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Abstract 

Inverted factor analysis was evaluated on 20 previously studied multi­

variate mixtures. Two methods of determining number of factors and t\,/O 

rotational methods--orthogonal varimax and oblique direct quartim'jo--were 

compared. Objects were assigned to groups on the basis of highest absolute 

factor loadings, with the mimimum loading r'equi red for assi gnment systematically 

varied. Rotational methods did not differ significantly in either accuracy or 

coverage of the resulting classifications. Paradoxically, setting the number 

of factors equal to the number of underlying populations resulted in less 

accurate solutions than determining the number of fac~ors empirically by 

Cattell's scree test. More important1y, the inverted factoring technique was 
, < 

found to be as accurate as the best hierarchial clustering algorithms previ-

ously tested on these mixtures. Thus, despite the implausibility of the 

factor analytic model for generating typolog;es--and numerous other problems 

and criticisms--inverted factor analysi s appears to be a useful taxonomic 

tool. 

;. 
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Inverted Factor Analysis: An Evaluation using Benchmark Data Sets 

Inverted factor analysi s, a1 so known as Q .. factor analysi s, inverse factor 

analysis, and profile factor analysis, is one of the oldest and most widely 
. 

used procedures for constructing typologies in the behavioral sciences. The 

basic rfttionale of this procedure has not changed since Stephenson introduced 
• 

I' 

the "ihverted factor technique" in 1936. In fact, Stephenson's original. 

articles (1936a,b) still provide a lucid introduction to the method. In the 

past 30 years, inverted factor analysis has been used in numerous studies to 

identify subtypes of individuals, particularly in the areas of psychiatry and 

deviant behavior (Butler &'Adams, 1966; Collins, Burger & Taylor, 1976; 

Fleiss, Lawlor, Platman & Fieve, 1971; Guertin, 1952, Katz & Cole, 1963; 

Monro, 1955; Overall, Hollister, Johnson & Pennington, 1966; Raskin & Crook, 

1963). The inverted factor tecnnique has also been discussed in several 

methodological treatises (Baggaley, 1964; Broverman, 1961; Cattell, 1952; 

Morf, Miller and Syrotuik, 1976; Overall and Klett, 1972; Ross, 1963; Ryder, 

1966; Stephenson, 1953). 

Despite its historical precedence and diverse applications, inverted factor 

analysis has been strongly criticized as a method of generating typologies 

(Bagga1ey, 1964; Fleiss et al, 1971; Fleiss, 1972; Fleiss & Zubin, 1969; 

Jones, 1968; Lorr, 196~). A standard criticism has involved the use of the 

productwmoment correlation index similarity between individuals. The correla­

tion coefficient indexes similarity only in profile shape, not elevation or 

scatter. Moreover. a correlation of 1.00 does not necessarilx indicate that 

two profiles have identical $hape, but on1y that they are linear functions .. 
of one another (see Edelbrock & McLaughlin, 1980; and F1eiss & Zubin, 1969 for 

more detailed discussions). This criticism is not unique to inverted facto,r 

analysi s, hO\tlever, in that a variety of c1 ustering methods can r:mploy the 
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correlation coefficient as the measure of profile Similarity (e.g., Carlson, 

1972; Edelbrock, 1979; Lorr, Bishop & McNair, 1965; Lorr & Radhakrishnan, 

1967). 

Several other criticisms have been raised that are more pertinent 

to the inverted factoring technique. Fleiss and Zubin (1969), for example, 

have questioned the appropriateness of the linear model underlying factor 

analysis to the task of generating typologies of individuals. In particular, 

they have asked whether it makes any sense to say that an individual represents 

"X II amount of one type pl us IiV" amount of another type, and so on. Lorr 

(1966) has further questioned the rationale of rotating Q-factors. Even if . 
unrotated factor loadings represent similarity to ul1derlying IItypes", what is 

the meaning of transforming such loadings so as to better approximate simple 

structure? 

Fleiss and Zubin have also objected that the number of types one may 

identify is limited by the number of variables in the analysis. The maximum 

number of factors that can be extracted from a correl ation matrix is equal to 

the rank of the matrix. For a matrix of Q-correlations, rank is at most ~ _ 

1, where ~ equals the number of variables. Fleiss and Zubin therefore reasoned 

that the maximum number of types one can identify is equal to the number of 

variables minus 1. This is obviously a problem when one has few variables 

w1th which to work, but seeks to identify several types of indiViduals. 

Achenbach and Edelbrock (1981) have noted an additional problem involving 

procedures of factor extraction. Since the first factor typically extracts 
i 

the most variance from the correlation matrix, it will encompass more indivi-

duals haVing high loadings than subsequent factors. This bias towards con~ 

structing one large group followed by successively smaller and smaller groups 

is rarely justified in taxonomic research. Clearly, the relative size of the 

,i 
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groups should be determined by the data, not the taxometric procedure. Other 

methodological problems and issues include: (a) translating factor scores 

into discrete groups of individuals, (b) determining the appropria~e number of 

factors, and (c) selecting a rotational procedure. The latter two problems 

also ar~se in regular ~-factor analysis and have been discussed in detail 
I 

e1sewh~re (cf. Mulaik, 1972; Harman, 1976). 

Given these problems ana criticisms, one would expect inverted factor 

analysis to have been laid to rest long ago--but this is not the case. More 

than 40 years after its inception, the technique is still in use. Furthermore, 

it has generated heuristically valuable and predictive tYPQlogies. A parti­

cularly good example is the nosology of depression constructed by Overall et 

a1 (1966). Using an inverted factoring procedure (Overall & Porterfield, 

1963), three subtypes of depressed patients were identified, based on scores 

on the Brief Psychiatric Rating Scale. In a subsequent double-blind comparison, 

the three subtypes (labelled Anxious, Hostile, and Retarded) were found to 

differ markedly in terms of response to anti-depressant drugs. The value of 

inverted factor analysis in taxonomic research has been corroborated by 

several other recent studies (Collins et a1, 1976; Evenson, Altman, Sletten & 

Knowles, 1973; Kunce, Ryan & Eckelman, 1976; Meyer & Kline, 1977; Raskin & 

Crook, 1976). 

A Reconsideration 

There are several compel 1 ing reasons fot' reconsidering inverted factor 

analysis as a taxonomic tool. For orie, fruitful applications of the technique 

would appear to mitigate anY,methodo10gica1 criticisms. Second, some.points 

of critic ism are patently wrong: For example. a1 though the number of factors 

may be limited to ~'- 1, the number of types is not limited to the number of 

factors. In practice, inverted factor analySis may yield bipolar factors 

>\-
f 1 

Inverted Factor Analysis 
4 

comprised of both positive and ne'gative loadings. Such bipolar factors have 

been taken to represent 'tw~ underlying types manifesting opposite patterns of 

scores. Carlson et al (1976), for instance, obtained only four factors, but 

because each was bipolar, eight subtypes were identified. Third, some 

criticisms are based on dogma, not empirical facts. Some recent studies 

suggest that long-established psychometric dogma is in desperate need of 

revision. For exampl e, despite the so-call ed "superiority" of distance 

measures for indexing profile Similarity (e.g., Eades, 1965; Fleiss & Zubin, 

1969: p. 239), recent Monte Carlo studies of hierarchical clustering methods 

have shown that correlation yields substantially better recovery of underlying 

mixture popul ations than Euc1 idean di stance (Ede'l br~ck, 1979; Ede1 brock & 

McLaughlin, 1980). Finally, there have been very few attempts to test the 

inverted factoring technique empi rically against other methods. One exception 

is the recent study by B1 ashfiel d and Morey" (1980). Using Monte Carlo proce­

dures. data sets designed to mimic MMPI psychotic, neurotic, and personality 

di sorder
c 

patterns were generated then analyzed by inverted factor analysi s, 

Lorr's non-hierarchical clumping procedure (Lorr et al, 1965), a hierarchical 

clustering algorithm called average linkage, and Ward's (1963) minimum variance 

technique. Blashfield and Morey concluded that the average linkage method 

yielded the best clustering solutions. For some data sets, however, the 

inverted factoring technique resulted in substantially fewer misc1assifications 

than the other three methods. 

t Purpose,of this Study 

The purpose of thi s study was to eval uate inverted factor ana1ysi s on a 

standard set of multivariate mixtures. C This research bUilds on Blashfield and 

Morey's recent study in the following ways: (a) a broad range of multivariate 

mixtures di ffering in number of vari abl es, number of underlyi ng popul ations, 

() 
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difficulty of solution, etc. j were analyzed, (b) two methods of determining 

number of factors were tested, (c) two rotational procedures--one orthogonal 

the other obl ique--\>lere compared, and (d) the eff€:cts of varying the minimum 

loading requireu for classification were systematically evaluated. In addition, 
.. 

compa~isons between the inverted factoring technique arid several hierarchical 

clustering algorithms were made. 

Methods 

Data Sets 

It has been argued pr~viously (Edelbrock, 1979; Edelbrock & McLaughlin, 

1980) that evaluations of taxometric methods should include test on IIbenchmark" 

data sets--that is, data sets have been well-characterfzed, are available to 

other investigators, and have been used in previoos mixture model studies. 

Such benchmark data sets provide a common standard against which to compare 

clustering and classification methods and thus increase the generalizability 

of mixture model tests. With this in mind, 20 multivariate normal mix-

tures generated by Blashfield (1976) were selected for this study. These 

mixtures mimic real data in many ways, including (a) representative range of 

number of variables and populations, (b) quasi-normal distribution parameters, 

(e) addition of "measurement" error to scores, and (d) varying strength and 

compl exity of the c'ovaviance structure of the underlying popul ations. These 

data sets have also been used in prev';ous tests of hierarchical clustering 

algorithms (Blashfield, 1976; Edelbrock, 1979; Edelbrock & McLaughlin, 1980), 

so direct comparisons across studies are possible. 
\ 

Procedures .. 

I 

/ 

Data were double-centered according to the rationale and procedure 

. given by Overall and Klett (1972; pp. 203-204). Variables \-/ere stand,ardized 

(mean = 0, sd = 1) and scores were then standardized equivalently across objects. 
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Each of the 20 (object X variable) data sets was then inverted (i.e., to 

represent a variable X object matrix) and subjected to principal-components 

factor analysis using the BMDP4f1 - program. It is important to note that 

double-centering the data resul ts in bipol arity of the unrotated factors. 

Howev,er, it does not necessarily result in bipolarity in the rotated factors, 

which were used here. 

Two procedures were used to determine the number of factors. First, for 

each mixture, the number of factors was set to equal the number of underlying 

populations. Since the rotated factors were not bipolar, each factor comprised 

only one group of objects having high loadings in the: same direction. Thus, 

determing the number of factors in this way is tantamount to setting the 

number of groups (j) equal to the number of underlying populations (k). These 

20 analyses are subsequently designated by the notation j = k. 

Second, the number of factors was determined by examining eigen values. 

For these data, sets, the commonly used II ei gen val ue greater than 1" rul e 

resulted in consi~9rable over-factoring. A few factors having large eigen 

values were obtained followed by several having eigen values slightly greater 

than 1.00. This problem was also encountered by Blashfield and Morey (1980). 

Following their procedure, Cattell's (1966) scree test was used to determine 

number of factors. In this study, both investigators exami'ned the eigen value 

plot for each mixture and independently sel ected the number of factors. 

Although we agreed for all 20 mixtures, the number of factors indicated by 

the scree test did not always equal the number of underlying populations. For 

eight mixtures, the number of factors equalled one more than the number of 

underlying populations (i.e., k + 1). These 20 analyses are subsequently 

designated by the notation j ~ k (i.e., the number of groups did not neces­

sarily equal the number of populations)8 

owe 
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One issue in factor analysis is whether to construct orthogonal (uncor­

related) or oblique (correlated) factors. This is an important consideration 

. when deriving typologies because rotational procedures substantially affect 

final factor loadings, which are the basis for constructing groups'. Most 

previous applications of inverted factor analysis (e.g., Blashfield & Morey, 

1980; :~Ollins et al, 1976; Fleiss et al, 1971; Katz & Cole, 1965) involved th.e 
! 

varimax rotation--an orthogqnal procedure. In this study, both varimax 

(orthogonal) ind direct quartimin (oblique) rotations were compared. This 

yields four analyses of 20 mixtures each: j = k and j 1 k with either 

varimax or direct quartimi~ rotation. 

A crucial issue that arises in inverted factor analysis involves translat­

ing factor loadings into discrete groups of obj ects or individual s. A common 

procedure has been to assign individuals to groups on the basis of highest 

factor loadings (in terms of absolute value). Some investigators have speci­

fied a minimum loading required for classification. F1eiss et al (1971), for 

example, selected a minmum loading of .40. Individuals whose highest loadings 

were less than .40 were left unclassified. In their Monte Carlo study, 

Blashfield and Morey (1980) selected a minimum loading of .60, with the' 

additional criterion that an object could not have a loading of .60 or higher 

on any other factor. These rather stringent criteria reduce coverage substan­

tially, but result in more distinct and homogeneous groups. 

In this study, objects were assigned to groups on the basis of their 

highest loadings. This is a simple procedure for constructing groups, but the 

coverage of the resulting classification can be manipulated by simply changing 
\ 

the minimum loading reqvired fer assignment. A low cutoff point rE!sults in 

the classification ~f a high proportion of objects into r91atively heterogenous 

groups, whereas a high cutoff point results in the classification of a low 

. proportion of objects into more distinct, non-overlapping groups. This I 
I 

J 

1 
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assi gnment procedure therefore makes it possi b 1 e to eval uate cl assi fi cations 

at several levels of coverage. 

Calculating Accuracy 

The accuracy of the inverted factor solutions was defined as the agreement 

between the obtained groups and the underlying populations in the mixtures. A 

wide variety of statistics have been used to measure accuracy in mixture model 

studies, and there is 1 ittl e consensus regarding the II best II accuracy measure. 

Kappa (Cohen, 1960) and Rand's statistic (Rand, 1971) have been used in many 

studies (e.g., Blashfield, 1976; Edelbrock, 1979; Edelbrock & McLaughlin, 

1980; Kuiper & Fisher, 1975; Milligan & Isaac, 1980; ~ojena, 1977; Rand, 

1971). Both of these measures have drawbacks. Kappa has the advantage of 

correcting for chance level of agreement in a cross-classification, but it is 

appropriate only for squal'e matrices (i.e., j = k). Rand's statistic 'does not 

require that j = k, but the scale is not uniform from matrix to matrix. That 

is, the lower bound of Rand's statistic is not zero but is determined by the 

marginal distributions of the cross-classification. 

One way to overcome the idiosyncracies inherent in individual measures is 

to use multiple criteria for evaluating accuracy. Six measures, including 

kappa, Rand's statistic, asymmetric lambda, ~, Kramer's v, and the contingency 

coefficient were used in this study. We chose to report our main findings in 

terms of asymmetric 1 ambda for several reasons. Thi s stati st ic is appropriate 

for nominal level cross-classifications, has a range of zero to 1.00, and can 

be used with either.squar, (j = k) or rectangular (j 1 k) ma~rices. The 

"asymmetrical II aspect of thi s statistic al so seems well suited to the task of 

measuring accuracy. The term "asymmetricaP refers to the fact that lambda 

indexes the degree to which one classification predicts another, and not vice 

versa. In mixture model studies, the underlyi n9 popul at; ons compri se a fi xed, 

C), 
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or dependent classification, predicted by &mpirical1y derived groups that are 

free to vary. 

Although we report our main findings in terms of asymmetric 1ambda, we 

also report summary statistics in terms of kappa and Rand's statistic. This 

permits direct comparisons with previous studies. Finally, it is worth noting .1-; 

that our conclusions regarding the re1ative'accuracy of various methods'were 

identical for all six measures we explored. This is not surprising, since 

such measures are all founded on the same information extracted from the 

cross-classification matr'ix (cf. Hubert & Levin, 1976). Furthermore, in these 
. 

analysis, the six measures of accuracy correlated >.95 with one another. 

Statistical Analyses 

For each of the 80 inverted factc·r solutions, objects were classi­

fied according to their highest l.oadings. Accur~cy was then calculated 

at seven levels of coverage dictated by the following minimum loadings: 

.0, .4, .5, ~6, .7, .8, and .9. These minimum loadings between were selected 

because: (a) all objects had highest loadings greater than .0, thus a cutoff 

point of .0 yields 100% coverage, (b) very few objects had highest loadings 

between ~O, and .4 so accuracy and coverage varied little in this interval, 

and (c) there were too few loadings above .9 to calculate accuracy. 

Accuracy and coverage val ues \'I€!re analyzed in separate 2 x 2 x 7 analyses 

of variance representing: number of factors (j = k vs. j " k) rotational 

methods (varimax vs. direct quartimin), and minimum loading (.0 to .9), 

respectively. 

Results 

Main results are portrayed graphically in Figures 1 and 2. These figures 

- - - - - - - - - - - - - - -
Insert Figures 1 and 2 here 

-- - - - - - - - - - - ~ - -
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show the relations between the minimum loading required for classifica-

tion ~nd both accuracy (left axis) and coverage (right axis). Figure 1 

depicts accuracy and coverage functions for the j = k solutions, whereas 

Figure 2 despicts results for' the j " k so'lutions. Overall, accuracy and 

coverage were significantly related to the minimum loading (p <.001), but in 

opposite ways. Raising the minimum loading uniformly increased accuracy, but 

decreased coverage to a greater and greater extent. No significant differences 

(F <1.00) were detected between Varimax and direct quartimin rotations for 

either j = k or j " k solutio~s. Varimax solutions resulted in consistently 

higher accurncy and coverage, however. 

Paradoxically, j " k solutions resulted in significantly higher 

accuracy and cov~rage than j = k solutions (p <.01). This was the case 

for both rotational methods. Figure 3 portrays accuracy differences between j 

= k and j " k sol utions in a manner that equates them for' coverage. Accuracy 

is shown as a function of coverage, rather than as a function of the minimum 

loadings as in Figures 1 and 2. At all levels of coverage, j " k solutions 

resulted in significantly higher accuracy and j = k solutions. EXamination 

. . 
Insert Figure 3 here 

.. - - - - - -
of the eight mixtures where j " k confirmed that constraining the number of 

factors to equal the number of underlying groups substantially r~duced accuracy • 
.. 

For these mixtures. highe~ accuracy was achieved when the number of groups was 
--,/ 

determined empirically by Cattell's scree test. 

,Compari sons with Other Methods 

In a previous st~JcfY (Ede1brock & McLaughlin, 1980),18 hierarchical 

clustering algorithms were tested on the 20 benchmark mixtures. The algorithms 

) 
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included single, complete, average, ar.d centroid linkage using either Euclidean 

di stance, correl ation, or the one-\'Iay or two-way jntracl ass correl ation as the 

similarity measure; Ward's minimum variance technique; and a random algorithm 

used to establish a baseline control for evaluating methods. Two problems 

arise w~en making comparisons between inverted factor analysis and these 

hierarchical methods., First, the accuracy of each hierarchical method was 

calculated for j = k. That is, the number of clusters alwiys equaled the 

number of underlying populations. To make direct comparisons, it is necessary 

to select inverse factor solutions were j = k. This is unfortunate because j 

= k solutions were significantly less accurate than j 1 k solutions. 

Comparisons ~re therefore based on a conservative estimate of the accuracy of 

the inverted factoring technique. 

The second problem involves selecting the level of coverage at which to 

make comparisons. Whereas both inverted factor analysis and the hierarchical 

methods can yield classifications varying in coverage, this occurs in quite 

different ways. For inverted factor analysis, coverage depends upon the 

minimum loading required for assignment. For the hierarchical methods, 

coverage depends on the selection of the best j clusters at various levels in 

the hi erarchi cal tree. Thi s 'di fference appears to represent a bi as in favor 

of the hi erarchi cal methods. For each mixture" the accuracy of the inverted 

factor solution is based on the ~ set of factors--only the minimum loading 

is varied. The accuracy of each hierarchical solution, on the other hand, is 

based on different sets of clusters, selected so as to maximize accuracy at 

each level in the hierarchical ~ree. This bias is evidenced by the fact 

that the accuracy of even the random hierarchical algorithm increases as 

coverage del cines (see Edelbrock & McLaughlin, 1980: p. 310). 

, , , 

.. 

• 
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To make comparisons between methods, accuracies of the j = k varimax 

solutions were calculated at 100% coverage. Focusing on 100% coverage 

e1 iminates the biases that can arise at lower 1 evel s of coverage. Furthermore, 

inverted factor ana1ysi s and the best hierarchical methods show uniform 

increases in accuracy as coverage declines. Thus, differences at 100% coverage 

are likely to be representative of differences at lower levels of coverage. 

The mean kappa value for the varimax solutions equaled .65, which 

compares quite favorably with accuracies previously reported by Edelbrock & 

McLaughlin (1980: p. 310). Specifically, the inverted factoring technique . 
was substantially more accurate than 10 of the 18 hie~archical algorithms: 

single and complete linkage using any of the four similarity measures, average 

and centroid linkage using Euclidean distance, and the random algorithm. 

The j = k varimax solutions were also compared with the most accurate 

hierarchical algorithm--average linkage using the one-way intraclass correla­

tion. Mean values for kappa, Rand's statistic, and asymmetric lambda, as well 

as paired t-test results, are shown in Table 1. According to all three 

measures, the average linkage algorithm was slightly more accurate than 

inverted factor analysis, but not significantly so. 

--- - - - ----
Insert Table 1 here 

--- - -- - ---
As a final test, Rand's statistic was calculated for varimax j ~ k 

solutions: which represent the highest accuracy attained by inverted factor 

analysis. Edelbrock and McLaughlin previously used Rand's statistic to 

eval uate the "best possi bl ell c1 ustering sol ut ions attained by the 18 hier-­

archical methods they examined. Direct comparisons between methods are 
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therefore possi b 1 e. The average Rand val ue for the inverted factoring tech­

nique was .862. This is higher than 11 of the 18 hierarchical methods, and 

not significantly different than the most accurate hierarchical algorithm (see 

Edelbrock & Mclaughlin, 1980: p. 311). 

Discussion 
,. 

Inverted factor analysi sis one of the most widely used and widely 

criticized procedures for constructing typologies in the behavioral sciences. 

Unfortunately, 'some critics of the method have simply argued: lilt shaul dn't 

work, therefore it doesn't." Few commentators have backed up their criticisms 

with empirical evidence. In this evaluation, the inverted factoring technique 

yielded more accurate recovery of underlying populations than many previously 

studied hierarchical algorithms. Moreover, the inverted factor technique was 

found to be among the most accurate methods yet tested on these benchmark 

mixtures. These resul ts agree wi th the previous study by Morf J Mill er and 

Syrotuik (1976) who, on the basis of an objective comparison, concluded that 

inverted factor analysis was superior to the comple~e linkage algorithm in 

identifying sUbtypes. of individuals. :rhus, inverted factor analysis appears 

to be a useful taxonomic tool--despite the implausibility of the factor 

analytic model for generating typologies, the "inferiority" of the correl ation 

coefficient as a measure of profile Similarity, and numerous other problems 

(e.g., determining number of factors, aSSigning objects to groups, etc.). 

In terms of recovering underlying mixture populations, differences 

between rotational methods were minimal. The more crucial methodological 

problem involved selecting t~e appropriate number of factors. Determining 
.. 

the number of factors empirically via Cattell's scree test resulted in 

more accurate solutions than the alternative procedure of setting the 
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number of factors equal to the number of populations. 8lashfield and Morey 

(1980) also reported that the scree test was quite accurate in determining 

the correct number of populations in their NHPI Monte Carlo data. Th"ls is a 

potentially important finding because the scree test does not depend upon a 

priori knowledge regarding "true" underlying populations. Thus, this procedure 

may be useful in determining number of underlying groups in applications to 

real data. This is a major asset of the inverted factor technique. Hier­

archical clustering algorithms, by contrast, do not produce a discrete number 

of clusters, but rather a hierarchical arrangement of objects and groups. 

Determining the appropriate number of clusters is an1unsolved problem, although 
. some \'Iork has been done on developing objective criteria for making this 

deCision (e.g., MOjena, 1977). 

The inverted factor technique al so embodies a Simple mechanism for 

manipulating the coverage of the resulting classifications. In this study, 

for example, objects were assigned to groups on the basis of their highest 

factor loadings. RaiSing the minimum load'fng required for aSSignment decreased 

coverage, but increased accuracy. The ability to vary coverage may be valuable 

in re$earch applications. In an epidemiological study, for instance, high 

coverage may be desi rab 1 e in order to account for the general ity and di st.ri .. 

bution of phenomena in a population. In other Situations, it may be advantage­

ous to construct extremely homogeneous groups. This would dictate low coverage, 

but the resulting groups Would encompass individuals representing relatively 

"pure types". Future research should explore different methods of translat .. 

lng factor loadings into groups. The dual cutoff criteria used by 81ashfield 

and Morey (1980), for example, appear promising. Such stringent aSSignment 

rules result in reduced coverage, but yield more homogeneous and distinct. 
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groups. Moreover, such assignment rules may yield typologies that are more 

predictive of external criteria. 

Finally, additional comparisons among clustering and classification 

methods are needed. There are few standard procedures for constructing 

empiri~ally based taxonomies and little is known about the relative merits of 

differ~nt methods. Objective comparisons are necessary, not only to com~at 
dogmatic arguments for or against specific approaches, but also to identify 

those procedures best suited to behavioral research. The results obtained 

here indicate that inverted factor analysis yields accurate recovery of 

underlying populations frQm multivariate normal mixutres. Evaluations on 

other types of mixtures and evaluations involving other criteria (e.g. repli­

cability, sensitivity to data perturbation, etc.) would be valuable. 
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Comparison between inverted factor analysis (varimax rotation) 

and the average linkage algorithm 

Method 

Accuracy Inverted Factor Average Paired 
Measure Analysis Linkage t-valuea 

Kappa .655 .793 1.49 

Rand .789 .864 1.44 

Lambda .656 .801 i.20 

Note: Table entries are mean values for 20 mixtures. adf=19. None of the 

paired t-tests were significant (p >.10) • 
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