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Abstrac@ .

Inverted factor analysis was evaluated on 20 previously studied multi-
variate miXtures. Two methods of determining number of factors and two
rotational methods--orthogonal varimax and oblique direct quartimin--were
compared, Objects were assigned to groups on the basis of highest absolute
factor loadings, with the mimimum loading required for assignment systematically
varied. Rotational méthods did not differ significantiy in either accuracy or
coverage of the resulting classifications. Paradoxically, setting the number
of factors equal to the number of under1yiﬁg populations resuited in less
accurate solutions than determining the number of facgprs empirically by
Cattell's scree test. More importantly, the inverted factoring technique was
found to be as accurate as the best hierarchial clustering algorithms previ-
ously tested on these mixtures. Thus, despite the implausibility of the
factor analytic model for generating typologies--and numeroﬁs other problems
and criticisms~--inverted factor analysis appears to be a useful taxonomic

tool.
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Inverted Factor Analysis: An Evaluation using Benchmark Data Sets

Inverted factor analysis, also known as Q-factor analysis, inverse factor
analysis, and profile factor analysis, is one of the oldest and most widely
used procedures for constructing typologies in the behavioral sciehces. The
basic‘n?tiona1e of this procedure has not changed since Stephenson introduced
the "igverted factor technique" in 1936. In fact, Stephenson's original.
articles (1936a,b) still provide a lucid introduction to the method. In the
past 30 years,'inverted factor analysis has been used in numerous studies to
identify subtypes of individuals, particularly in thé areas of psychiatry and
deviant behavior (Butler & Adams, 1966; Collins, Burger & Taylor, 1976;
Fleiss, Lawlor, Platman & Fieve, 1971; Guertin, 1952, Katz & Cole, 1963;
Monro, 1955; Overall, Hollister, Johnson & Pennington, 1966; Raskin & prook,
1963). The inverted factor technique has also been discussed in several
methodological treatises (Baggaley, 1964; Broverman, 1961; Cattell, 1952;
Morf, Miller and Syrotuik, 1976; Overall and Klett, 1972; Ross, 1963; Ryder,
1966; Stephenson, 1953),

Despite its historical precedence and diverse applications, inverted factor
analysis has been strongly criticized as a method of generating typologies
(Baggaley, 1964; Fleiss et al, 1971; Fleiss, 1972; Fleiss & Zubin, 1969;
Jones, 1968; Lorr, 1966). A standard criticism has involved the use of the
product-moment correlation index similarity between individuals. The correla-
tion coefficient indexes similarity only in profile shape, not elevation or
scatter. Moreover, a correlation of 1,00 does not necessarily indicate that
two profiles have identical shape, but only that they are linear functions
of one another (see Edelbrock &‘McLaugh11n, 1980; and Fleiss & Zubin, 1969 for
more detailed discussions). This criticism is not unique to inverted factor

analysis, however, in that a variety of clustering methods can employ the
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correlation coefficient as the measure of profile similarity (e.g., Carlson,

1972; Edelbrock, 1979; Lorr, Bishop & McNair, 1965; Lorr & Radhakrishnan,

- 1967).

Several other criticisms have been raised that are more pertinent
to the inverted factoring technique. Fleiss and Zubin (1969), for example,
have questioned the appropriateness of the linear model underlying factor
analysis to the task of generating typologies of individuals. In particular,
they have asked whether it makes any sense to say that an individual represents
“X" amount of one type plus "Y" amount of another type, and so on. Lorr
(1966) has further questioned the rationale of rotat{ng_g-factors. Even if
unrotated factor loadings represent similarity to uqéerlying "types", what is
the meaning of transforming such loadings so as to Better approximate simple
structure?

Fleiss and Zubin have also objected that the number of types one may
identify is limited by the number of variables in the analysis. The maximum
number of facturs that can be extracted from a correlation matrix is equal to
the rank of the matrix. For a matrix of Q-correlations, rank is at most p -
1, where p equals the number of variables. Fleiss and Zubin therefore reasoned
that the maximum number of types one can identify is equal to the number of
variables minus 1. This is obviously a problem when one has few variables
with which to work, but seeks to identify several types of individuals.

Achenbach and Edelbrock (1981) have noted an additional problem involving
procedures of factor extraction. Since the first factor typically extracts
the most variance from th; correlation matrix, it will encompass more indivi-
duals having high loadings than subsequent factors. This bias towards con-
structing one large group followed by successively smaller and smailer groups

1s rarely justified in taxonomic research. Clearly, the relative size of the
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groups should be determined by the data, not the taxometric procedure. Other
methodological problems and issues include: (a) translating factor scores
into discrete groups of individuals, (b) determining the appropriate number of
factors, and (c) selecting a rotational procedure. The latter two‘problems
also arise in regular R-factor analysis and have been discussed in detail
elsewhé;e (cf. Mulaik, 1972; Harman, 1976).

Given these problems and_criticisms, one would expect inverted factor
analysis to have been laid to rest long ago--but this is not the case. More
than 40 years after its inception, the technique is still in use. Furthermore,
it has generated heuristically valuable and predictive typologies. A parti-
cularly good example is the nosology of depression constructed by Overall et
al (1966). Using an inverted factoring procedure (Overall & Porterfield,
1963), three subtypes of depressed patients were identified, based on scores

on the Brief Psychiatric Rating Scale. In a subsequent dbuble-b]ind comparison,

the three subtypes (labelled Anxious, Hostile, and Retarded) were found to

differ markedly in terms of response to anti-depressant drugs. The value of
inverted factor analysis in taxonomic research has been corroborated by
several other recent studies (Collins et al, 1976; Evenson, Altman, Sletten &
Knowles, 1973; Kunce, Ryan & Eckelman, 1976; Meyer & Kline, 1977; Raskin &
Crook, 1976).

A Reconsideration

There are several compelling reasons for reconsidering inverted factor
analysis as a taxonomic tool. For one, fruitful applications of the technique
would appear to mitigate any,methodological criticismé. Second, some points
of criticism are patently wrong: For example, although the number of'factors
may be limited to p’'~ 1, the number of types is not limited to the number of
factors. In practice, inverted factor‘analysis may yield ngglgg factors
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comprised of both positive and negative Toadings. Such bipolar factors have

b “two i
een taken to represent tws underlying types manifesting opposite patterns of
scores. Carlson et al (1976), for instance, obtained only four factors, but

because each was bipolar, eight subtypes were identified. Third, some

criticisms are based on dogma, not empirical facts. Some recent studies

suggest that long-established psychometric dogma is in desperate need of
revision. For example, despite the so-called "superiority" of distance
measures for indexing profile similarity (e.g., Eades, 1965; Fieiss & Zubin,
1969: p. 239), recent Monte Carlo studies of hierarchical clustering methods
have shown that correlation yields substantially better recovery of underlying
mixture populations than Euclidean distance (EdeWbréck, 1979; Edelbrock &
McLaughlin, 1980). Finally, there have been very few attempts to test the
inverted factoring technique empirically against other methods. One exception
is the recent study by Blashfield and Morey (1980). Using Monte Carlo proce-
dures, data sets designed to mimic MMPI psychotic, neurotic, and personality
disorder patterns werg generated then analyzed by inverted factor analysis,
Lorr's non-hierarchical clumping procedure (Lorr et al, 1965), a hierarchical
clustering algorithm called aVerage linkage, and Ward's (1963) minimum variance

technique. Blashfield and Morey concluded that the average linkage method

yielded the best clustering solutions. For some data sets, however, the

inverted factoring technique resulted in substantially fewer misclassifications
than the other three methods.

? Purpose of this Study

The purpose of this study was to evaluate inverted factor analysis on a
standard set of mu]tivariate mixtures. This research builds on Blashfield and
. . ,
Morey's recent study in the following ways: (a) a broad range of multivariate

mixtures differing in number of vafiab]es, number of underlying populations
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difficulty of solution, etc., were analyzed, (b) two methods of determining
number of factors were tested, (c) two rotational procedures--one orthogonal
the other oblique--were compared, and (d) the effects of varying the minimum
loading.required for classification were systematically evaluated. In addition,
compé}ﬁ%dns between the inverted factoring technique and several hierarqhica1
clustering algorithms were made.
Methods

Data Sets

It has been argued previously (Edelbrock, 1979; Edelbrock & McLaughlin,
1980) that eQa]uations of taxometric methods should include test on "benchmark"
data sets--that is, data sets have been well-characterized, are‘available to
other investigators, and have been used in previous mixture model studies.
Such benchmark data sets provide a common standard agéinst which to compare
clustering and classification methods and thus increase the generalizability
of mixture model tests. With this in mind, 20 multivariate normal mix-
tures generated by Blashfield (1976) were selected fbr this study. These
mixtures mimic real data in many ways, including (a) }epresentative range of
number of variables and pdpu]ations, (b) quasi~normal distribution parameters,
(c) addition of "measurement" error to scores, and (d) varying strength and
complexity of the covaviance structure of the underlying populations. These
data sets have ;150 béen used in previous tests of hierarchical clustering

algorithms (Blashfield, 1976; Edelbrock, 1979; Edelbrock & McLaughlin, 1980),

so direct comparisons across studies are possible. s 4
. )
Procedures *

Data were double-centered according to the rationale and procedure
. given by Overall and Klett (1972; pp. 203-204). Variables were standardized

(mean = 0, sd = 1) and scores were then standardized equiva]entTy across objects.

, ' Inverted Factor Analysis
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Each of the 20 (object X variable) data sets was then inverted (i.e., to
represent a variable X object matrix) and subjected to principai-compdnents
factor analysis using the BMDP4M - program. It'is important to note that
double-centering the data results in bipo]ar%ty of the unrotated factors.
However, it does not necessarily result in bipolarity in the rotated factors,

which were used here.

Two procedures were used to determine the number of factors. First, for

each mixture, the number of factors was set to equal the number of underlying

populations. Since the rotated factors were not bipolar, each factor comprised
only one group of objects having high loadings in the’ same direction. Thus,
determing the number of factors in this way is tantamount to setting the

number of groups (j) equal to the number of underlying populations (k). These

" 20 analyses are subsequently designated by the notation j = k.

Second, the number of factors was determined by examining eigen values.
For these data sets, the commonly used "eigen value greater than 1" rule
resulted in consicerable over-factoring. A few factors having large eigen
values were obtained followed by several having eigen values slightly greater
than 1.00. This problem was also encountered by Blashfield and Morey {1980).

Following their procedure, Cattell's (1966) scree test was used to determine

_ number of factors. In this study, both investigators examined the eigen value

plot for each mixture and independently selected the number of factors.
Although we agreed for all 20 mixtures, the number of factors indicated by '
the scree test did not always equal the number of underlying populations. For
eight mixtures, the number of factors equalled one more than the number of
underlying populations (i.e., k + 1). These 20 ané]yses’are subsequently

designated by the notation j # k (i.e., the number of groups did not neces-

" sarily equal the number of popuiations).
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‘One issue in factor analysis is whether to construct orthogonal (uncor-

related) or oblique (correlated) factors. This is an important consideration

. when deriving typologies because rotational procedures substantially affect

final factor loadings, which are the basis for constructing groups. Most
previous abp]ications of inverted factor analysis (e.g., Blashfield & Morey,
1980;}9%Tlins et al, 1976; Fleiss et al, 1971; Katz & Cole, 1965) involved the
variméx rotation-~an orthogonal procedure. In this study, both varimax .
(orthogonal) ind direct quartimin (oblique) rotations were compared. This
yields four analyses of 20 mixtures each: j =k and jJ # k with e%ther
varimax or direct quartimin rotation. ‘

A crucial issue that arises in inverted factor analysis involves translat-
ing factor loadings into discrete groups of objects or individuals. A common
procedure has been to assign individuals to groups on the basis of highest
factor loadings (in terms of absolute value). Some investigators have speci-
fied a minimum loading required for classification. Fleiss et al (1971), for
example, selected a minmum loading of .40, Individuals‘whose highest loadings
were less than .40 were left unclassified. In their Monte Carlo study,
Blashfield and Morey (1980) sé]ected a minimum loading of .60, with the

additional criterion that an object could not have a loading of .60 or higher

on any other factor. These rather stringent criteria reduce coverage substan-

tially, but result in more distinct and homogeneous groups. |

In this study, objects were assigned to groups on the basis of their
highest 1oadings. This is a simple procedure for COnstructiﬁg groups, but the
coverage of the resulting classification can be manipulated by simply changing
the minimum loading required\fer assigniient. A lTow cutoff point results in
'the classifiéaﬁion of a high proportion of objects into be1ative1y heterogenous
groups, whereas a high cutoff point results in the c1éssification of a low

- proportion of objects into more distinct, non-overlapping groups. This
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_ assignment procedure therefore makes it possible to evaluate classifications

at several levels of coverage.

- Calculating Accuracy

The accuracy of the inverted factor solutions was defined as the agreement
between the obtained groups and the underlying populations in the mixtures. A
wide variety of statistics have been used to measure accuracy in mixture model
studies, and there is little consensus regarding the "best" accuracy measure.
Kappa (Cohen, 1960) and Rand's statistic (Rand, 1971) have been used in many
studies (e.g., Blashfield, 1976; Edelbrock, 1979; Edelbrock & McLaughlin,
1980; Kuiper & Fisher, 1975; Milligan & Isaac, 1980; Mojena, 1977; Rand,
1971). Both of these measures have drawbacks. Kappa<has the édvantage of
correcting for chance level of agreement in é cross~classification, but it is
appropriate only for square matrices (i.e., j = k). Rand's statistic does not
require that j = k, but the scale is not uniform from matrix to matrix. That
is, the lower bound of Rand's statistic is not zero but is determined by the
marginal distributions of the cross-classification.

One way to overcome the idiosyncracies inherent in individual measures is
to use multiple criteria for evaluating accubacy. Six measures, including

kappa, Rand's statistic, asymmetric lambda, tau, Kramer's v, and the contingency

coefficient were used in this study. We chose to report our main findings in

terms of asymmetric Tambda for several reasons. This statistic is appropriate
for nominal level cross-classifications, has a range of zero to 1,00, and can
be used with either,squar%l(j = k) or rectangular (j # k) matrices. The
"asymmetrical® aspect of this statistic élso seems well suited to the task of
measuring accuracy. The term "asymmetrical" refers to the fact that 1§mbda
indexes the degree to which‘one classification predicts another, and not vice

versa. In mixture model studies, the underlying populations comprise a fixed
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or dependent classification, predicted by empirically derived groups that are
free to vary.

Although we repoft our main findings in terms of asymmetric lambda, we
also report summary statistics in terms of kappa and Rand's statistic. This
permiﬁg direct comparisons with previous studies. Finally, it is worth noting
that gﬁr conclusions regarding the relative accuracy of various methods were
identical for all six measu}es we explored. This is not surprising, since
such measures ;re all founded on th2 same information extracted from the ’
cross-classification matrix (cf. Hubert & Levin, 1976). Furthermore, in these
analysis, the six measures of accuracy correlated >.95 with one another.

tatistical Analyses

For each of the 80 inverted factcr solutions, objects were classi-
fied according to their highest loadings. Accurgcy was then calculated s
at seven levels of coverage dictated by the following minimum loadings:
;0, .4, :5, »6, +7, .8, and .9. These minimum loadings between were selected
because: (a) all objects had highest loadings greater than .0, thus a cutoff
point of .0 yields 100% coverage, (b) very few objects had highest loadings
between .0, and .4 so accuracy and coverage varied iittle in this interval,
and (c) there were too few loadings above .9 to calculate accuracy.

Accuracy and‘coverage values were analyzed in separate 2 x 2 x 7 analyses
k vs. J # k) rotational

of variance representing: number of factors (j =

methods (varimax vs. direct quartimin), and minimum loading (.0 to .9),

- respectively.

\ Results

-

Main results are portrayed graphically in Figures 1 and 2, These figures
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show the relations between the minimum loading required for classifica-

tion and both accuracy (left axis) and coverage (right axis). Figure 1

depicts accuracy and coverage functions for the j = k solutions, whereas

Figure 2 despicts results for the j # k solutions., Overall, accuracy and

coverage were-significantly related to the minimum loading (p <.001), but in

opposite ways. Raising the minimum lToading uniformly increased accuracy, but

decreased coveruge to a greater and greater extent. No significant differences

(F <1.00) were detected between varimax and direct quartimin rotations for

either j = k or j # k solutions. Varimax solutions resulted in consistently

higher accuracy and coverage, however.

Paradoxically, j # k solutions resulted in significantly higher

accuracy and coverage than j = k solutions (p <.01). This was the case

for both rotational methods, Figure 3 portrays accuracy differences between J
=k and j # k solutions in a manner that eqdates them for coverage, Accuracy
is shown as a function of coverage, rather than as a function of the minimum

loadings as in Figures 1 and 2. At all levels of coverage, j # k solutions

= k solutions.

resulted in significantly higher accuracy and j Examination

SO Mmoo e me e met e e e

of the eight mixtures where J # k confirmed that constraining the number of
factors to equal the number of under]ylng groups substantially reduced accuracy.

For these mixtures, h1gher accuracy was achieved when the number of groups was

‘determIned empirically by Cattell S scree test,

Comparisons with Othep Methods

Ina previous study (Ede]brock & McLaughlin, 1980), 18 hierarchical
clusterlng a1gor1thms were tested on the 20 benchmark m1xtures. The algorithms

()
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included single, complete, average, and centroid linkage using either Euclidean
distance, corre]ation,_or the one-way or two-way intraclass correlation as the
similarity measure; Ward's minimum variance technique; and a random algorithm
used to establish a baseline control for evaluating methods. Two problems
arise‘wben making comparisons between inverted factor analysis and these
hieraréhical methods.,. First, the accuracy of each hierarchical method was
calculated for j = k. That is, the number of clusters alwiys equaled the
number of underlying populations. To make direct comparfsons, it is necessary
to select inverse factor solutions were j = k. This is unfortunate because j
= k solutions were signifiéant]y less accurate than j # k solutions.
Combarisons are therefore based on a conservative estimate of the accuracy of
the inverted factoring technique.

The second problem involves selecting the level of coverage at which to
make comparisons. MWhereas both inverted factor analysis and the hierarchical
methods can yield classifications varying in coverage, this occurs in quite
different ways. For inverted factor analysis, coverage depends upon the
minimum loading required for assignment. For the hierarchical methods,
coverage depends on the selection of the best j clusters at various levels in
the hierarchical tree. This difference appears to represent a bias in favor
of the hierarchical methods. For each mixture, the accuracy of the inverted
factor soiution is based on the same set of factors--only the minimum loading
is varied. The accuracy of each hiergrchica] solution, on the other hand, is
based on diffefent sets of clusters, selected so as to maximize accuracy at
each level in the hierarchicdl tree. This bias is evidenced by the fact
that the accﬁracy of even the random hierarchical algorithm increases as

coverage delcines (see Edelbrock & MclLaughlin, 1980: p. 310),

R
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To make comparisons between methods, accuracies of the j = k varimax
solutions were calculated at 100% coverage. Focusing on 100% coverage
eliminates the biases that can arise at lower levels of coverage. Furthermore,
inverted factor analysis and the best hierarchical methods show uniform
increases in accuracy as coverage declines. Thus, differences at 100% coverage
are likely to be representative of differences at lower levels of coverage.

The mean kappa value for the varimax solutions equaled .65, which
compares quite favorably with accuracies previously reported by Edelbrock &
McLaughlin (1980: p. 310). Specifically, the invertgd factoring technique
was substantially more accurate than 10 of the 18 hierarchical algorithms:
single and complete linkage using any of the four sihi]arity measures, average
and centroid linkage using Fuclidean distance, and the random algorithm.

The j = k varimax solutions were also compared with the most accurate
hierarchical algorithm--average linkage using the one-way intraclass correla-
tion. Mean values for kappa, Rand's statistic, and asymmetric lambda, as well
as paired t-test results, are shown in Table 1. According to all three
measures, the average linkage algorithm was slith]y more accurate than

inverted factor analysis, but not significantly so.
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As a final test, Rand's statistic was calculated for varimax j # k |
solutions: which represed% the highest accuracy attained by inverted factor i
analysis. Edelbrock and ‘McLaughlin previously used Rand's statistic to
evaluate the "best possible" clustering solutions attained hg the 18 hier-

archical methods they examined. Direct comparisons between methods are

AASTHRRERERL o s




Inverted Factor Analygis
1

therefore possible. The average Rand value for the jnverted factoring tech-
nique was .862. This is higher than 11 of the 18 hierarchical methods, and
not significantly different than the most accurate hierarchical algorithm (see
Edelbrock & McLaughlin, 1980: p. 311). .

\ Discussion

In;erted factor analysis is one of the most widely used and widely -
criticized procedures for constructing typologies in the behavioral sciences.
Unfortunate]y,'some critics of the method have simply argued: "It shouldn't
work, therefore it doesn't." Few commentators have backed up their criticisms
with empirical evidence., In this evaluation, the inverted factoring technique
yielded more accurate recovery of underlying populations than many previously
studied hierarchical algorithms. Moreover, the inverted factor technique was
found to be among the most accurate methods yet tested on these benchmark
mixtures. These results agree with the previous study by Morf, Miller and
Syrotuik (1976) who, on the basis of an objective comparison, concluded that
inverted factor analysis was superior to the complece linkage algorithm in
identifying subtypes. of individuals. Thus, inverted factor analysis appears
to be a useful taxonomic tool--despite the implausibility of the factor
analytic model for generating typologies, the “inferiority” of the correlation
coefficient as a measure of profile similarity, and numerous other preblems
(e.g., determining number of factors, assigning objects to groups, etc.).

In terms of recovering underlying mixture populations, differences
between rotational methods were minimal. The more crucial methodological
problem involved selecting the appropriate number of factors. Determining
the number of factors empirica1f& via Cattell's scree test resuited in

more accurate solutions than the alternative procedure of setting the
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number of factors equal to the number of populations. Blashfield and Morey
(1980) a1so reported that the scree test was quite accurate in determining

the correct number of populations in their MMPI Monte Carlo data. This is a

potentially important finding because the scree test does not depend upon a

priori knowledge regarding "true" underlying populations. Thus, this procedure

may be useful in determining number of underlying groups in applications to

real data., This is a major asset of the inverted factor technique. Hiep-

archical clustering algorithms, by contrast, do not produce a discrete number
of clusters, but rather a hierarchical arrangement of objects and groups.
Determining the appropriate number of clusters is an‘unsolved problem, although
some work has been done on developing objective criferia for making this
decision {e.g., Mojena, 1977),

The inverted factor technique also embodies a simple mechanism for

manipulating the coverage of the resulting classifications. In this study,

for example, objects were assigned to groups on the basis of their highest

factor loadings, Raising the minimum loading required for assignment decreased

coverage, but increased accuracy. The ability to vary coverage may be valuable
in research applications. In an epidemiological study, for instance, high
coverage may be desirable in order to account for the generality and distpri-
bution of phenomena in a population. In other situations, it may be advantage-

ous to construct extremely homogeneous groups. This would dictate 1ow coverage,

but the resulting groups would encompass individuals representing relatively

"pure types". Future resdarch should explore different methods of translat-

ing factor loadings into groups. The dual cutoff criteria used by Blashfield

and Morey (1980), for example, appear promising. Such stringent assignment

rules result in reduced coverage, but yield more homogeneous and distinct
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groups. Moreover, such assignment rules may yield typologies that are more
predictive of external criteria.

Finally, additional comparisons among clustering and classification
methods are needed. There are few standard procedures for constricting
empirigally based taxonomies and Tittle is known about the relative merits of
diffegént methods. Objective comparisons are necessary, not only to com?at
dogmatic arguments for or against specific approaches, but also to identify
those procedures best suited to behavioral research. The results obtained
here indicate that inverted factor analysis yields accurate recovery of
underlying populations from multivariate normal‘mixutres. Evaluations on
other types of mixtures and evaluations involving other criteria (e.g. repli-

cability, sensitivity to data perturbation, etc.) would be valuable.
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TABLE 1
Comparison between inverted factor analysis (varimax rotation)

and the average linkage algorithm

Method
Accuracy Inverted Factor Average Paired
Measure Analysis Linkage ‘t-valued
Kappa ~ .655 .793 1.49
Rand .789 . 864 1.44
Lambda .656 .801 1.20

i

Note: Table entries are mean values for 20 mixtures. @df=19. None of the

paired t-tests were significant (p >.10).
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