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Introduction ’ o |
The problem of where to locate a set of facilities on a metwork sc
as to minimize)the expected travel time to or from the facili ties, for

the population of thelr users, is one of the cla351c problems in loca-

" tion theory. This problem, known in the literature as the median problem,

has been studied very‘thoroughly in the last two decades. The basic

theoreticaliresults in this area ave due to Hakimi [5,41. Subsequently,
Goldman [2], Hakimi and Naheshwari [5], Levy [11] and Wendell and Hurter
[12] have extended and generalized Hakimf'&s results.

When there are Q facilities to be located on a network G, the median

- * * & Z*)
problem is to £ind a set of Q points on G denoted as Z = (Zl,Zz,[.., Q"

i

such that
2: hjd(z »3) 2 2 hjd(Z,j) ¥z E G ‘ 1)
i=1 i=1 . R
Z h,=1)
where hj is the fraction of demand that is generated at uode j<j=1 4=1)»

n is the number of demand points and d(Z,3) is the shortest distance from
node j to the closest point in the set Z, In [4] Hakimi proved that.at

' least one get Z exlsts solely on the nodes of the network,

= ) i

When considering the standard median problem for applications, four

O

maln assumptions are implied. - )

I

(L iravel“in the given area is restricted to take place solely )

along the links of the transportation network.

(2) Re&uests for service can occur only at a finite number of
points - the nodes of the network.

-

]

J

(O

=y

© =

I

(3) When the number of facilities 1s greater than one, a
service request from a particular location is always
han@led by a server at a closest: facility.

(4) There is always an available (free) server at the selected
(closest) facility.

The traveling associated with a service request could require the
"customer™ (requester of’serVice) to travel to a nearest facility or

o

a server at a nearest facility to travel to the customer. The former,
"customer-to-server" type system, includes outpatient clinics, "little
city halls," libraries, and even hauburger havens., The latter, server-

to-customer" type system, includes emergency services (e. 8., police,
fire, ambulauce, emergency repair), special-order delivery”services, and
certain home visitation medical services. In our work, we use the term
"trayel time associated with a service request" to. mean either the cus-
tomer~to-server or server-to—cu%tomer travel time, o

- The type of systems we consider are characterized by stochastically
generated requests for service (in time and space) and. by nondeterminis-
tic gervice times £f3r the service requests,

of travel time plus on-scene time, ] In ‘such an environment it is often

likely that all servers at a nearest facility will be busy, thereby

yielding & congested network ‘In which queues could form. Thus; assump~
tion (4) above often does not hold in Practice. TFor these systems,
equation (1) is merely the problem of finding a set of points so”as to
minimize the expected tfavel time for a random service request at very

A3 .

special times namely when servers are available at all facilities.

9

[A service time ig comprised

G

LETE




i

#

ot Lo
A s voseinesemers e e SN s

\

P i gt

’ paféicular we show that the hypercube model [8 9] and the algorithm of

ity by considering only nodes (or atomeB for the locations of the :
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Since this is often not the case, it is the puypose of this work to
& ) L; /'
incorporate in the context of the median problem the possibility that

all servers at auy subset of the Q facilities can be busy. - -

The objective function in this congested median problem is to

R —

;inimize Eﬁe,expected travel time associated with e random service

request weighted appropriately by the equilibriuu4state probebiiities o
of the system. Here "states" of the e&stem are defined according to
the status of each of . the faci}ities - at least one server available

at the facility or all servers busy. To avoid queue formation wherever

| possible, we assume that the server that handles a service request is

D)
[

a most preferred available server. Usually server preferences are e

udependent selely on geographical proximity{ but more general server

assignment policies are allowed. The basic result obtained is that

under fairly gene%al assumptions at least one set of optimal locations , -

exists on the nodes of the network This parallels the results of

@«

Hakimi [3,4].

The' analysis also ties together prevfously dieparate research

efforts on network analysis and on spatial queueing analysis. In ’

o

N

Jarvis, [7] on optimum locations,can be useful to solve the congested

2

mediau problem for specific situations. In addition thiejuerkﬂiudicatesJ

thj} the basic hypercube%meﬂel ébeg not suffer from a loss ef’gepere1~
E . 8 ) N

&
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ference procedure.

Notations and Assumptions

©

Let G(N,L) be a network where N is the set of nodes with |N|=n,

andﬁLfis’the set of the links. Let X, be the set of all possible loca-

) Q
tions of Q facilities (Q > 1), on the network G, i.e.,

s

;cQ = {xQ= (il,...,iQ) ;1. €6 K=1,...,Q0}

Given any location XQ = (1 1,...,1 Yy e X, let iK denote that the faeci-

—Q
1ity at iK is not staffed with an available server (the facility is

,busy) and iK that the facility at i does have an available server.

Therefore, for any XQ -Q there are ZQ combinations (states) of finding

the network at any time, accdrding to the status of the Q facilities.

Let'YX(Q) be the set of all statee for Xb € gﬁ anu let YX(Q

convenilence yQ) be a generic element of Y

) (or fof

X(Q)°

o 9
We assume that server assignment occurs according to a fixed pre-

That is, for each demand point in the network there

is a list of facilities that.specifies the ordering of preferences for

the assignment of servers (i.e., first preference for servers from

-

facdility i, second preference for servers from facility j, etc.) A most ’

‘ preferredAgg?ilaﬁle:eerver is always assigned to a cuséomer.* The goal

e

- of minimizing time-average mean, travel time,

]

,*When preferences depend directly on travel times, such a zero~lookr

ahead strategy is very unreasonable, but not always optimal in the sense
An optimal policy
occasionally requires-assignment of other than the most preferred
available servér [7], in brder to leave the system in a state which

best anticipates future service requests. We do not consider such
strategles. in our formulation. of the congested median problem.
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of the optimization to be stated below is to minimize expected system

kil

travel time under a glten fixed preference procedure. The fixed prefer—
ence procedere‘itself need not(te detetmined solely by relative travel
time, but can itclude characteristics of servers (g.g.,'bilinguelness)
and needs of customers at the nodes.

Let t(i,j) be the travel time on link (i,j); (i,3) € L, and let
d(yq,j) be the (minimum) travel time associated with a most preferred
available server to node j, when the system is in state yQ

As in the standerd median problem we assume that service requests
are generated on the nodes of the network. However, in addition, we
assume that service requests occur accordlng to a general renewal process,
with edch request requiring a service time whose distribution is general
and not dependent on the lﬁentity of the server or the history of the
system. , Thus variations iL the service times that are due solely to
variations in travel timesﬂemong potential servers are ignored. This
assumption is reaspneblebtqr syStems havinggon—scene service times roughly
an order of magnitude greater than travel timess .M L ) “

Finally, We require that travel time is unifbrm over a 1ink i.e.,
the travel time over a fraction 6 of some link (p,q) is et(p,q) This

assumption is not restrictive since the links and nodescan be defined in

o

~ ‘Model Formulation and Analysis

We will consider the steady state behavior of the system. For any
possible set of locations XQ e X *Q’ let P(y ) be the steady state proba-
bllity that the network is in state yQ e YX(Q) (We assume that the

appropniate ergodicity conditions apply so that.a unique steady state

distribution exists.) Let yg be the state in which ell the Q facilities

e

~are tusy (i.e., yg = Cil, iz,.:.,iQ)in our notation).

Conditioned on any state yQ ~'{y8}, the expression

€ Yx(q)

n
£ hyd(y,1)
jo1 3770

)

is the expected travel time associated with a random service request,
Suppose now that the network is in state yQ We will consider three
policies regarding this state: ) 4

3

(a) Service requests that occur while all the service units are

szos

busy, are handled by a back-up service system (zero-line
5i/ capacity case)., Let R“be the travel time cost ef utilizing
this special reserve server. ‘
u(b) Serviee tequests that arrive while all the facilities are
busy enter an infinite capacity queue that is depleted in

a fixst-eome, first-served’ manner; . ‘upon completion of ser-

. vme\. the server is either assigned to the next request

waiting dn queue, ‘or returns immediately home if nome is .

waiting. Therefore, B

n n
5 hyd (403)
k=l j==l ity s 4

_is ‘the expected‘travel time of aﬂrandem service request given oo

that the netwdrk is in state yg.
N

oy
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(c¢) Again service requests that arrive while all the facilities
are‘busytenter~a FCFS queue with infinite capacity, but now

o upon completlon of service, the server always first returns 5
In this case the conditional expec-

to his/her home location.v

ted travel time of a random eervicetrequest is

o n n l
T I Q h, d(ik:j), -
k=1 j=1

given'thet the network is in-state yg.
The appropriateness of any particular aseumption depends of course on the
system being modeled. Assumption (a) often applies to ambulance spetens,
in which emergency requests cannot be queued. Assumption (b) applies
frequently to police vehicles that may be dispatched back-to-back to suc-
cessive service requests. Assumption (c) applies to some ambulance and

fire services. The congested median‘problem is now stated:

mn PG @
ngggi Q .
with . ’ /
F(X )= fﬂ X(Q)'{YQ} I’(YQ) j_i_l hyd(yg3) * P(yQ) jElhjc(:l)
where o ’ | s
c(4) is R & 3 hy d(k,3) ;r g '%-d(ik,jﬁ ‘

o kel © kel

2

according respectively to (a), (b) or (@) above.
<&

Obviously, the standard mediaﬁ=problem is -} special,cese of (2) aris-

QI\ A

05 V'yQ # (il,...,i ) “the gtate where‘ell the units are

ing when P(YQ)

available and whpn d(yq,g) is detexmined solely by geographic proximity

& ©

A

o0 : facility located at 1

\

o

4
Py

1

“\.
-

(i.e., minimizing travel time). The weights P(yQ)~in (2) represent the
fraction of time that the network is in each of the ZQ poasible states.

- - f? i ) . -
Therefore, as n%&?l before,-we take into account that any subset of

\
it

f”gacilities can become depleted of servers.

Now the following important theorem can be proved.

o

Theorem 1 For a given fixed preference server assignment procedure, at

least one set of optimal solutions to (2) exists on the nodes of the net—

3

work. .
(/’
DA

Proof: Let XQ = (il,iz,...,i sees Q) be the optimal selution to (2),

i ‘.

and let ?(yQ),‘¥-yQ e Y *(Q) be the corresponding steady state probabili-

ties. Suppose that i ig ‘an intérior point on the Llink (p,q) Then by
the “uniform speed assumption
S t@ :is) .
T ¢ 0cect ., W

. s , N ’ i Q
‘The following proof is. for the case C(j) = I l=d(ik;j) in (2).

3
The proofs
k=1 v

‘for the other two cases are very similar and even slightly éasier.

4

Let Yi c ¥X*(Q) {y o} be the set of all states in which the facility

located at iS is available. Then we can write F(X$) as:

o
= ©

. a : n o o

Plyg) Ih. d(YQ,J) + P(yQ) [ h, d(iS,J)] +A (4)

FE
4=1 3 g1 Q. )

%y =ox
Q

' €Y
/ , ¢t

4

’\where the term A. includes all server, a351gnments that mist exclude the

o

s i.e.,

“d,v S @ : ; . v E . “ 3 . ‘ 6? .

Y
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n n Q 1 Therefore we can write (6) as
A= % 0,20Q) - Bydlrg3) + P(yQ) LI L, qhdted]. @ | "
EY ~Y, - 1 j= 3=1 k= ' % ;
O s | Vo PR = I Py [ 5 1,000 + £0ig)
) Y'QEYi jeN_ (i.,p)
Let Ny (is) be the set of all nodes that would be assigned to tha server *
from node i_:» when the network is in state y: € ¥ and let N (i ) = .. I . .
S s : LR R R b - + I By @(,0) + £(e,19)) 1+ 20y) [ 2 hy (3 ,)
N - Ny (is). Therefore we can rewrite (4) as: i jenyazng’q) i) j.—:N(:!.S,p)
o r & 1
Faet) = I By [ hdlgi] +ROQLE ghdlgDI+A+3  (6) - o
T JENg (1 ) =1 = - . + tlp,ig)) + I hy(d@,q) + tlq,15)) 1+ A+ B, (8)
S Qs , é jENQdS »Q)
where the term B corresponds to non-queued- assignment of servers not loca- SN ! V.
ted at iS » even when the facility located at iS ig, available, i.e.,
b i Using (3) and rearranging terms we get
‘o ;( ' *
B= % Py, % h,d(y,,3) . L (7) - F(X) = 8[t(p,)( &  P(y,) = h, + PGy I h,) ]
Q . 4 Q . . » . . Q Psq YQ 4 Y 37
€Y ieR. (1) 4 Y =9
Q !‘,iS YQ S O R ’f YQE iS jEN}'Q(iS’p> Q jEN(iSsP)
Recalling that iS is assumed to be an interior point on the link (p,q), , .
| : | R + (1-0) [t(p,)( I Plyy I hy, + PGy I h,) 1
let N (iS,P) CN (is) be the set of all nodes that belong to the set N (is) J ,!, ’ y .Y Q el (10,9) j ) 3eN(ig,y) J
YQ : YQ , ’ YQ el . : Q is yQ S Q g S
and which connif'}nicate most efficiently with the facility at is via p, and i \ | . Lo
let Ny (iS,q) = Ny“ (is) = N‘y (:i.s,p). (The term "ecommunicate" implies mini~ ‘ :
Q o 7Q ; ) | + A+B+¢C (9)
mal travel time.) If a node communicates equally efficilently with "iS via : § ' o
nodes p or q for some y, we can include that -node in either N R (1g,P) or } | C
\ ’ i : Q B - where the term C corresponds to "fixed components" of travel time to the
Ny (is,q), but not in both. o B . :
Q . . - F link (p,q), where
Let N(iS,P) be the set of all nodes which communicate most efficiently \3 ‘ , . v
with the facility at is via node p and let N(is,q) = N *-H,,N(is,P). E C= T P(yQ) [Z hjd(j’p> 4+ T hjd(j"q) 1
' o 7 E:Yi jeN_ (1 ,p) jeN. (1 _,q9) ;
. , +¥Q >y 2] Y g
: g 5 Q Jq %
. O V , .. . \
0 i ;‘ 1

,,,,,,
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1 i
+ P(ﬁ) [ L, Byd(3,p) + 3 hyd(3,0) ] (10)
) jeN(is,p) jeN(is.q)

Assuming a fixed server asaignment‘poliéy, once’ithe "route-parti~
tioning" sets N (is,p), N(is,p), N (is,q), and N(is,q) are specified,
A B, and C are independent of 8. Tgus, F(X ) is a linear function of 6
implying its minimum occurs at an extreme point, either 8 = 0 or 1, corre-
sponding to location at node p or q, respectively. Clearly the node p is
optimal if the coefficient of ¢ in (9) is larger than the coefficiene of
(1 - 98); otherwise q is optimal or a tie exists, in which case either is
optimal., Once the node p or q is reached, members of the route parti-
tioning sets may have eo be interchenged, corresponding to more efficient
communication directly to the nodal location rather than through the
entire link (p,q). This only improves matters, 1qwering the travel time
below that achieved with the original route-paetitioning sets. Moreover,
the game proof with the new'route—partitioning sets demonstrates the
nonoptimality of moving away from the node. .I ”

It is important to note that the fixed server assignment condition
of the theorem does not imply that in practice the steady state proba~
bilitles are location independent. Server assignment preferences are
usually heavily dependent on relative proximities of servers and hence
gtate probabilities are affected by server locations. The theorem states
that for any given set of server assignment preferences ; gset of optimal
soletions exists on the nodes. As a result of this theorem the location
problem has been reduced from optimization over an infinite set of points

5

to an optimization over a‘finite set of nodes. o

tions of 9,

AR ey

Notice also that if the expression (9) 1is concave in 6 the same

argument also holds,

12

o

This can happen only if P(yq) are all concave func-

interest in future research,

o

The meaning of this is not yet clear but can be of some
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The Congeéted Median Pioblem aund Fhe Hypercube Model

"The hypercube model" is a spatially distributed queuing model
developed by Larson f§] to analyze analytically the performénce of
urban emergency services. The model assumes a geographlcal region R
that is divided into n geographic areas of atoms., ‘The fraction of

n
demand associated with each atom j is hj (Z hj = 1) and the travel time

from atom i to atom j is d(i,j). Service 3e;ﬁests over the entire
region afe generated in a Poisson manner at a rate A and at each atom
j independently in a Poisson manner with rate Aj. (I Aj = 7)

’There afe Q units to respond to the requests for service, located
at atoms i,, iz,.;.,iq. For Markov analysis, the service time for each
unit n is assumed to be exponential with mean un-l. Recent research has
shown that ;he assumption of exponentiality cf the service time does not
narkedly affect the predictive accuracy of the model when the mean of )
a general distribution is enteré& into the exponential (Markov) model.

The mean service time is the stim of the travel time and on-scene tiye.

By the process oé‘mean service time’calibra;ion [6,7,10], each server's mean
aer&ice time can be adjusted so that the model—compﬁﬁed mean travel times
(over the n;twork) for each server are compétiﬁle with that server's total‘
mean service time un"l. For Theorem 1 to hold, we assume Ehat un'l is
not affected by moving q}server's home location aldhg just one link, Thatv

is, single link travel times are assumed to be neglig#ble compared to total

@

" mean service times.

States of the system are defined to be according to the status of

* each service unit being busy or available. The model allows a zero-line

capacity queue, implying the existence of a gpecial reserve unit, as well .

o

o A

' 14 ‘ ’ : A TLRAR L R I I I T I

as an infinite capacity queue. Given some dispatching policy, all the
oQ
oQ

gteady state probabilities of the system can be obtained by solving
detailed balance equation§ [8]. Inq[9] Larson used a gerver sampling
scheme adapted from th; M/M/Q model to obtain fast approximate solu-
tions for\;he required dispatch probabilities.

For a given éet of single server locations at atoms‘i,...,iQ the

hypercube model computes several performance measures. Anong them, the

most ilmportant one is the mean region wide travel time, defined as

n”Q ” ‘ n
I Iop d(i, ,j) + P(all units are busy) I h,r (10)
=1 kel Terd K g1 3

where pik i £ fraction of all dispatches that send the unit from atom

3
ik-to atom j; k = 1,..:,Q; J=1,...,n5 r = travel time term arising from
dibpatches from queued service requests (infinite capacity case) or from

service requests handled by a back-up service system (zero line capacity

case). The pik’j's repreéént the response patterns of units. They remain
fixed under a given set of dispatch prefereﬁces, even if the home locations
of units change. a

In [7] Jarvis develope& an algorithm to find a set of "optimum"
locations in the framework of the hypercube model where locations are con-
sﬁfained to atd&s and each atom can contain not more than one facility.
Thevkey idea behind the Jarvis algorithm is to optimally locate the
servers (facilitigs) for aﬁg%yen reépoﬁse pattern and then, given a new

set of locations, to reassess the response patterns to determine if a new

set of dispatch preferences (and thus response patterns) could improve

i)

o

o i i o L A
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system performance further. This alternative iterative procedure is

analogous to the "locate -~ allocate'" scheme often used in deterministic

. location theory [1].

Jarvis' algorithﬁsfor the zero capacity case works as follows:
1. Inditialize: Specify initial unit locations for ugits

Q

1,2,...,Q, corresponding to atoms il’iZ""’iQ

2, Allocate: Solve the hypercube model to cbtain p ik k=l,...,Q5

J= 1l,..en

3. Locate: Solve the following L.P problem:

Q n o
min Z I P(v,k) C(v,k) &
k=1 j=1
n . ., ‘
s.t. L P(v,k) =1 k=1,...,Q
v=1 ° )
CPOLE) 20 veTl,...m; k=1,...,Q
where the decision variable P(v,k) is the probabiiity
.that server k isg at mnode v when aveilable ve=1,...,n}
k=1,...,Q; and C(v,k) = jd(V,j) v =1,...,0; .
. A :
k’l,aoc,Qc A

4, Test for Convergence: If the new Q~1ocations are iden~

tical to the old set of Q locations, ggLJg Otherwise
go to step 2 with il,...,iQ - new set of i ‘ocations for
‘units 1,...,k, and reallocate.
Whenever the algotithm terdiinates, at least a iocal optigal solution

is ensured. By taking several different initial sets of locations, the

chences of getting closer to the optimal global solution are dmproved. s

G

It 1s important to observe that step 3 of the algorithm is very simple

becaus§>the problem can be reduced to Q independent trivial problems,

_each corresponding to a standard one-median problem with pik j(j=l 2,...,n)

th

‘being the nodal weight for the k facillty To date in applications, the

allocate step has been performed assuming that server preferences depend
solely on proximity, however, mére general (multi-attribute) procedures
are allowed at this step. “

The hypercube model can be applied in our congested median network
context., The network G can represent the gé&grapﬁical region R, the nodes
of tﬁe network being the atoms, and the liﬁks being the major streets
connecting\the atome. _We now demonstrate that if we take‘any Q Egin%s in
the network to be the set o; server locations, then F(X ) - the cost func-
tion for the congested median problem (2) turns out to be identical to the

mean region-wide travel time of the hypercube model (10). In terms of

the congested median problem, .the hypercube model disperses Q singie server

facilities over G,

.
N

) Let‘XQ = (11,12,...,1Q) be a eet of Q ooints in G. Then:

P = I o) P

Zhd(y 23) + P(yY) EhC(:i)
. 14q i
Yof¥x(q) ~ ot

i=1 j=1

Let us consider now any ik e X 9’ k = l,...,Q

o i i

Let Eik,j u{ij € YX{Q; -'{yg}; the server at ik is the mose\preferred

available unit to node j }. Obviously .

Qo .
 P(y.)= 3% I Plyy) #3=1,...,n
- {y° Q" - . | Q
Yo*¥x(q) ??q} SRR AR :

[

RS
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Also ¥ y-e E d’"(yQ,; ) = d(d,1)

83

i3,

and hence by rearranging F( ) we get.

Q —
F(X)) = & Z d(4, ,3) 2 B(y,) h + P(yo) Z h C(j)
. Q k=1 j=1 k YAE Q Q j=1 J
’ : Q j
Let us define p z P(y,)h, which is the fraction of all dis- ’
Pl T Q"3 :
Q%L .3

patches that send the service out from ik to j. Therefore,

Q n
F(X ) = I d(i, ,3) + ?(Y ) Z h c@).
k=1 j=1 P11 Q j==l

. N . :
But C(j) is the cost @gsociated with a service request thét occurs while
i & 5 oo o

all the servers are busy and hence F(XQ) is identical to (10) - the mean

s,

region wide travel time.

| The conclusion of this discussion is that since the assumptions of

s

Theorem 1 hold for the hypercube model (subject to our discussion of ser~ |

vice times) both the,hypercube model and Jarvis' algorithm do not guffer
- from a loss of generality by consmdering locations only on the atoms. In ‘
] } ; W
addition Jarvis' algorithm can be applied to the congested median problem \(

‘whenever the hypercube model's assumptions are accepted, - This result tiles .

together two very different approaches in location theory, onme which is
purely deterministic as the‘median problem and another one which is sto-

chastic as the hypercube model. Lo T e 1

éf%) A

\c,

b 3 . > . g
i ®, . El W 3 B AN . ’
cw A . ) oo 3

| for each one of the three units is exponential with identical means ) l==l

T8 .

The following example will illustrate some of our previous discussion.

Suppose we want to locate three facilities‘on the simple network shown in

Figure 1.

«25

Figure 1

b

A Simple 5 Node Netirork

The numbers next to the nodes are the fractions of demands from each node

Aj; i =1,...,5 and the numbers next to the links are the travel times,

There are (2) possible distinct locations:

{1,2,3}, {1,2,4} , {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5},
12,341 5 {2,3;5}, {2,4,5), {3,4,5} .

The optimal location according to the standard 3-median'prob1em is {1,2,5},
| which can be obtained by hand. Suppose however that service requests

oceur in the network in a Poisson fashion with k 4 and the serv1ce time |

>

, Let us assume a’ ‘Zero capacity queue with R = 5 units of time ~ the cost

Weas g TR R R e

a5 e S e o e e S e s e B T

RTESC
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resulting when dispatching the reserve unit. We also assume that server
preferences are determined solely by geograﬁhical proximity.

The Jarvis algorithm with an initial location at the absolute 3~-median,
i.e., {1,2,5}, converges after one iteration to the optimal solution at
location {2,3,5}. The improvemént achieved by moving from the location
{1,2,5} to {2,3,5} is 3% in terms of the congested median problem. It is
interesting to realize that the location {2,3,5} is among the weakest
possible locations in terms of the standard median problem. This indi-

cates that blind application of the absolute (deterministic) median problem

can lead to eérroneous results, even for.-such simple networks.
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