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Abstract 

Cluster analysis has often been proposed as an alternative 

to factor analysis for the reduction of binary data. However, 

a review of the clustering literature fails to reveal a method 

that is well-suited to clustering binary variables. An ideal 

clustering method for binary variables is an efficient, robust 

method that does not impose a hierarchy or disjointness on the 

solution. The method should also allow the researcher a choice of 

several different measures of association. This paper introduces 

BINCLUS, a clustering procedure incorportating all of these fea­

tures. Based on previous work on the recovery of ordinal informa­

tion from binary data, BINCLUS is a flexible, heuristically·based, 

nonhierarchical clustering method tailor-made for binary data. 

BINCLUS clusters variable~i using matrices of Goodman-Kruskal 

gammas, Pearson r's (phi's), or the quality index q (Cliff, 1979). 

The clustering solution is presented in the form of a easily 

interpreted binary cluster membership matrix. In addition, Br~CLUS 

provides a second-order solution that is especially useful when 

the first-order clusters are not clear-cut. 

The method has been applied to extensive artifical data and 

several sets of empirical responses. It is highly successful in 

identifying clusters in both artifical and real data. 
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Nonhierarchical Cluster Analysis 

with Second Order Solutions 

One jf the main goals of a multivariate analysis is the 

resolution of a large number of manifest variables into a smaller 

number of underlying ones. Often these manifest variables are 

binary, but most of the widely used data analysis methods are 

based on linear models. Such models are inappropriate, to at 

least some degree, for the analysis of binary data. This paper 

describes a methodology for accomplishing meaningful data re­

duction with binary data for which linear methods are of ques­

tionable appropriatenes$. 

A fundamental concept in multivariate methods is that 

obJ'ects or variables used to measure them can relationships among 

be described as distances among points in geometric space (Green 

& Carroll, 1976; Kruskal, 1978; Tatsuoka, 1971). For linear 

methods based upon covariances among variables, such as factor 

analysis, the nature of the hypothetical dimensions underlying 

d 1 " tl When a satisfying solution to the objects is studie cxp lCI y. 

the number and orientation of tb~ dimensions is determined, the 

b ' be examined in terms of their relationships among th~ 0 Jects can 

factor scores. These methods might be called "formal geometrical 

methods", for they produce precise solutions in geometrical terms. 

But they also make stringent assumptions about the distributions 

and metric of the variables and about the relations between 

)i 

ii 
~ 
II 
Il 
I 
J\ 

Nonhierarchical Clustering 

2 

covariance and distance in the spatial models, require many cases 

to achieve a stable statistical solution, and are limited in the 

number of objects that can be examined practically. Furthermore, 

they are restricted to studying linear relationships among the 

variables, which perhaps is not always the correct model for 

depicting psychological phenomena (Armstrong, 1967). When dis-

tributional assumptions cannot be met, when the variables of in-

terest arc not interval-level, when the number of variables is 

large relative to the number of cases, or when other than linear 

relationships might be thought to exist in the data, an alterna­

tive method may be desired. 

Such an alternative might be called an "informal geo­

metrical method", and chief among these are ~he heterogeneous 

group of techniques known as cluster analysis (Blashfield & 

Aldendcrfer, 1978; Cormack, 1971; Everitt, 1974; Hartigan, 1975; 

Sneath & Sokal, 1973; Spath, 1980). There are several nearly 

independent traditions in cluster analysis (Blashfield and 

Aldenderfer, 1978; Blashfield, 1980), and each has its own 

terminology and emphases. Our own focus is on the social science 

tradition, and that segment of it where the focus is on cluster­

ing the measures or variables~ as opposed to clustering the 

objects or E~ or individuals. Thus, in the discussion that 

follows, it is assumed that the objective of the cluster 

analysis is to group together variables that are somehow 
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behaving similarly or "measuring the same thing." The cluster­

ing of cases or individuals is a secondary consideration, and 

typically would take place subsequent to the clustering of 

variables. There is, of course, a formal duality in the data. 

Methods for clustering variables may be used to cluster cases, 

and vice versa. This does not mean that such role reversals are 

always advisable since models, measures of association or dis­

tance, etc., that are appropriate in one orientation of the data 

matrix may not be so in the other. 

In contrast to formal methods, the informal clustering 

methods simply seek a way to group variables together into a 

small number of classes, subject to the condition that all vari­

ables within a class are maximally similar to each other, but 

dissimilar to variables in other classes. Clustering methods are 

multivariate techniques in that the objects are measured on a 

number of variables. They are geometrical in that the models at 

least allude to a multidimensional framework within which the 

objects or variables are located. However, the precise nature of 

these dimensions may be a secondary matter in cluster analysis. 

Instead, these methods merely attempt to describe which variables 

are related to each other, without formally defining the under­

lying geometric model. 

It is this informality that is the strength as well as the 

weakness of cluster analysis. For instance, Fleiss and Zubin 

I 
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(1969) correctly criticized the methods for the "handicap that 

they proceed from no mathematical or statistical model whatever." 

But in many instances, realistic data do not conform to a known 

mathematical model either, especially during early stages of 

theoretical development when exploratory analyses are emphasized. 

Thus to proceed with a formal method when the data might be 

suspected ~ priori to be inappropriate seems inadvisable. As an 

example, it is known that application of a standard method of 

factor analysis to dichotomous data may produce artifactual fac­

tors (Carroll, 1961) which are correlated with item difficulty, 

particularly when the items conform to a Guttman scale (Guttman, 

1950). Although these so-called "difficulty factors" have not 

been studied extensively, they may occur in certain data because 

relationships among the variables are non-linear in the binary 

case (Bentler, 1970; Ferguson, 1941; Joreskog, 1970; McDonald, 

1969). 

In this paper we discuss further the uses of cluster 

analysis as an alternative tool for studying relationships among 

variables. We briefly review the general trends in the methods 

proposed to date. Then we describe an approach to nonhierarchical 

cluster analysis that seems especially suited for qualitative 

data of the dichotomous sort, and \'Jill further outline a simple 

method for improving the solutions via a kind of second-order 

analysis. Apparently, the idea of second-order or super-ordinate 
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solutions has not been proposed before. Throughout the dis­

cussion we will emphasize the analysis of dichotomous data, 

although the general method is by no means limited to it. How­

ever, the approach to second-order analyses depends upon utiliz­

ing dichotomous cluster membership information from the first­

order solution. Thus the ability to deal with binary responses 

is integral to the final results regardless of the character of 

the original data. 

Nature of Clustering Methods 

In order to discuss the proposed nonhierarchical method, 

it seems appropriate to provide a brief overview of other 

methods. The literature on cluster analysis is now quite exten­

sive, and has developed in at least three distinct traditions 

(Blashfield, 1980). We will not attempt to be comprehensive in 

this review, but instead will emphasize general trends which have 

implications for the current presentation. 

Elements of Cluster Analysis Models 

The general purpose of cluster analysis is to group a large 

number of variables or objects into a small number of classes. 

Overwhelmingly, these classes have been viewed as hierarchical in 

nature and non-overlapping. A biological taxonomy is the arche­

typal solution, in which objects are grouped first into species, 

then species into genera, genera into families, and so forth, even 

when the emphasis is upon variables rather than organisms. There 
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is, of course, a hierarchical tradition in the factor-analytic 

literature (e.g., Cattell, 1978). Sometimes the hierarchy is 

depicted in a tree-like structure, such that highly related vari­

ables appear as outlying branches, which in turn join larger 

branches of more general organization at successively lower 

intersections. This model has become so pervasive that hierar-

chical analysis and clustering methods are now nearly synonymous 

terms (Blashfield & Aldenderfer, 1978). 

There are other kinds of structures as well. In addition 

to hierarchical organizations, the underlying structure is some­

times viewed as not overlapping ~nd nonhierarchical. In still 

others it is taken as overlapping and nonhierarchical. In 

applications in psychology it can be argued that these latter two 

structures are perhaps more appropriate as representations of 

psychological phenomena than is a hierarchy. Take, for example, 

the classification of abnormal behavior (Strauss, Bartko & 
Carpenter, 1973), which is frequently studied by means of cluster 

analysis. Although certain aspects of psycho-pathology may be 

fruitfully characterized like a biological taxonomy, it is by no 

means clear that the entire spectrum of behavioral disorders is 

organized in a hierarchy. So it is surprising that other models 

such as nonhierarchical approaches with overlapping classes have 

not seen wider application. 

-~--~ 
------

--,----
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Measures of Association 

Another component of clustering methods concerns the index 

of association chosen to represent similarity between the vari­

ables. Many indices have been tried (Lorr, 1976), but some are 

more frequently used than others. The popular alternatives are 

Euclidean distance and Pearson correlation, the former because it 

incorporates all the information in profile data (Cronbach & 

GIeser, 1953), the latter because it is ubiquitous in psycho­

logical research. In factor analysis, vector product indices 

like the correlation are most frequently employed because the 

model is itself a vector d pro uct type, and many procedures must 

begin with a Grammian matrix of proximity values. But in cluster 

analysis, no single association index appear~ to be as theoret­

ically compelling as the correlation is in factor analysis. 

Several thoughtful papers have discussed the implications 

of various association indices in the t f con ext 0 cluster analysis 

(Everitt, 1974; Fleiss & Zubin, 1969; Lorr, 1976). These writers 

correctly warn that the type of index used can have a major 

effect on the relationships which the analysis portrays. Most of 

these discussions assume that the data are scaled as ordinal or 

interval level variables. In the psychological literature, it 

seems that little regard has been paid to the matter of qualita­

tive data, especially binary variables. Most of the common 

association indices were developed for other types of variables, 

and their application to ordinal dichotomous data, though 
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mathematically possible, has remained conceptually clouded at 

best (Carroll, 1961). This is unfortunate, for dichotomous 

ratings, such as test item scores and the like, are a fundamental 

source of information in the behavioral sciences. Ratings of 

this type have been used to describe such diverse aspects of 

behavior as the presence of a personality trait, the observation 

of a particular behavior in school, or a juvenile delinquent's 

arrest for a certain offense. 

~lustering Algorithms 

The third major aspect of cluster analysis is the algorithm. 

Blashfield and Aldenderfer (1978) identified two major approaches 

to cluster analysis algorithms, namely the agglomerative methods 

and the iterative partitioning methods. (The former is the 

classical approach that begins with individrial objects and 

gradually joins them together into classes.) One type of parti­

tioning method is hierarchical division. This method begins with 

the entire set of objects as a single cluster, which is then 

broken down into successively smaller clusters. The iterative 

partitioning methods start with a predetermined set of clusters, 

and then in a cyclic fashion attempt to re-assign objects to 

other clusters, thereby maximizing a global measure of cluster 

homogeneity. 

There are several operational approaches to calculating the 

similarity of an object with the members already in the cluster. 

Single linkage methods define the similarity of an object to a 



Nonhierarchical Clustering 
9 

cluster as the distance between the object and the closest 

member. Complete linkage uses the distance between the object 

and the farthest member. Average linkage uses the arithmetic 

mean (or some other suitable average) of the distances between 

an object and all the other members of the cluster. 

Blashfield and Aldenderfer (1978) reported that about 75% 

of the studies they reviewed in recent literature used a hier­

archical agglomerative method. They suggested three reasons for 

the popularity of these methods: (1) hierarchical agglomerative 

methods have been available the longest; (2) researchers tend to 

use what has been previously used in their fields; (3) from 

recent empirical studies, more is known of these methods than 

any others. Unfortunately, none of these reasons is based upon 

a theoretical property of the hierarchical agglomerative model. 

Ambiguities of Cluster Analysis 

A major problem in cluster analysis concerns the decisions 

of the "correct" number of clusters in a sample of data. 

Inevitably, this is a trial-and-error process, with the outcome 

generally decided by the solution that appears most satisfactory 

to the individual researcher. The same kind of warnings 

applicable to the number of factors problem in factor analysis 

are also applicable here (Armstrong & Soelberg, 1968). Recently, 

investigators have begun to consider objective procedures for 

deciding the correct number of clusters in a hierarchical 

solution (i.e., Wainer & Schacht, 1978; McCormick, Cudeck, Cliff, 

Nonhierarchical Clustering-
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and Reynolds, Note 1) but thus far no objective guideline has 

found wide acceptance. 

A second difficulty of clustering methods concerns identify­

lng the final members of a cluster. As clusters are constructed, 

members added at early stages may sometimes turn out to be 

located on the periphery of the group defined at the final solu-

tion, and the composite may be cleaner if some initial members are 

deleted. Another facet of this problem concerns the decision of 

when to stop adding members to a cluster. Ideally, the index of 

within-cluster homogeneity will show a sharp decrease as elements 

from other clusters are added. With real data, however, the index 

of within-cluster homogeneity frequently does not show an abrupt 

change in value as non-members enter. No objective procedures to 

solve this problem have been forthcoming. 

A third ambiguity has to do with selecting starting elements 

for those algorithms which depend upon them. Many iterative 

procedures are sensitive to the starting configuration. To the 

extent that the final groups differ according to the initial set 

of starting elements, the clustering method will be unsatisfactory. 

The Ideal Method 

The sections above present what appear to be the principle 

issues in cluster analysis. From all this one can summarize the 

desirable properties a clustering method might have. For one 

thing, the procedure should be tailored to fit the substantive 

nature of the data under examination, i.e., it should be 
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1 h those properties are 
hierarchical, disjoint, etc. on y w en 

Th is stipulation may seem obvious 
felt to characterize the data. 

have been discussed very 
at first glance, but it does not seem to 

often. of associa:ion chosen should reflect 
Second, the index 

h data which arise in a particular 
the special nature of t e 

context. 
This means that the standard correlation or distance 

at tl'mes be critically examined, and perhaps re­
measure should 

placed by another that is more appropriate. 
Third, one would 

robust over starting configurations, and 
seek a method that is 

that will provide 

Fourth, it should 

a means for detecting cluster boundaries. 

be relatively efficient computationally. 

inally, because much psychological data are dichotomous, 
the 

ideal method should be applicable to such i~formation. 

A GeneTal Procedure for Nonhierarchical Clustering 

The present research was undertaken with the idea that 

available clustering methods were not well-suited to the data of 

primary interest to us. 
These data consist of dichotomous 

. . to group the variables together 
responses and the objectIve IS 

into homogeneous subsets. 
Of course the method should generalize 

to other sorts of data, but this is not a primary motivation. 

some later stage, be assigned 
In our data, the persons ma~ at 

scores on the scales defined by the subsets of variables, but this 

is a secondary consideration. 
The subsets need not be distinct, 

d they need not be hierarchical, 
although this is desirable an 

although it would be interesting if the solution indicated this. 

1 
; 
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In our approach, the general cluster analysis problem is one of 

identifying subsets of homogeneous items, rather than outlining 

a pure taxonomy in the traditional sense. 

A clustering method has, then, three major aspects: an 

assumption concerning the type of structure, a method of measur­

ing similarity, and an algorithm for assigning elements to 

clusters. All three of these are interrelated. Our goal here 

was to develop a method that is specifically tailored to the 

clustering of test or questionnaire items to which the responses 

are typically binary. The idea is to group into the same cluster 

those items that seem to measure the same underlying variable, an 

intent similar in many respects to factor analysis. Such 

clusters are sometimes felt to be overlapping, so the clusters 

need not be hierarchical or even disjoint, although this result 

could occur. Furthermore, most available indices of association 

have various defects when applied to binary data, so the present 

method is based on indices that are especially appropriate with 

dichotomous information. Finally, the assignment method should 

be effective and robust to error and starting position. The 

proceduTe discussed herein, termed BINCLUS, is a heuristically 

based method that is felt to have these features. 

Association Indices 

It seems intuitively obvious that as characteristics of the 

data to be analyzed vary, the type of association index used 

should change also. In most discussions of correlational methods 
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there is some consideration of the wide variety of association 

indices that are available and their properties. When the data 

are dichotomous the matter of an appropriate index is all the 

more important. In cluster analysis, the association index must 

serve the dual function of describing relationships between vari­

ables and describing within-cluster homogeneity during the anal­

ysis. This suggests the possibility that an index may be satis­

factory as a measure of association between variables, while not 

optimum for describing within-cluster homogeneity. For example, 

the Kuder-Richardson 20 formula may increase monotonically with 

additional items, even if the average item covariance declines. 

Therefore, one may question its use in the second capacity. 

Recently Cliff (1979) outlined a family of indices for 

assessing the qUality of a set of dichotomous items which seems 

promising in the context of cluster analysis. These indices are 

based upon the ordinal information available in pairs of dichoto­

mous items. For the sake of illustration, consider a situation 

where two persons, A and B, are administered a test consisting of 

only two items. Furthermore, suppose that A received a score of 

1 (i.e., correct) and B a score of 0 on the first item. If A and 

B again receive scores of 1 and 0, respectively, on the second 

item, then the information provided by the second item is 

redundant, because the rank order it suggests for A and B is the 

same as that provided by the first item. However, if the scores 

earned by A and B are opposite on the second item, that is, A 

Nonhierarchical Clustering 
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receives a 0 and B receives a 1, the ordering information pro­

vided by the second item is contradictory to that provided by the 

first. Finally, consider a slightly different situation where 

both obtain the same score on the first item and differ only on 

the second item say both A and B get the first item correct, 

but only A obtains a 1 on the second item. In this case the 

second item contributes unique information, namely that A's 

performance is better than B's. Sometimes no ordering informa­

tion is provided by a pair of items, for example when both A and 

B receive scores of 1 on both questions. In principle it is pos-

sible to consider all pairs of persons and pairs of items, and for each 

pair of items, find the number of person-person order relations 

of each type. In practice, this would be difficult if there were 

more than a few persons, bl,t this is not necessary. It turns out 

that the number of relations of each kind with regard to items j 

and k can be deduced from the 2x2 table of responses to items j 

and k (Cliff, 1979; Cliff and Reynolds, Note 2). 

We use r jk , ujk ' and c jk to denote the number of relations 

that are redundant, unique and contradictory in a pair of items, 

respectively. We let Pj and qj denote the percentage of persons 

passing or failing an item, respectively. (Note that u
jk 

r u
kj 

unless Pjqj = Pkqk') Also, we let r .. , u .. and c .. refer to the 

total number of relations of the three types on a whOle collection 

of items for a sample of individuals. 

It turns out that most of the well-known indices of 



I! 
I 

Nonhierarchica1 Clustering 
15 

association can be expressed as a function of the redundant, 
I 
unique and contradictory order information in a set of items. The 

critical differences between associatiwn indices most often are 

expressed in the way they utilize the unique information. In a 

recent paper, Cliff and Reynolds (Note 2) discuss these matters in 

detail, comparing the properties of many alternatives, and 

presenting a group of association measures called quality indices 

which use the thre0 types of information in various weighted com-

binations. 

~lgorithm for the Primary Solutio~ 

As currently implemented, BINCLUS employs any of several 

different indices based on these quantities as the measure of 

c1uster-be10ngingness. One of the simplest is the Goodman-Kruska1 

y ( Goodman & Kruska1, 1954), which in these terms is 

r jk -c jk 
Yjk= r jk +c jk 

The major emphasis, however, is on the family of quality indices 

discussed by Cliff & Reynolds (Note 2) and Cliff (1979). These 

are defined in terms of a linear combination, t jk , of the T jk , 

u'
k 

and c
J
'
k 

as compared to bench mark values for the combination. 
J 

We define 

t
J
' k = w r'k + w c' k + w (u' k + uk') r J c J u J. J 

In a quality index, a very common statistical concept, the value 

of a quantity is compared to best tb and worst tw possible values. 

The quality index between the two items is 

-t 
w 
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Here, the "best" value, t b , is the value tjk would have if items 

j and k were a perfect Guttman scale, while the "worst" value, 

t w' is the value tjk would have if the two items were completely 

independent. In both cases, the marginal proportions are held 

fixed at the observed values. 

While the program will accept any combination of weights, 

a priori considerations and preliminary experimentation (McCormick, 

et a1., Note 1) has led to focussing on w = 1.0; w = -1.0; r c 
wu = .25. This form of q rewards consistency (w r = 1.0), punishes 

contradiction (wc = -1.0) and encourages the use of items that are 

different difficulty (w = .25) to form the cluster, rather than u 

penalizing differences in difficulty as the phi coefficient and 

KR20 do. However, any other set of weights can also be used in q. 

In addition to Y and the quality indices, the program also 

will use the Pearson r (phi coefficient) as the basis for 

clustering, and indeed a wide variety of indices based on r .. , 

u.. and c.. . 

Algorithm for the Primary Solution 

The program uses the average proximity (average linkage) 

concept as the basis for constructing clusters, but with some 

variations that are felt to make it more effective for binary data. 

The measure of association can be selected from several alternatives, 



Nonhierarchical Clustering 
17 

namely phi, y, KR 20 , or some form of q as described above. 

cluster C has v members then the v + 1st member is that one 

If 

which has the highest average proximity to its current members. 

Let hkc be the proximity of item k to cluster C, and h'k is the 
J 

proximity of k to j where j is one of the items already in cluster 

C; then no restriction of disjointness is placed on the assignment 
v 

h = 1 ~ h 
kc v' J'k (1) J=l 

The procedure takes place exactly in this fashion in the 

case of phi (r), but an additional variation takes place in the 

case of y and q so as to make the process more robust for these 

indices. Due to the variations in the amount of information 

shared by a pair of binary items, the index, can be substantially 

affected by a few responses if the two items differ in difficulty 

or popularity. For example, in relating a .90-.10 item to a 

.10-.90 item, the percentage of individuals who both score 1 on 

the items can vary only from 0.00 to .10, and is .09 if the items 

are independent. Thus some values of y or q are based on less 

information than others. The approach that is taken here is not 

to average the values of the indices directly, but to average the 

numerator and denominators separately. Let n jk and djk be the 

numerator and denominator, respectively, of hjk . Then, the actual 

form of hkc that is used in the case of y and q is 

v 
I:n jk , j=l hkc = (2) 
v 
I:d jk 

j=l 

-~~~---~ 
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Thus the proximity is less l'nfluenced b y indices that are based 
on small amounts of information. 

The user can select a subset of items that are to be the 

nuclei of the clusters, b'lt the defaUlt is that all items begin a 

cluster. Then the program takes each cluster in turn and adds to 

it the item that has the maximum 1 f h ' va ue 0 kc or hkc ' There is 
no requirement of disJ'ointness, but each tI'me an item has been 

added to all clusters, the memberships are tested and any that are 

identical are merged for bookkeeping purposes, and the fact that 

they merged is recorded. Items are added to each cluster until 

Some form of stopping rule decided upon by the user is satisfied. 

Two matrices summarize the information about each cluster. 

One is the membership matrix M. Assuming that each of the p items 

starts a cluster, M is p-by-p Whose element m. 
JC is the identifying 

number of the jth item to enter cluster C. The other matrix, H, 
is also p-by-p, an~ h, is the value of the proximity index when JC 
the l th member was added to cluster C. 

An example using q as the proximity measure will clarify this 

porcedure. Table 1 contains n jk , djk and qjk' In Table 2 the 
membership martix M is shown for the clusters based upon the data 
in Table 1. Also shown is the H matrix which records the values 

of the item cluster index as each item is added. Consider cluster 

1. As can be seen in the table, the item that produces the largest 

q when added to item 1 is number 4, where 68 q4l =. . Thus mZ1 = 4 
and h21 = .68. 
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Insert Table 1 and 2 about here 

To find the third variable for this cluster, we search all 
I 

pairs of items for the highest hkc ' 

m31 = 

This is given by item 7: 

I 

h7l = 

7 , h31 = 

The fourth 

n 7l + n 74 164.3 203.6 + = = .436 d71 + d74 445.7 + 398.0 

.44 are recorded in matrices M and H. 

variable was found to be number 3, because 

= -38.4 + 113.0 + (-46.8) = 
296.0 + 426.2 + 237.9 

I 

.029 

is the largest third-level hkc for the first cluster. These data 

are recorded as m4l = 3 and h41 = .03. Additional variables are 

added to each cluster by continuing the sequence for all available 

objects, or until some sufficiently small value for htc has been 

recorded. 

As can be seen in the first cluster, adding a fourth member 

produces a large drop in the within-cluster homogeneity index. 

This drop signifies that the objects that are most closely related 

in the cluster have been added, and that only those which are 

located farther away, presumably non-members, are left. However, 

it frequently happens in real data that no large gap between 

adjacent values will occur. In these cases, it is still possible 

to define the cluster members by using a somewhat srbitrary 

solution-wide cutoff point, co' which can be used to distinguish 

I 
! 

·1 

I 
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the cluster boundaries. In the present artificial example, a 

value around .44 would serve. This gives the same three members 

to clusters 1, 4, and 7 and the same four t 2 3 6 o , , ,and 8. 
Cluster 5 would be a singlet. 

The procedure sketched above was found to be very effective 

at identifying clusters when true dl'sJ'ol'nt 1 t . c us ers eXIst, even 

when the data have a substantial amount of error (McCormick, et aI, 

Note 1). 

Permuting the Clusters 

The primary clustering solution is essentially complete at 

this stage, but with re 1 d t h a a ate relationships among the clusters 

may not be obvious. In the present example several clusters con-

tain identical members. The most satisfactory solutions are those 

where all elements of a cluster "pick each other" like this. Ho\\'-

ever, in many instances with real data there turn out to be a num­

ber of clusters that are similar but not quite identical. In 

order to clarify further the nature of the clusters, we use the 

information in Hand M to produce a f' 1 I Ina custer membership matrix 

B, where bjc = 1 if hjc > Co and bjc = 0 otherwise. (It is possible 

to set different cutoff values for different clusters, i.e., have 

coc instead of co' either in order to allow for a priori notions 

about cluster homogeneity of as a result of inspection of the h. 
J c ' 

e.g., ending clusters where large gaps indicate the apparent boundaries 

of clust~rs.) The matrix B for the sample data is shown in the upper 
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section of Table 3, when Co is set at .48, a natural "break" in 

the index values. Note that in the table the rows are defined in 

terms of the original order for the items and the structure is not 

very obvious. 

Then to present a more visually useful form of the relation-

ship among the clusters, the rows and columns of B are permuted so 

as to make similar ones adjacent. A variety of possible approaches 

to this are possible (see Wilkinson, Note 3 for an approach dif­

ferent from the one used here), and the present approach is a form 

of nearest neighbor ordering based on y. It is similar in concept 

to the seriation procedure of Gelfand (1971). The y's are com­

puted among all pairs of rows of B, and the two having the largest 

value are placed next to each other. Call one the left member (1) 

and the other right (r). This is a two-member chain. Then, the 

one of the remaining p 2 that is closest to r is found, and it is 

placed to the right of r unless it has a higher y with 1, in which 

case it is put to the left of 1. In either case, this new member 

becomes one of the ends of the chain of three rows. Then, one of 

the p - 3 non-member rows is added to one end or the other of 

the chain in the same way. The process continues, adding rows to 

the ends of the chain until all the rows have been ordered. Then 

the process is repeated for columns. The process can be quite 

effective in arranging the data into a visually compelling form, 

as can be s,een in Table 3 where this procedure has placed together 

the clusters with identical members (columnwiBe) and the items 

:1 

H 
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with identical cluster memberships (rows). 

Insert Table 3 about here 

Here the nature of the two cluster solution is clearly 

visible. It is also apparent that the fifth item is a maverick, 

essentially independent of the other items, at least using .44 as 

the membership cutoff. This solutio~ in fact,perfectly recovers 

the true relationships among the objects, which were constructed 

to have just this one cluster of four elements, a second cluster 

of three, and one Singleton, although as can be seen from Table 1 

there was considerable nOl·se. Wh h 1 en t e c usters are disjoint or 

nearly so, as they are in Table 3, the permuted pattern in B will 

assume a diagonal block appearance. It will have sections down 

the diagonal with l's and sections in the off-diagonal with O's. 

The blocks of l's represent subsets f th b" h o e 0 ]ects t at jOintly 
select each other. 

Second-order Solutions 

Even with permutations of B designed to enhance the appear­

ance of the clusters, many sOlutions are difficult to interpret. 

Sometimes the results display a rough block-diagonal pattern, but 

in many instances even these clusters can have "ragged" edges and 

can be difficult to understand. The permuted patterns can be 

vague enough to make final conclusions very tentative, 
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particularly when it is difficult to decide on a cutoff value. 

It is sometimes, then, helpful to perform a second-order 

analysis of the permuted information in B. In a second-order 

analysis, B is treated as a data matrix and itself clustered. 

The first cluster analysis usually will reveal that some vari­

ables are not clustered with any others in the data set. Item 5 

in the example is of this kind. Before a second-order analysis 

is carried out, such objects can be deleted since it is known 

that they are unrelated to the rest of the set. The second-order 

analysis can then proceed with the number of elements reduced by 

the number of singletons in the first analysis. 

The "variables" in the second-order analysis are no longer 

the original items, but rather are the clusters obtained from the 

first analysis. Inasmuch as the reduced form of B will be the in­

put data for the analysis, the index of association chosen is 

always selected from among those suitable for binary information. 

We believe y is best since it is not sensitive to difficulty. 

Then the same steps outlined above for a first-order analysis are 

repeated. Typically, the second-order analysis very clearly 

reveals which clusters are associated. In the first-order 

analysis, B is items-by-clusters, and a 1 denotes a row element 

that was selected by the cluster of the column. In a second-order 

analysis, the corresponding matrix of binary relations, B*, con­

tains information about clusters-by-superclusters. 

The B* corresponding to the two unique super-clusters of the 

second-order analysis of the data shown in Table 3 is presented in I 
I 
I 
! 

I 
I 

U 
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the upper section of Table 4. Again, these results are 

interpreted as meaning that clusters 2, 3, 6, and 8 are all in 

the first super-cluster, while clusters 1, 4 and 7 are in the 

second. 

Insert Table 4 about here 

The final step is to relate the original objects to the 

structure of the super-clusters in B*. One approach to this is 

to construct a matrix P, with Pij equal to the percentage of 

clusters in super-cluster j in which object i was a member. More 

explicitly, we write 

P = B B* E- l , 
where 

E = diag (B*' B*) 

Applications 

BINCLUS has evolved over some period of time and several 

forms of it have been used in empirical studies. The artificial 

data studies of McCormick, et al. (Note 2) employed the basic 

procedures using indices of binary association to try to isolate 

clusters. The basic finding was that the method would identify 

clusters with high accuracy when a true disjoint cluster struc­

ture existed, including the identification of singletons, even 

when the amount of noise in th~ data was large. Studies using a 

variety of empirical response matrices have borne out McCormick , 
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et al. 's conclusions and have demonstrated the resistance of the 

method to difficulty artifacts provided an appropriate measure 

of correlation is used. 

The empirical study of adjective checklist data by Zatkin, 

Cudeck, McCormick, and Cliff (Note 4) applied BINCLUS methods to 

data from a list of adjectives used to describe mothers of chil­

dren at risk. This was the first study to employ the second­

order aspect of the procedure. The first-order results for that 

study gave a large number of clusters, many of which were highly 

overlapping. The second-order procedure was quite successful in 

amalgamating these into a smaller number of relatively clear 

clusters. In that study, the results were compared to those from 

a number of widely used hierarchical clustering methods. 

Cudeck, Cliff, Collins, and McCormick (Note 5) applied the 

methods to the cTiminal records of a large cohort of men, finding 

a situation somewhat similar to that of adjectives. That is, the 

primary solution gave a rather large number of fuzzy, overlapping 

clusters of crimes, whereas the second-order procedure was quite 

successful in amalgamating these into a small number of rather 

large, clear clusters. There was also a factor analysis of the 

same data, and the factor results were quite similar to the 

clustering. This was the fir~t study to employ the re-ordering 

procedure that clarifies graphically the nature of the cluster 

structure. 

One example of the utility of BINCLUS as a data-reduction 

--~~~ -- - - --
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tool is the following analysis of binary indicators of social 

deviance. The items are primarily factual questions concerning 

the family background of the individual or descriptive items 

concerning the relationships among members of the family. The sub­

jects were 265 of the individuals from the cohort of 9125 consecu­

tive persons born at the Rigshospitalet, Copenhagen, 1959-61. The 

items are based on in~erviews of the individual and their parents 

in 1972 (For a fuller description see Gabrielli and Mednick (1980)). 

The data were made available by W. F. Gabrielli. 

The results of a first-order BINCLUS analysis are given in 

Table 5, along with brief identifying phrases. The clustering, 

done on the basis of Goodman-Kruskal gammas between the items, 

results in a quite clear and striking cluster structure. In the 

upper left is a large cluster of items that ~ight be called 

"broken-home" items, various types of departure from a stable 

two-parent family, along with various circumstances likely to be 

correlated with this. There is a second fair-sized cluster in 

the lower 

Insert Table 5 about here 

right; this consists entirely of items related to the father not 

having a normal, healthy role in the family constellation. There 

are also several small clusters that involve pairs an~ triplets 

of items that seem logically related. 
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The structure of the results seems quite clear, but the 

cluster membership matrix in Table 5 is typical of other results 

in that there is a certain amount of fuzziness in the clusters, a 

core of items that are consistently members of all the clusters 

along with some less consIstent ones. That is, the borders of 

the clusters are usually diffuse. Sometimes the clusters overlap, 

but more often there is a blurring of the distinction between 

cluster members and singletons, rather like the variation in 

communalities of variables in a factor analysis. 

Under these circumstances a second-order analysis can 

clarify the solution. Table 6 contains the second-order cluster 

membership matriA and the P matrix for these data. As a result of 

the second-order analysis it becomes much easier to see the contri­

bution of various items to the clusters. Super-cluster I re­

ceives strong contributions from "family constellation": items; 

Superclusters 2 and 3, almost identical, seem to reflect home 

atmosphere and parental attitudes; Supercluster 4 is the "father's 

problems" items; and the small Supercluster 5 is a "mother 

employed fulltime" cluster. There is almost no overlap between 

the superclusters except for the two that are nearly identical. 

This kind of a result is typical of data where there seems to be 

a reasonable structure. 

Insert Table 6 about here 
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Factor analysis of these data resulted in a much less sub­

stantively compelling solution. Although the first factor con­

tained many of the same items as the "family constellation" 

cluster, only the items of moderate frequency of endorsement, i.e. 

between .4 and .6, had substantial loadings. In fact, loadings 

on the first rotated factor correlate .77 with frequency of en­

dorsement, and the remaining factors are very small ones. BINCLUS 

analysis performed on a phi coefficient matrix yielded results 

similar to the factor analysis, leaving 19 items as singletons, 

as opposed to the 4 singletons left by the gamma solution. It 

seems that in this case when phi coefficients are used, frequency 

acts to break apart variables that may reflect the same underlying 
dimension. 

Another example of the use of BINCLUS on test data is its 

application to some mathematl'cs t t . 'd 
es Items provl ed by Wise (see 

W' N ,,1 
Ise, ote 6;. The results of the analyses are quite clear, 

identifying two major clusters and two items that overlap both. 

The clusters have a clear interpretation in terms of item content, 

as shown in Table 7. Super-cluster 1, including items 1-12, con­

tains items tapping basic addition and subtraction and some 

relatively complex operations inVOlving signed numbers. Super­

cluster 2, including items 11-16, taps advanced addition involv­

ing signed numbers. 

Two slightly different BINCLUS analyses performed on these 

data using gamma coefficients illustrate the effect that changing 
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the cutpoint Co can have on a clustering solution. 

Tables 7 and 8 contain the clustering solution using a cutpoint 

of .90; Tables 9 and 10 show the solution resulting from a very 

stringent cutpoint of .95 (the items are highly consistent). The 

higher cutpoint results in homogeneous clusters with very little 

between-cluster overlap. However, with this stringent cutpoint 

the P- matrix indicates that items 8 and 9 have relatively little 

identity with the first super-cluster and perhaps should be 

eliminated. On the other hand, the .90 solution results in 

slightly more heterogeneous clusters with considerably more over­

lap between them. Items 8 ann 9 are now members of every cluster 

in Super-cluster 1. 

The stimulus configuration derived from a multidimensional 

scaling analysis of the gamma matrix, shown in Figure 1, provides 

a graphical representation of the effect that changing cutpoint 

has on the cluster structure of these terms. Items 1-7 and 10 

appear close together on the right side of the figure, with items 

8 and 9 spread out toward the lower right. The .95 cutpoint 

forms two small homogeneous clusters, and items 8 and 9 are too 

distant from cluster 1 to belong in this solution. When the cut­

point is lowered to .90, i.e. more within-cluster heterogeneity 

is allowed, the size of the clusters is increased, and items 8, 

9, 11, and 12 are all included in cluster 1. 

Both factor analysis of these data (Wise, 1981) and BINCLUS 

analysis using phi coefficients as the measure of relationship 
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developed methods which have an explicit model for dichotomous 

responses (Christoffersson, 1975; Muthen, 1978) are practically 

limited in the number of variables they can treat, or require 

inordinate numbers of subjects for statistical estimation. 

Traditional approaches for item analysis can be applied once 

likely subsets have been defined, and factor analysis can be u~ed 

to examine further the structure of the composite variables. But 

most popular methods for extracting subsets of items (Burisch, 

1978; Hase & Goldberg, 1967) are not convincing with realistic 

data sets. This is all the more true when little previous work 

is available to guide the analysis, or when structural information 

among the items is desired. The present version of nonhierarchi­

cal clustering seems promising in this context, as witness the 

successful application by Zatkin, et al. (Note 4), Cudeck et al. 

(Note 5), and the biographical information and math examples de­

scribed above. 

A related problem to which this method may be applied con­

cerns the issue of data reduction. Many prospective studies or 

other large-scale investigations collect massive amounts of 

information which is frequently qualitative or binary. Before a 

standard multivariate technique can be used to study relationships 

in the data, some method for reducing the information to a more 

manageable form must be undertaken. Often this is done on a 

rational basis which is arbitrary and prone to bias. Lorr (1976) 

among others has suggested cluster analysis for this purpose. 
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yield solutions where items 1-9 and items 11-16 form separate 

clusters, leaving item 10 as a singleton. Thus, the analyses 

using gamma and the analyses using phi coefficients are not in 

serious disagreement except in their treatment of item 10. That 

item 10 should be controversial is not surprising -- it has by far 

the most extreme difficulty of the item set. It seems likely that 

its failure to cluster with other items of more moderate dif-

ficulty when phi is used as the measure of relationship is 

attributable to a difficulty artifact. Since BINCLUS does not re­

quire the use of phi coefficients it was able to produce a cluster 

solution u.'affected by difficul ty. 

A number of other studies are underway or contemplated, and 

doubtless the method will continue to evolve. 

Discussion 

To a certain extent, the utility of a method can be measured 

by the variety of applications for which it is appropriate. Thus 

it is appropriate to discuss the kinds of problems with which 

this scheme for nonhierarchical cluster analysis might be used. 

The first is one which is frequently found in psychology, namely 

constructing homogeneous sets of items from a heterogeneous pool, 

a problem that Napior (1972) terms multidimensional item 

analysIs. It is becoming clear that the machinery of factor analy­

sis, generally appropriate for this kind of problem when the data 

consist of continuous variables, is unsatisfactory with 

dichotomous items (Nunnally, 1967, Chapt. 8). Other recently 
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developed methods which have an explicit model for dichotomous 

responses (Christoffersson, 1975; Muthen, 1978) are practically 

limited in the number of variables they can treat, or require 

inordinate numbers of subjects for statistical estimation. 

Traditional approaches for item analysis can be applied once 

likely subsets have been defined, and factor analysis can be used 

to examine further the structure of the composite variables. But 

most popular methods for extracting subsets of items (Burisch, 

1978; Hase & Goldberg, 1967) are not convincing with realistic 

data sets. This is all the more true when little previous work 

is available to guide the analysis, or when structural information 

among the items is desired. The present version of nonhierarchi­

cal clustering seems promising in this context, as witness the 

sucr~ssful application by Zatkin, et al, (Note 4), Cudeck et al, 

(Note 5), and the biographical information and math examples de­

scribed above. 

A related problem to which this method may be applied con­

cerns the issue of data reduction. Many prospective studies or 

other large-scale investigations collect massive amounts of 

information which is frequently qualitative or binary. Before a 

standard multivariate technique can be used to study rel.ationships 

in the data, some method for reducing the information to a more 

manageable form must be undertaken. Often this is done on a 

rational basis which is arbitrary and prone to bias. Lorr (1976) 

among others has suggested cluster analysis for this purpose. 
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But as has been noted the most frequent kind of cluster analysis 

used is a hierarchical method, and in this context hierarchies 

are not generally expected, at least in the sense that hierarchy 

is meant in the cluster literature. On the other hand, tasks or 

items that arrange themselves in hierarchies -- as this term is 

used in the educational literature, e.g. Bart (Note 7) -- are 

eminently suited for analysis by these methods and indeed it 

was they that we have had In mind from the beginning. A non­

hierarchical method with a provision for treating binary data 

seems well-suited for this problem. No prior information about 

the data is required, and so it is attractive in exploratory 

studies. Furthermore, it is efficient for a first pass through 

the data when information about possible subsets is desired. 

Another source of potential application~ are exploratory 

investigations which study structural aspects among objects with­

out the benefit of a guiding hypothesis. It seems ill-advised 

to use a hierarchical clustering method if the structure itself 

is at issue since these methods always find a hierarchy. 

Similarly, it seems inappropriate to use a method which produces 

disjoint clusters if it is not hypothesized that such a structure 

is optimal for the data. Since a large percentage of investiga­

tions of this kind are exploratory in nature, it is important 

that a clustering method be selected that does not force a struc­

ture on the dat~ before it is reasonable to do so. 

In each of these kinds of applications, the idea of second­

order solutions can be useful. Certainly in the case of data 
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reduction, a higher-order analysis would be valuable as a means 

of synthesizing findings from a complex analysis. Likewise in 

problems of multidimensional item analysis a second-order solu­

tion would reveal the extent to which the clusters overlap. This 

information would be useful in judging convergent or divergent 

association among scales defined by the clusters. Normally one 

assesses convergence or divergence at the level of aggregated 

quantitative variables. But a second-order clustering solution 

would provide this kind of information at the item level. 

The method described here runs counter to current trends in 

psychometrics in that it is a collection of heuristics rather 

than a monolithic algorithm guaranteed to optimize some objective 

function such as maximum likelihood or some form of least squares. 

Two lines of defense are offered, one pragmatic and one philosoph­

ical. The pragmatic one is that the procedure has worked. 

MCCormick, et a1. (Note 2) found that even wi thout the addi t ion of 

the permutational and second-order features, it worked very well 

identifying clusters and separating them from singletons unless 

the data were very noisy. The permutation and second-order 

analyses were added when the method was applied to real data. It 

was found that the outlines of the clusters tended to be fuzzy 

and these procedures sharpened the definition of them. On the 

basis of the study by Milligan (1981), and the comparisons in 

Zatkin, et a1. (Note 4), it appears unlikely that any other 

clustering procedure would work as well. 
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The philosophical defense has to do with the place of the 

objective function in data-fitting. As has been stated for many 

years (Guttman, 1971; Cliff, 1981), the solution one finds is 

influenced to a greater or lesser degree by the objective function 

that is tailored to the type of data analyzed. The clustering 

procedure is of the stepwise variety, adding the "currently best" 

item to the cluster. Although there is no guarantee that this 

will result in clusters which have the greatest possible homo­

geneity, it seems likely that this is hardly possible short of 

trying all possible combinations of items of each cluster size, 

i.e., 2P clusters. Since 260 = 1.1SE18, this is impractical for 

any moderately large set of data. Thus we use a heuristic method 

here for reasons of economy. However, we attempt to make the 

process robust but using all possible (or at least very many) 

starting places. 

Operating in conjunction with the provision, based on ex­

perience and beliefs concerning our sorts of data, that the 

clusters are not disjoint, the multiple starting positions tends 

to lead to numerous similar but non-identical clusters. Two 

heuristic methods of "purifying" the clusters are then added that 

attempt to cluster the clusters. The purpose of the first one is 

mainly graphical. It uses an ordering function to group the 

clusters into block-diagonal form, insofar as this is possible. 

Again, the basis of the procedure is heuristic. It is primarily 

an ordering procedure, and there is no guarantee that it finds 

~ - ~----
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the best possible order, but it should be effective unless the 

data are highly noisy or somehow perverse. The second-order 

analysis has also a heuristic basis in the belief that the 

binary cluster-membership matrix can be meaningfully simplified 

by the application of the clustering procedure to it, using y as 

the index of proximity, again. In their defense, it is asserted 

that the heuristics forming the basis for these procedures are 

intuitively sound and therefore preferable to more elegant 

methods that are rooted in more arbitrary objective functions. 

The method runs counter to current trends in another way 

also. It assumes the intervention of the intelligent, substan­

tively knowledgeable investigator at several points. First the 

investigator must choose an index, based on experience and be­

liefs concerning the nature of the data. Then there is the 

necessity of choosing cutoff values for the index in order to de­

fine the membership matrix. This can be expected to take place 

on partly substantive grounds, and we believe, justifiably so. 

Thus, the method is not expected to give good results unless 

the user is sophisticated, except that data with a strong cluster 

structure will impose itself quite strongly, regardless of the 

options chosen by the user. 
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1These are the "adjusted" responses where the scoring of 

" B1"renbaum and Tatsuoka's (Note 8) 
the 16 items was adjusted uS1ng 

f " t problem-solving strategies. adjustment for use 0 1ncorrec 
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1 
2 
3 
4 
5 
6 
7 
8 

, 
Q' 

.) ., 
3 
4 
5 
6 
7 
8 

1 2 

TABLE 1 

QUALITY INDEX q FOR FICTITIOUS 

DATA WITH EIGHT OBJECTS. 1 

Objects 

3 4 5 6 

Numerators and Denominators 

0 43.0 ·38.4 337.4 -40.4 - 8.1 
473.0 0 211. 0 -18.0 10.0 358.5 
296.0 452.5 0 113.0 10.0 335.7 
500.2 699.6 426.2 0 -92.0 -57.4 
481. 6 734.8 445.0 713.8 0 107.0 
467.1 738.4 457.3 689.9 724.4 0 
445.7 377.2 237.9 398.0 383.8 372.6 
175.5 264.5 300.1 250.0 260 .. 4 267.1 

9 Values 

1. 00 
.09 1. 00 

-.13 .47 1. 00 
.68 - .03 .27 1. 00 

- . 08 .01 .02 - . 13 1. 00 
- .02 .49 .73 - .08 .15 1. 00 

.37 .06 - .20 .51 -,.03 .08 
- .15 .60 .31 - .16 .30 .61 

1Note : The upper triangular section contains 
while the lower triangular section contains the 

7 8 

164.3 -27.0 
- 23.2 159.5 
-46.8 93.1 
203.6 - 41. 0 
-10.0 '(8.4 
28.7 163.3 

0 71.9 
141.5 0 

1. 00 
.51 1. 00 

numerators of q, 
denominators. 
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TABLE 2 

MEMBERSHIP MATRIX AND HISTORY 

MATRIX FOR SAMPLE DATA. 

Items 

1 2 3 4 5 6 7 

M Matrix 
1 2 3 4 5 6 7 
4 8 6 1 8 3 4 
7 6 2 7 6 2 1 
3 3 8 3 3 8 3 
6 5 5 6 2 5 6 
8 7 7 8 7 7 8 
2 1 1 2 1 1 2 
5 4 4 5 4 4 '5 

H Matrix 
1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 

.68 .60 .73 .68 .30 .73 .51 

.44 .52 .48 .44 .27 .48 .53 

."0"1 .53 .50 .n-! .37 .50 • 'O"! 

.15 .TO .ro .15 .34 .ro .15 

.23 .01 .01 .23 .01 .01 .23 

.24 .04 .04 .24 .04 .04 .24 

.02 .12 .12 .02 .12 .12 .02 

8 

8 
6 
3 
2 
5 
7 
1 
4 

1. 00 
.61 
.57 
.50 
.TO 
.01 
.04 
.12 

d 
i . 

\ 
( . 

j 
p 

TABLE 3 
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BINARY MEMBERSHIP MATRIX AND 

PERMUTED MEMBERSHIP MATRIX 

Membership Matrix 

Cluster 

Item 1 2 3 4 5 6 7 8 
lr1'O 0 1 0 0 1 0 
2'0 1 1 0 0 1 0 1 
3 0 1 1 0 0 1 0 1 
4 1 0 0 1 0 0 1 0 
500 0 0 1 0 0 0 
6 0 1 1 0 0 1 0 1 
7 1 0 0 1 0 0 1 0 
8 0 1 1 0 0 1 0 1 

Permuted MembershiE Matrix 

Cluster 

Item 2 3 6 8 1 4 7 5 
2 1 1 1 1 0 0 0 0 
3 1 1 1 1. 0 0 0 0 
6 1 1 1 1 0 0 0 0 
8 1 1 1 1 0 0 0 0 
1 0 0 0 0 1 1 1 0 
4 0 0 0 0 1 1 1 0 
7-0 0 0 0 1 1 1 0 
5 0 0 0 0 0 0 0 1 

--~-~ .-------
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TABLE 4 

SUPER-CLUSTER SOLUTION 

B* 

P 

1 0 
1 0 
1 0 
1 0 
o 1 
o 1 
o 1 

1. 00 
1. 00 
1. 00 
1. 00 
o 
o 
o 

o 
o 
o 
o 

1. 00 
1. 00 
1. 00 

\,' 

I 
\ 

\ 
I 
! 

I 
1/ 
U 
Ii 

-~~ ~------- -~-----~~--- - --~-- -----~---

ITEM 

20 
4 

31 
5 
6 
7 
8 
9 

10 
11 
14 
15 
16 
19 
21 
36 
37 

2 
3 

27 
43 
44 
17 
18 

1 
30 
28 
24 
26 
32 
34 
45 
46 
40 
39 
12 
41 
22 
23 
25 
33 
29 

TABLE 5 
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CLUSTER MEMBERSHIP MATRIX FOR BINCLUS 

ANALYSIS OF DEVIANCE DATA 

CLUSTER, 

111111111122222222223333333333444 
123456789012345678901234567890123456789012 
000000000000000000000000000000000000000000 F ALCOHOLIC* 
000000000111111111111111110000000000000000 F DEAD 
111100000111111111111111111000000000000000 M CHAR DISORDER 
111111111111111111111111110000000000000000 BIOL PARENTS NOT MARRIED 
111111111111111111111111110000000000000000 BIOL PARENTS NOT TOGETHER 
111]11111111111111111111110000000000000000 C HAS HAD >1 FAM CONSTELLATIO~ 
111111111111111111111111110000000000000000 C NOT LIVING WITH PARENTS 
111111111111111111111111110000000000000000 F FIGURE NOT CHILD'S F 
111111111111111111111111110000000000000000 C <7 YEARS WITH PRESENT FAM 
111111111111111111111111110000000000000000 C <7 YEARS WITH 1 FAM 
111111111111111111111111110000000000000000 C HAS LIVED IN ORPHANAGE 
111111111111111111111111110000000000000000 C <7 YEARS WITH M 
111111111111111111111111110000000000000000 C <7 YEARS WITH F 
111111111111111111111111110000000000000000 M ALCOHOLIC 
111111111111111111111111110000000000000000·<2 ADULTS IN HOME 
111111111111111111111111110000000000000000 C NOT WITH OWN FAM 
111111111111111111111111110000000000000000 C NOT WITH BOTH PARENTS 
000011111111111111111111000000000000000000 C HAS M SUBSTITUTE 
110000001111000000000000000000000000000000 M DEAD 
111100000000000000000000000000000000000000 M PSYCHOTIC 
111100000000000000000000000000000000000000 M HOSPITALIZED FOR PYCH PROB 
111100000000000000000000000000000000000000 M SERIOUS PHYSICAL ILLNESS 
111111110000000000000000000000000000000000 C NOT ALWAYS WITH M FIRST YEAR 
111111110000000000000000000000000000000000 C NOT ALWAYS WITH M SECOND YEAR 
000000000000000000000000000000100000000000 M WORKS 
000000000000000000000000000000111111111100 F NEUROTIC 
000000001000000000000000000000111111111100 F PSYCHOTIC 
000000000000000000000000000000011111111100 F DOES NOT LIKE C 
000000000000000000000000000000011111111100 F IMMATURE 
000000000000000000000000000000011111111100 F CHAR DISORDER 
000000000000000000000000000000011111111100 F ANXIOUS 
000000000000000000000000000000011111111100 F HOSPITALIZED FOR PSYCH PROB 
000000000000000000000000000000011111111100 F SERIOUS PHYSICAL ILLNESS 
000000001000000000000000000000000000000100 PARENTS QUARREL 
000000001000000000000000000000000000000000 PARENTS PHYSICALLY FIGHT 
000000000000000000000000000000000000000011 C SPENT TIME IN WHOLE DAY CARE 
000000000000000000000000000000000000000011 M FULLTIME WORK WHILE C <5 
000000000000000000000000000111000000000000 INADEQUATE HOME ATMOSPHERE 
000000000000000000000000000111000000000000 M DOES NOT LIKE C 
000000000000000000000000001111000000000000 M IMMATURE 
000000000000000000000000001000000000000000 M ANXIOUS 
000000000000000000000000011000000000000000 M NEUROTIC 
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TABLE 9 
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CLUSTER MEMBERSHIP MATRIX FOR MATH 
I 

DATA: MINIMUM hkc = .95 

ITEM CLUSTER 
1111111 

1234567890123456 
1 1111111111110000 
2 1111111111110000 
3 0011111110000000 
4 0011111111110000 
5 1111111111110000 
6 1111111111110000 
7 1111111111110000 
8 0000000010000000 
9 1100000000000000 

10 1111111111110000 
11 0000000001111111 
12 0000000001111111 
13 0000000000001111 
14 0000000000001111 
15 0000000000001111 
16 0000000000001111 

\ 

j 
• i 

• 

SUPER-CLUSTER 

SUPER-CLUSTER 

CLUSTER 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

TABLE 10 
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MEMBERSHIP MATRIX AND P MATRIX FOR MATH 

DATA: MINIMUM h~c = .95 

MEMBERSHIP MATRIX P MATRIX 

SUPER-CLUSTER ITEM SUPER-CLUSTER 

1 2 
10 1 0 1. 000 
10 2 0 1. 000 
10 3 0 .583 
10 4 0 .833 
10 5 0 1. 000 
10 6 0 1. 000 
10 7 0 1. 000 
10 8 0 .083 
10 9 0 .167 
10 10 0 1. 000 
10 11 1. 000 .250 
10 12 1.000 .250 
01 13 1.000 0 
01 14 1. 000 0 
01 15 1. 000 0 
01 16 1. 000 0 
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FIGURE 1 

MULTIDIMENSIONAL SCALING OF 

MATHEMATICAL ITEMS 
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