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Abstract 

The median problem has be~n generalized to include queueing-like 

congestion of facilities (which are a,ssumed to have finite numbers of 

servers). In one statement,of the proble~, a closest available server 

is assumed to handfe each service request. (,' '.J 

More general server assign-

ment policies are allowed, however. The analysis requires keeping 
\1 

'k \\ 
trac of the states (available or'''lJnavailable) of all servers. Paral-

leling the f!tandard deternu.nistic median prqblem, the objective is to 

minimize t~e exPected travel time associated with a random service 
~ ':;1 ., 

request, w~ighted appropriateiy by the equilibrium sta~e p~obabilities 

of the system. Under suitable conditions, it is shown~that at least 
o 

one set of optimal locations oexists solely on the nodes of the network. 
Q , 

This analysis ties together previously disparate efforts in network c 

• 
o 

analysis and spatial queueing analysis. 
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Introduction 

The problem of where to locate a set of facilities on a network. se 

as to minimiz~ the expected travel time to or f~om the facilities, for 

the population qf,'.' their users, is one of the classic problems in loca-
o ~ 

tion theory. This problem, known in the literatur,~ as the median" problem~ 

has been studied very thoroughly in the last two decades. The basic 

theoretical results in this area are d~e to Hakim! (3,4]. Subsequently, 

Goldman [2], Hakim! and Naheshwari [5], Levy [Lij and Wendell and Hurter 

[12] have extended and generalized Hakim's r.esul ts • 

When there are Q facilities to be located on a network G, the median 

* * e;, * problem is to find a set ofr • Q pointa~n G denoted as Z == (Zl' Z2' ••• 'ZQ) , 

such that 

n * 
"I: h d(Z ,j) < 
j=l j 

n (, 
I:'hjd(Z,j) ¥ Z e G 

jal ., 
(1) 

n 
where hj is the fraction of demand that is generated at node j( I:hj-l), 

. jllll' 
n is the number of demand points and d(Z,j) is the shortest distance from 

node j to the closel;!t point in the s~t Z •. 111:, [4] Ha.kimi proved that a~ 

* least one set Z exists solely on the nodes of the network~ 

When considering the standard median problem for application,s, four 

main assumptions are implied. 

'.\ '';:-, 

(1) Travel"in the given area is restricted to talte place solely 

along th'E! links of the transportation network. 
o 

(2) Requests for service can occur only a~ a finite number of .. 
points - the nodes ,pf the network. 

'; 0 

(( 

.'~,:c.:::._;; 
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II 

(3)' When the numb'er of facilities is greater than one, a 

service request from a particular location is . () always 

han~led by a server at a closest facility. 

There is always an available (free) server at the selected 
(4) 

(closest) facility. 

The ;raveling associated w~th a service request could require the 

"customer" (reque~ter.o{ service) to travel 
to a nearest facility or 

a server at a nearest facility to tr.avel to the customer. 
The former, 

It t 
cus omer-:,to-server" type system, i~cludes outpatient clinics, "little 

city halls,rt libraries, and even hamburger havens. ' 
The latter, "server-

" to-customer" type s til d 0 

ys em, nc u es emergency services (e.g., police, 

fi~e, ambulance, emergency repair), special-order delivery" services, and 

cert~in home visitation medical services. In our work, we use the term 

"travel time associated with a serv~ce request" to mean either the CllS

tomer-to-server or server-to-cu~tomer travel time. 

The type of systems we consider are characterized 
by stochastically 

genera,ted requests for service (in time and space) and" by nondeterminis-

[A service time is comprised 
tic service times £ar the service requests. 

of travel" time plus on-scene time.] 
In "stich an environment, it is often 

likely that all servers at a nearest f" 'i"li wil 
ac ty I be busy, thereby 

yielding a'congested network in which queues could form. 
Thus, assump-

tion (4) above of~en does not hold in practice. 
For these systems, 

equation (1) is merely the problem",p~( finding a set of points so' as to 

minimize the expected travel time for a random service request a~ very 

special times ,'0 "namely when se""vers are il bl .. ava . a e at all facilities. 

(t 

:: 
". 

,) 
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Since this is often not the case, it is the purnose of this work to 
~,. 

incorporate in tqe context of t9,-e median prob:i~m the possibility that 

" all servers at any subset of the Q facilities can be busy. 

The objective function in this congested median problem is to 
0:'.'-

n 
minimize the, expected travel time associated with a random service 

request weighted apprqpriately by the equilibriu~ state prob~bilities 

of the system. Here "states" of the ~ystem are defined according to 

the status of each of~the facilities - at least one server available 

at the facility or all servers busy. To avoid. queue formation,wherever 

possible, we assume that the,server that handles a service request is 

a most preferredavailable'servei. Usually server preferences are 

dependent s?lely on geographical proximityybut more general server 

assign~~nt policies are allowed,. The bas~c result obtained, is that 

~nder fairly gene~a1 assumptions at least one set o~ optimal locations 

exists on the nodes of the network. This parallels the results of 

Haki~ [.3,4]. 

The'analysis also ties together previously disparate research 
o 

efforts on ~etwork analysis and on spatial queueing analysis. Xn 

pafticular we show that th: h~ercube model (,£8,'9] and the" algorithm~f 
t. ,1 

Jarvis, [7] on optimum locatio,:\s ca~ be useful to solve the cop-gested 

mec:liCin p'roblem for specific situations oj In addition this i~ork '-indicates 

t~, ,the basic hy'percube"mddel d~e,s ~ot suffer from a loss of' gep.eral-~ 
() 

<I 

ity by considering only nodes (or atoms) for the locations of the ''';, 

service units. 

o 

0" 

(j J) 

1/; 

o 

o 4 

Notations and Assumptions 

Let G(N,L) be a network where N is the set of nodes with I N I = n, 

and,., L is the set of the links. Let XQ be the set of all possible loca

tions of Q facilities (Q > 1), on the netwo~k G, i.e., 

Given any location XQ = (il, ••• ,iQ) € !q' let ~ denote that the faci

lity at ~ ~~ not staffed with an available server (the facility is 
,.. 
A 

,busy) and ~ that, the facility at iK does have an available server. 

Therefore, for any XQ € ~ there'are 2Q combinations (states) of finding 

the network at any time, according to the status of the Q facilities. 

Let YX(Q) be the set of all states for X € X and let Y ( (or for , Q ~. X Q) 

convenience YQ) ~e a generic element of YX(Q)' 
~ u 

We assume that server assigr~ent occurs according to a fixed pre-
" 

fe:a:ence procedure. That ':ts, for each demand point in the network there 
\) 

is a list of facilities thar:)specifie~ tqe ordering of preferences for 

the assignment of servers (i.e., first preference for servers frGm 
, ' 

facility i, second preference for servers from facility j, etc.) A most 

preferred llailable,s~rver is always assigned to a custom~r oj * The goal 

" 

,*When preferences depend directly on travel times;' such a zero-Iook
ahead strategy is "very unreasonab~.e, but not always optimal ~n the sense 
of minimizing time,-:,average meanDtravel time! An optimal policy 
occasionally requires"assignment of other than the most p:t'eferred 
available server [7J, in 'brder to leave ~he system in a state" which 
best anticipates future service requests. We do not consider such 
strategies, in our formulation ,of the congested median problem. 

(~' 
\) 

'I 

:;.-, '\ 
---------------------~~~~,-------------~~ 
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of the optimization to be stated below is to minimize expected system 
. 

travel time under a given fixed p~eference'procedure. The fixed prefer-
(, 

" 

ence procedure itself need not'be determined solely by relative travel 

time, but can include characteristics of s~rvers (~.g., 'bilingualness) 

and needs of customers at the nodes. 

J..et t(i,j) be the travel time on link (i,j), (i,j) E: L, and let 

a(YQ,j) be the (m~nimum) travel time associated with a most preferr.ed 

available serv~r to node j, when the system is in state YQ' 

A~ in the standard median problem we assume that servic~ requests 

are generated on the nodes of the network. However, in addition, we 

~ssum~ that service requests occur according to a general renewal process, 

with each request r~quiring a service time whose distribution is general 

and not dependent on the identity of the server or the history of the 
, ~ 

system. "Thus variations in the service times that are due solely to 

variations in travel tim~s among potential servers are ignored. This 

assumption is reas~nab1(.! for systems having on-scene service times roughly 

an order of magnitude greater than travel time1'l:~ 
'r . / 

(::' 

Fin~lly, we require that travel time is unifb~ over a link, i.e." 

the trav~l time ov~r a fraction6iof some link (p,q) is 6t(p,q). This 

assumption is not restrictive since the links and nodes can be defined in 

such a way that this ~ssumption holds to a specified degree 0; accuracy_ 

() 

0, 

o 
" 

t 

= 

6 

'Model Formulation and Analysis 

We will consider the steady state behavior of the system. For any 

possible set of locations XQ E:~. let P(Y
Q

) b~ the steaDy state proba

~i1ity that the network is in s~ate YQ E: Y~(Q)' (We assume that the 

appropriate ergodicityconditions apply so that:a unique steady state 

distribution exists.) Let Y~ be, the state in which all the Q facilities 
, A ~ A 

are bu~y (i. e., y~ == (i1 , i 2 , ••• , iQ) in our notat:l.on). 

Conditj,oned on any state YQ E: YX(Q) -" {y~}, the expression 

n 
L hjd(YQ,j) 

j=l 

is the e'Xpect~d travel time associated with a random service request. 

Suppose now that the network is in state y~. We will consider three 

policies regarding this state: 

I~ 

(a) Service ~equests that occur while all the service units are 

busy, are handled by a back-up service system (zero-line 

(;1 capacity case). Let R be the travel time cost of utilizing 

this special reserve server. 

r (b) Service requests that arrive while all the facilities are 

busy enter an infinite capacity queue that is depleted in 

a £i}:,st-~.ome, first-served" manner; "upon compl:e'tion of ser

vic~ .. the server is either assigned to the next request 
" \, ". 

w~iting ~n queue, br returns immediately home if none is 
(I 

waiting. Therefore, 

n n 
L L hkhjd(ik,j) 

k=l j=l " " 

is 'the expected travel time of a random service request given 
" 

that the "'network is in state YQ. ."", 

(f 

f) i) 

, 
f 

, ) 
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(c) Again service requests that arrive while ~11 the facilities 

are busy 'enter a FCFS queue with infinite capacity, but now 

upon completion of service, the server always first returns 
\'" ~ 

to his/her home location. In this case the conditicmal expec

ted travel time of a random service0request is 

n n 1 
E E Q h.d(ik,j), 

k=l j=l J 

given that the network is in· state y~. 
o 

The appropriateness of any particular assumption depends of course ~~on the 

system being modeled. Assumption ,(a) often applies to ambulance systems, 

in whic~ emergency requests cannot be queued. Assumption (b) applies 

frequently to police vehicles that may be dispatchedback-to-back to suc

cessive service requests. Assumption (c) applies to some ambulance 9~d 

fire services. The c~ngested median problem is now stated: 

lnin... F(X) 
X e:b\ Q, 

Q "( 

, (2) 

(j 

with 

where 

.J ~ according, respectivelYG to (a)," (b) or ('c) above. 

Obviously, the standard median problem is "a special ,case of (2) aris-
1.') ~ A 

ilig when P(y ) ~"O).Tf Y .; (il, ••• ,i
Q

) -'the ,.state where all the units are 
Q "Q (, .' 

availa~le ~ whe~"d(YQ,j) is determined solely by geographic proJeimity 
" ~, 

iI ') 

I 

(i.e., minimizing travel time). Thecweights P(YQ) in (2) represent the 

fraction of time that the network is in each of the 2Q possible states. 

Therefore, as nq!~.~ beiore,-we take into account that any subset of 
"~rJ , 

"/~acilities can become depleted of servers. 

Now th~ following i~portant theorem can be proved. 

Theorem 1 For a given fixed pref~;ence server assignment procedure,at 
If 

least one set of optimal solutious to (2) exists on the nodes of the net-

work. 

* Proof: Let IQ ~ (il ·,i2, ••• ,iS, •• ,iQ) be the optimal solution to (2), 
n 

and'let P (y Q)' .Tf y Q e: Y
h
* (Q) be the c(n~responding stead! stat~" probabi~i-

ties. Suppose that is is an int\brior point. on th~ fink (p,q). Then by 

the"'uniform speed assumptio)J. 
J' 

" t (P ,is) 

t(p,q) = Q 
\'. 

o < Q < 1 (3)' 

II Q 1 ' 
The' following proof is.J for the case C (j) = LQ' d (\,;,'j) in (2). The proofs 

k=l 
'for the other two cases are very Similar and even slightly easier. 

{, 

o ' 
Let Yi C Yx:* (Q) - {y Q} be the set of all states in whi.ch the facility 

S . _-* 
located' at is ,;Ls available. Then we can write F (XQ) as: 

I 
I 

* F{X ) 
Q 

where the term A inci~des all serve:r" assignments that must exclude th~ 

facility locat~d at is' i.e~" 

i? o o " o 

(4) 

(} 

'~ - . 

" 

<1 
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n Q 1 
[!: !: Q hjd(~,j)] 
j=l k=l 

k:rs 

Let N (is) be the set of all nodes that would be assigned to the server 
~ , - -

f~o~ node iS~' when the network is in state YQ e ~is and let N
YQ 

(~S) ... 

N - N (is)' Therefore we can rewrite (4) as: 
YQ 

where the term B corresponds to non-queued assignment. of ·servers not 10ca-

ted at is' even wnen the facility located at is i~ available, i.e., 

o 

() 

Recalling that is is assumed to be an interior point on the link (p ,q) , 

let N (is'P) eN (is) be the set of L~.Jl nodes that belong to the set N (is) 
YQ " ,YQ o· ! YQ 

and which comri,\l,nicate most efficiently with the facility at is via p, and 

let N (is,q)= N -(i,,) = N (is'p). (The term "communicate" implies mini-
YQ '. YQ " YQ 

mal travel :ime.) If a node. communicates equally efficiently with ,is via 
" 

nodea p or q for some YQ' we can inc1udethat o node in either N (is'P) or 
" . YQ 

N
YQ 

(is,q), b~t not in both. 

Lee N(is'p) be the set 00f all nodes which communicate mo~t efficiently 
t.: -:-; 

with the facility at is via node P and let N(iS,q) ::; N ... ;,N(is'P). 

10 

Therefore we .can write (6) as 
(5) 

. 
• 

(6) 
+ t(p,iS» +!: hj(d(j,q) + t(q,iS» ] + A + B. 

jeN(dS ,q) 
(8) 

Using (3) and rearranging terms we get 

(7) , 

c 

+ A + B + C (9) 

where the term C corresponds to "fixed components" of trB:ye1 time to the 

" l~nk (p, q), where 

,... n J'M pi ~Jl .f * .t~ ~~ ___ ""''''''..,~ __ ' __ &~$;''"~-_~H~~'IIt\O;r;(~W ... ~-m~~." .... ~w.~~,...Jt,~Wd~-~~I'l!w~~~'W)_~~~"t.<~~:~~~t;.;:~."l;.s..,. r ....... -

, -
, ~ 
Ij 
" 
I 
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Assuming a fixed server assignment 'policy. once!!±he "route-parti-

tioning" sets N (is'p), N(iS'p), 
. YQ . N (is,q), and N(iS,q) are specified, 

YQ * \J 

A, B, and C are independent of 6. Thus, F(XQ) is a linear function of 6 

implying its minimum occurs at an extreme point, either 8 • 0 or 1, corre-

sponding to location at node p or q, respectively. Clearly the node p is 

optimal if the coefficient of a in (9) is larger than the coefficient of 

(1 - 6); otherwise q is optima10~ a tie exists, in which case either is 

optimal. Once the node p or q is reached, members of the route parti~ 

tioning sets may have to be interchanged, corresponding to more efficient 

communication directly to the nodal location rather than through the 

entire link (p,q). This only improves matters, lCl;wering the travel time 

below that achieved with the original route-partitioning sets. MOreover, 

the same proof with the new) route-partitioning sets demonstrates the 
" 

nonoptimality of moving ~way (~rom the no~e ••.. 

It is important to note that the fixed server assignment condition 

of the theorem does not imply that in practice the steady state ~roba

bi1ities are location independent. Server assignment preferences are 

" usually heavily dependent on relative proximities of servers and hence 

state probabilities are affected by server locations. The theorem states -', :;:: 

that for any given set of server assignment preferences a set of optimal 

sp1utions exists 01;1. the nodes. As a result .of this tpeorem the location 

~roblembas been reduced from opti~zation over an infinite set of points 

to an optindzation over a finite set of nodes. 

• 

12 

o 

Notice also that if the expression (9) is concave in 6 the same 

argument also ho1da. This can "happen only if P(Y
Q
) are all concave func

tions of 6. The meaning of this is not yet clear but can be of some 

in~erest in future research. 

" 

!J 
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The Congested Median Problem and the Hypercube MOdel 

liThe hypercube model" is a spatially distributed queuing model 

developed by Larson [8] to analyze analytically the performance of 

urban emergency services. The model assumes a geographical region R 

that is divided into n geographic areas of atoms. The fraction of 
n 

demand associated with each atom j is h (~hj'" 1) and the travel 
j j-l 

from atom i to atom j is d(i,j). Service requests over the entire 

time 

region are generated in a Poisson manner at a rate A and at each atom 

j independently in a Poisson manner with rate Aj. (~Aj. A) 
j 

'There are 0 units to respond to the requests for service, located 

at atoms i l , i 2, ••• ,iQ• 

unit n is assumed to be 

For Markov analysis, the service time for each 

-1 exponential with mean Pn • Recent research has 

shown that ~he assumption of exponentiality of the service time does not 

markedly affect the predictive accuracy of the model when the mean of 

a general distribution is entere'd into the exponential (Markov) model. 

The mean service time is the stim of the travel time and on-scene time. 
" . , 

By the process of mean service time calibration [6,7,10], each server s mean 

service time can be adjusted so that the model-computed mean travel times 

(over the network) for each server are compatible with that server's total 

-1 -1 mean service time Pn • For Theorem 1 to hold, we assume ~hat Pn is 

not affected by moving 8;) server's home location alo'ng just one link. That 

is, single link travel times are assumed to be negligi.ble compared to total 

mean service times. 

States of the system are defined to be ac.cording to the status of 

"i bib ailable The model allows a zero-line each service un t e ng usy or av • , 

capacity queue, imp tying the existence of a special reserve unit, as well u 

• 

.. 

.. 

o 

14 
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as an infinite capacity queue. Given some dispatching policy, all the 

2Q steady state probabilities of the system can be obtained by solving 

2Q detail~d balance equations [8]. In [9] Larson used as~~er sampling 
:' 

scheme adapted from the M/M/Q model to obtain fast approximate solu-

tions for the required dispatch probabilities. 

For a given set of single server locations at atomsi, ••• ,i
Q 

the 

hypercube model computes several performance measures. Among them, the 

most important one is the mean region wide travel time, defined as 

'iY'here p :: fraction of all dispatches that send the unit from atom i;t,j . 

(10) 

~ ·to atom j; k = 1, ••• ,Q; j = l, ••• ,n; r :: travel time term arising from 

dispatches fro~'queued service requests (infinite capacity case) or f;,om 

service requests handled by a back-up service system (zero line capacity 

case). The P~,j'S represent the response patterns of units. They remain 

fixed under a g~ven set of dispatch prefere~ces, even if the home locations 

of units change. 

In [1] Jarvis developed an algorithm to find a set of "optimum" 

locations in the framework of the hypercube model where locations are con

strained to atoks and each ato~ can contain not more than one facility. 

The key idea behind theuJarvis algorithm is to optimally locate the 
',' 

servers (facilitigs) for a g~ven response pattern and then, given a new "", 
set of locations; to reassess the response patterps to determine if a new' 

set of dispatch preferences (and thus response pat,t.erns) could improve 

I.) 
o 

,1 

t 
j! 

.j 
ji' 

\i 

" i} 
r 

I 
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system performance further. This alt,~rnative iterative procedure is 

analogous to the "locate - allocate" scheme often used in deterministic 

location theory Il]. 
\\ 

Jarvis' algor~thm for the ze:ro capacity case works as'· follows: 

1. Initialize: Specify initial unit locations for units 
\\ 

2. 

3. Locat.e: Solve the following L.P problem: 

4. 

Q n 
min E E P(v,k) C(v,k) 

kal. j==l 

n 
s.t. ~ P(v,k) a 1 

v.=l 
k" l, ••• ,Q 

P(v,k)~O v·'l, ••• ,n; k=l, ••• ,Q 

. 
where the deci~ion variable P(v,k) is the probabi1ir.y 

0that server k is 

k 1:1 l, ••• ,Q; and 

k - 1, ••• ,Q. 

. 
at node v when available v == 1, ••• ,n; 

n 
C(V,k)· k Pi jd(v,j) V" l, •. ~,n; 

j-1 -k' 

Test for Convergence: If the new Qlocations are iden

tical to the old set of Q locations, stop. Otherwise 

go to step 2 with i1""'~Q - new se~ of f5cations for 

Units 1, ••• ,k, and reallocate. 

n 

Whenever the algorit;hm terIfiinates, at 1ea.st a local optimal solution 

is ensured. By taking several different initial sets of ~ocations, the 

chances of getting closer to the optimal global solu~ion are ~mproved. 

• 

r) 

!l 
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It is important to observe that step 3 of the algorithm is very simple 

becaus) the problem can be reduced tp Q independent trivial problems, 

. each corresponding to a standard one-median problem with P ~,j (j=l, 2, ••• ,n) 

being the nodal weight for the kth facility.To date in applications, ~he 

allocate step has been performed assuming that server preferences depend 

solely on proximity; however, more general (multi-attribute) procedures 

are allowed at this step. 

The hypercube mode~ can be applied in our congested median network 

context. The network G can represent the. ge~L3raphical region R, the nodes 

of the network being the atoms, and the links being the major streets 

connecting
o 

the atoms. We now demonstrate that if we take)' any Q pJ>ints in 

the network to be the set of server locations, then F(X
Q
) - the cost func

tion for the congested median problem (2) turns out to be identical to the 

mean region-wide travel time of the hypercube model (10). In terms of 

the congested median problem, ,the hypercube model disperses Q single server 

facilities over G. 

Let us consider now any i_ € X k" 1 Q 
" ,,> K Q ' [) , • • • , 

Let E~,j • .,{Y Q € YX(Q) - ~,y~}; '" the server at i k is the most preferred 

available unit to node j }. Obviously 

Q 0 E {y~} P(YQ) .. E t P(YQ) :V-j = 1, ••• ,n 
l' 

YQ€:X(Q) ,k-l YQ€Eik,j, 
(\ 

··'$;~"l'f""~-~>",~ 

.- II 
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" 

Also 3f YQ-e: E~j, d(yQ,j) = d(ik,j) 

and hence by rearranging F(XQ) we"'get: 

Q n 
= E E d(ik,j) 

k=l j=l 

L d fi P = ~ P,(yQ)h
j 

which is the 'fraction of all dis-et us e ne L ,j U 

K YQe:E~,j 

patches that send the service out from i k to j. Therefore, 

\\ i d with serv' ice re"uest th&t occurs ~Yhile But G(j) is the cost E;lssoc ate a "1 ' 
(J ') ,) 

all the servers ~re busy and hence F(XQ) is identical to (10) - the mean 
.;) ;; 

region wide travel time. 

The conclusion of this discussion is that since the ~ssumptions of 
JI • . 

{!heorem 1 hold for the hypercube model (subject to our discus~i~n of ser-

vice times) both the hyperc~be model ~nd Jarvis' algorithm do no~ suffer, 

from a loss of generality by ~onsidering locations only' on the atoms. In 

addition Jarvis(~ algor:f.thm ~an be applied to the congest~d median problem 

'whenever the hypercube model's assumptions are accepted. 0 This result t~e~ 

together two very different ~pproaches in location theory, one which is 

purely de'terministic as themediaIl; prob-lem and another ,one which is sto-

chastic as ,the hypercube model. 

:-

<;",\ 

(~ 
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Example 

The following example will illustrate some of our previous discussion. 

Suppose we want to locate three facilities on the simple network shown in 
" 

Figure 1. 

.3 .15 
8 

.25 

Figure 1 

A Simple 5 Node Network 

The numbers next to the nodes are the fractions of demands from each node 
ti 

. Aj ; j = 1, ••• ,5 and the numbers next to the links are the travel times. 
There 5 

distinct are (2) possible locations: 

{1,2,3} , {1,2,4} {1,2,5} {1,3,4} {l,3,S} {1,4,5} , 
" .,{2,3,4} ;. {2,3;5} {2,4,S} {3,4,S} , 

" 

The optimal location according to the standard 3-median (problem is {1,2,5}, 
~ ;) 

which can be obtained by hand. Suppose however that service requests 

occur in the network in a Poisson fashion with A. = 4: and the ~'ervice time 

, , " -1 
for each one of the three units is exponential with identical means 1..\ = 1. 

" 
Let us assume a zero capacity queue with R = 5 units of time - the co',st 
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resulting when dispat~hing the reserve unit. We also assume that server 

prefer~nces are determined solely by geographical proximity. 

The Jarvis algorithm with an initial location at the absolute 3-median, 

i.e., {1,2,5}, converges after, one iteration to the optimal solution at 

location {2,3,5}. The improvement achieved by moving from the location 

{1,2,5} to {2,3,5} is 3% in terms of the congested median problem. It is 

interesting to realize' that the location {2,3,5} is among the weakest 

possible locations in
0

terms of the standard median problem. This indi-

If 
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