 0.17 0.68
MAR_SINGLE 0.04 0.0386 0.91 0.34
MAR_MARRIED 0.11 0.0522 4.08 0.04
MAR_SEPDIVW 0.01 0.0498 0.06 0.81
EMP_UNEMP -0.02 0.0625 0.06 0.80
EMP_FULL 0.01 0.0594 0.05 0.83
EMP_PART -0.03 0.0753 0.14 0.71
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Table B.2: Logistic regression results of using available at-
tributes to predict τ = 1, current offense: Robbery.

Attribute β̂ a.s.e Wald χ 2 p-value

INTERCEPT -0.34 0.2852 1.38 0.24
TIMESERVED 0.05 0.0057 91.18 0.00
AGEREL 0.01 0.0030 19.86 0.00
CHIST 0.02 0.0055 14.11 0.00
SUPERVISION -0.04 0.0406 1.14 0.29
MALE 0.01 0.0857 0.01 0.93
RACE_WHITE -0.11 0.1604 0.47 0.49
RACE_BLACK -0.48 0.1868 6.57 0.01
ETH_HISP -0.10 0.2342 0.17 0.68
ETH_EURO -0.23 0.2232 1.02 0.31
ETH_AFRI -0.02 0.2287 0.01 0.93
ED_SCH 0.13 0.0480 6.89 0.01
ED_COL 0.09 0.1025 0.79 0.38
MAR_SINGLE -0.26 0.0467 29.98 0.00
MAR_MARRIED -0.42 0.0742 31.64 0.00
MAR_SEPDIVW -0.59 0.0785 55.88 0.00
EMP_UNEMP 0.24 0.0794 9.42 0.00
EMP_FULL 0.10 0.0773 1.66 0.20
EMP_PART 0.29 0.0917 10.34 0.00
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Table B.3: Logistic regression results of using available at-
tributes to predict τ = 1, current offense: Burglary.

Attribute β̂ a.s.e Wald χ 2 p-value

INTERCEPT 0.14 0.1987 0.49 0.48
TIMESERVED 0.04 0.0058 47.27 0.00
AGEREL 0.02 0.0019 105.93 0.00
CHIST 0.00 0.0034 0.24 0.63
SUPERVISION -0.20 0.0308 41.37 0.00
MALE -0.21 0.0743 8.19 0.00
RACE_WHITE 0.01 0.1066 0.02 0.89
RACE_BLACK -0.30 0.1415 4.45 0.03
ETH_HISP 0.09 0.1579 0.32 0.57
ETH_EURO -0.17 0.1514 1.20 0.27
ETH_AFRI -0.01 0.1686 0.01 0.94
ED_SCH 0.29 0.0353 66.29 0.00
ED_COL 0.09 0.0766 1.34 0.25
MAR_SINGLE -0.55 0.0348 252.59 0.00
MAR_MARRIED -0.58 0.0549 112.06 0.00
MAR_SEPDIVW -0.77 0.0514 222.09 0.00
EMP_UNEMP 0.11 0.0608 3.27 0.07
EMP_FULL 0.12 0.0591 4.21 0.04
EMP_PART 0.10 0.0706 1.91 0.17
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Table B.4: Logistic regression results of using available at-
tributes to predict τ = 1, current offense: Other Property.

Attribute β̂ a.s.e Wald χ 2 p-value

INTERCEPT -1.53 0.1786 72.95 0.00
TIMESERVED 0.05 0.0057 86.45 0.00
AGEREL 0.00 0.0016 2.03 0.15
CHIST 0.05 0.0030 294.21 0.00
SUPERVISION -0.26 0.0288 79.72 0.00
MALE 0.89 0.0440 411.38 0.00
RACE_WHITE -0.03 0.1056 0.07 0.79
RACE_BLACK -0.31 0.1354 5.17 0.02
ETH_HISP 0.17 0.1465 1.35 0.24
ETH_EURO -0.01 0.1384 0.01 0.93
ETH_AFRI 0.15 0.1563 0.90 0.34
ED_SCH 0.13 0.0339 14.24 0.00
ED_COL -0.31 0.0618 24.66 0.00
MAR_SINGLE -0.26 0.0324 63.97 0.00
MAR_MARRIED -0.41 0.0460 77.46 0.00
MAR_SEPDIVW -0.51 0.0437 138.32 0.00
EMP_UNEMP 0.32 0.0555 33.20 0.00
EMP_FULL 0.26 0.0534 22.88 0.00
EMP_PART 0.34 0.0670 25.82 0.00
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Table B.5: Logistic regression results of using available at-
tributes to predict τ = 1, current offense: Drug.

Attribute β̂ a.s.e Wald χ 2 p-value

INTERCEPT -2.41 0.1887 162.50 0.00
TIMESERVED 0.07 0.0054 151.19 0.00
AGEREL 0.01 0.0014 20.02 0.00
CHIST 0.09 0.0027 979.36 0.00
SUPERVISION -0.14 0.0288 22.99 0.00
MALE 0.79 0.0428 344.43 0.00
RACE_WHITE -0.10 0.1170 0.76 0.38
RACE_BLACK -0.59 0.1313 19.94 0.00
ETH_HISP -0.07 0.1526 0.21 0.65
ETH_EURO 0.12 0.1440 0.68 0.41
ETH_AFRI 0.29 0.1481 3.80 0.05
ED_SCH 0.10 0.0310 9.57 0.00
ED_COL -0.13 0.0632 4.52 0.03
MAR_SINGLE 0.11 0.0289 14.51 0.00
MAR_MARRIED -0.08 0.0434 3.43 0.06
MAR_SEPDIVW -0.12 0.0426 8.58 0.00
EMP_UNEMP 0.17 0.0519 10.86 0.00
EMP_FULL 0.19 0.0514 13.92 0.00
EMP_PART 0.07 0.0599 1.30 0.25
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Table B.6: Logistic regression results of using available at-
tributes to predict τ = 1, current offense: Other.

Attribute β̂ a.s.e Wald χ 2 p-value

INTERCEPT -2.14 0.2561 69.58 0.00
TIMESERVED 0.12 0.0074 249.25 0.00
AGEREL 0.00 0.0020 3.56 0.06
CHIST 0.08 0.0044 351.55 0.00
SUPERVISION -0.09 0.0398 4.95 0.03
MALE 0.81 0.0825 96.39 0.00
RACE_WHITE 0.03 0.1588 0.04 0.85
RACE_BLACK -0.16 0.1912 0.73 0.39
ETH_HISP 0.40 0.1955 4.13 0.04
ETH_EURO 0.10 0.1816 0.28 0.60
ETH_AFRI 0.13 0.1984 0.46 0.50
ED_SCH -0.06 0.0447 1.69 0.19
ED_COL -0.29 0.0914 9.73 0.00
MAR_SINGLE 0.07 0.0441 2.48 0.12
MAR_MARRIED -0.03 0.0602 0.19 0.67
MAR_SEPDIVW -0.11 0.0588 3.71 0.05
EMP_UNEMP 0.21 0.0747 7.76 0.01
EMP_FULL 0.25 0.0709 12.11 0.00
EMP_PART 0.22 0.0900 6.20 0.01
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Table B.7: Multiple-clock models predicting rearrest,
current offense: Violent.

Component β β̂ a.s.e Wald χ 2 p-value

1 β0 -5.575 0.324 295.21 0.00
τ β∗0 1.039 0.473 4.83 0.03
a β1 0.103 0.043 5.86 0.02
a×τ β∗1 -0.158 0.062 6.47 0.01
a loga β2 -0.031 0.009 11.36 0.00
a loga×τ β∗2 0.035 0.014 6.80 0.01
t β3 -0.074 0.059 1.56 0.21
t ×τ β∗3 -0.179 0.086 4.31 0.04
t log t β4 -0.209 0.050 17.35 0.00
t log t ×τ β∗4 0.247 0.072 11.67 0.00

Table B.8: Multiple-clock models predicting rearrest,
current offense: Robbery.

Component β β̂ a.s.e Wald χ 2 p-value

1 β0 -5.824 0.440 175.07 0.00
τ β∗0 1.226 0.621 3.89 0.05
a β1 0.112 0.062 3.25 0.07
a×τ β∗1 -0.173 0.088 3.92 0.05
a loga β2 -0.029 0.014 4.32 0.04
a loga×τ β∗2 0.037 0.020 3.55 0.06
t β3 -0.188 0.067 7.79 0.01
t ×τ β∗3 0.115 0.097 1.39 0.24
t log t β4 -0.177 0.059 9.12 0.00
t log t ×τ β∗4 -0.011 0.084 0.02 0.90
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Table B.9: Multiple-clock models predicting rearrest,
current offense: Burglary.

Component β β̂ a.s.e Wald χ 2 p-value

1 β0 -6.108 0.316 374.23 0.00
τ β∗0 0.869 0.450 3.73 0.05
a β1 0.146 0.043 11.27 0.00
a×τ β∗1 -0.133 0.062 4.57 0.03
a loga β2 -0.032 0.010 11.21 0.00
a loga×τ β∗2 0.028 0.014 4.06 0.04
t β3 -0.507 0.046 122.81 0.00
t ×τ β∗3 0.218 0.066 10.81 0.00
t log t β4 0.006 0.041 0.02 0.89
t log t ×τ β∗4 -0.082 0.059 1.94 0.16

Table B.10: Multiple-clock models predicting rearrest,
current offense: Other Property.

Component β β̂ a.s.e Wald χ 2 p-value

1 β0 -6.180 0.279 491.16 0.00
τ β∗0 1.563 0.386 16.43 0.00
a β1 0.198 0.037 28.33 0.00
a×τ β∗1 -0.251 0.051 23.95 0.00
a loga β2 -0.047 0.008 33.45 0.00
a loga×τ β∗2 0.057 0.011 25.40 0.00
t β3 -0.445 0.042 113.45 0.00
t ×τ β∗3 0.114 0.059 3.66 0.06
t log t β4 -0.014 0.037 0.15 0.70
t log t ×τ β∗4 -0.001 0.052 0.00 0.98
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Table B.11: Multiple-clock models predicting rearrest,
current offense: Drug.

Component β β̂ a.s.e Wald χ 2 p-value

1 β0 -4.194 0.235 318.15 0.00
τ β∗0 0.201 0.330 0.37 0.54
a β1 -0.066 0.031 4.61 0.03
a×τ β∗1 -0.040 0.043 0.84 0.36
a loga β2 0.009 0.007 1.86 0.17
a loga×τ β∗2 0.008 0.009 0.79 0.37
t β3 -0.244 0.036 46.80 0.00
t ×τ β∗3 0.214 0.051 17.84 0.00
t log t β4 -0.121 0.031 15.02 0.00
t log t ×τ β∗4 -0.073 0.044 2.74 0.10

Table B.12: Multiple-clock models predicting rearrest,
current offense: Other.

Component β β̂ a.s.e Wald χ 2 p-value

1 β0 -4.394 0.369 141.71 0.00
τ β∗0 -0.214 0.515 0.17 0.68
a β1 -0.010 0.049 0.04 0.84
a×τ β∗1 -0.007 0.068 0.01 0.91
a loga β2 -0.006 0.011 0.31 0.57
a loga×τ β∗2 0.003 0.015 0.04 0.85
t β3 -0.260 0.060 18.93 0.00
t ×τ β∗3 0.166 0.086 3.78 0.05
t log t β4 -0.040 0.051 0.60 0.44
t log t ×τ β∗4 -0.114 0.073 2.40 0.12
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Table B.13: Multiple-clock models predicting reconvic-
tion, current offense: Violent.

Component β β̂ a.s.e Wald χ 2 p-value

1 β0 -6.137 0.402 233.54 0.00
τ β∗0 0.680 0.606 1.26 0.26
a β1 0.129 0.053 5.85 0.02
a×τ β∗1 -0.118 0.081 2.13 0.14
a loga β2 -0.038 0.012 10.48 0.00
a loga×τ β∗2 0.026 0.018 2.12 0.15
t β3 -0.117 0.072 2.63 0.10
t ×τ β∗3 -0.032 0.107 0.09 0.76
t log t β4 -0.137 0.060 5.31 0.02
t log t ×τ β∗4 0.085 0.088 0.92 0.34

Table B.14: Multiple-clock models predicting reconvic-
tion, current offense: Robbery.

Component β β̂ a.s.e Wald χ 2 p-value

1 β0 -7.246 0.534 184.37 0.00
τ β∗0 1.533 0.774 3.92 0.05
a β1 0.243 0.075 10.41 0.00
a×τ β∗1 -0.223 0.109 4.18 0.04
a loga β2 -0.058 0.017 11.71 0.00
a loga×τ β∗2 0.048 0.024 3.85 0.05
t β3 -0.254 0.081 9.87 0.00
t ×τ β∗3 0.049 0.120 0.17 0.68
t log t β4 -0.041 0.067 0.37 0.54
t log t ×τ β∗4 -0.024 0.099 0.06 0.81
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Table B.15: Multiple-clock models predicting reconvic-
tion, current offense: Burglary.

Component β β̂ a.s.e Wald χ 2 p-value

1 β0 -7.357 0.369 397.61 0.00
τ β∗0 1.862 0.530 12.36 0.00
a β1 0.277 0.051 29.52 0.00
a×τ β∗1 -0.276 0.073 14.17 0.00
a loga β2 -0.062 0.011 30.41 0.00
a loga×τ β∗2 0.059 0.016 13.32 0.00
t β3 -0.465 0.053 77.63 0.00
t ×τ β∗3 0.196 0.078 6.31 0.01
t log t β4 0.071 0.045 2.44 0.12
t log t ×τ β∗4 -0.155 0.067 5.43 0.02

Table B.16: Multiple-clock models predicting reconvic-
tion, current offense: Other Property.

Component β β̂ a.s.e Wald χ 2 p-value

1 β0 -6.790 0.324 439.76 0.00
τ β∗0 1.284 0.452 8.07 0.00
a β1 0.238 0.043 30.09 0.00
a×τ β∗1 -0.211 0.060 12.21 0.00
a loga β2 -0.056 0.010 35.03 0.00
a loga×τ β∗2 0.048 0.013 13.00 0.00
t β3 -0.440 0.048 84.72 0.00
t ×τ β∗3 0.046 0.069 0.45 0.50
t log t β4 -0.010 0.042 0.05 0.82
t log t ×τ β∗4 0.032 0.059 0.29 0.59
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Table B.17: Multiple-clock models predicting reconvic-
tion, current offense: Drug.

Component β β̂ a.s.e Wald χ 2 p-value

1 β0 -5.155 0.285 326.08 0.00
τ β∗0 0.426 0.400 1.13 0.29
a β1 0.005 0.038 0.02 0.89
a×τ β∗1 -0.080 0.053 2.30 0.13
a loga β2 -0.007 0.008 0.69 0.41
a loga×τ β∗2 0.017 0.012 2.20 0.14
t β3 -0.277 0.043 41.59 0.00
t ×τ β∗3 0.311 0.062 25.55 0.00
t log t β4 -0.042 0.036 1.31 0.25
t log t ×τ β∗4 -0.201 0.052 15.18 0.00

Table B.18: Multiple-clock models predicting reconvic-
tion, current offense: Other.

Component β β̂ a.s.e Wald χ 2 p-value

1 β0 -5.288 0.426 154.08 0.00
τ β∗0 -0.526 0.610 0.74 0.39
a β1 0.031 0.056 0.31 0.58
a×τ β∗1 0.041 0.080 0.27 0.61
a loga β2 -0.013 0.012 1.19 0.28
a loga×τ β∗2 -0.009 0.018 0.26 0.61
t β3 -0.263 0.070 14.05 0.00
t ×τ β∗3 0.229 0.102 5.07 0.02
t log t β4 -0.034 0.059 0.34 0.56
t log t ×τ β∗4 -0.200 0.085 5.48 0.02

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 
and do not necessarily reflect the official position or policies of the U.S. Department of Justice.


	Quantifying the Specific Deterrent Effects of DNA Databases.pdf
	Acknowledgments
	Executive Summary
	Introduction
	Background
	DNA Databases
	Florida Convicted Offender Database
	Deterrence Theory
	Deterrence and DNA

	Methods
	Identification Strategy
	A Thought Experiment
	Multiple Clock Models
	Model Implications and Effect Quantification

	Estimation Strategy
	Specifying Distinct Processes
	Learning from Multiple Processes
	Implications

	Summary

	Data
	Data Source
	OBIS, Florida Department of Corrections
	CCH, Florida Department of Law Enforcement

	Cohort, Outcome, and Variable Definitions
	Univariate Trends for Key Variables

	Findings
	Inverse Probability of Treatment Weights (IPTW)
	Model Estimates
	Implied Deterrent and Probative Effects

	Conclusion
	Summary
	Limitation

	Implications for Policy and Practice

	References
	Appendices
	Mathematical Appendix
	Deriving the Information Criterion
	NSDE and NPRE Asymptotic Standard Errors

	Tables


	Text1: 
	Text4:              Avinash Bhati, PhD


