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T"OBIT MODELS: A SURVEY 
u ~ 

by 

Takeshi Amemiya* 

I. Introduction 

"C-lobit models refer to" regression models in which the range of the 

dependentvaJ:"iable i~ constraitied in ~bme way. In economics, such a 

model was first suggested in a pioneering work by Tobin [1958]. He 

analyzed household expenditure on durable goods using a regression model 

which s:peL\~fiCallY took account of the fact that the expenditure (the' 
<~ -";-. 

dependent variable of his regression model) cannot be negative. ,obin 

called his model the'model of limited dependent variables. It and its 

() v'llrious generalizations ar-e known popularly among ec~nomists as Tobit 

\\ 
models, a phr,+se coined by Goldberger [1964], becl),use of similarities to 

l?robit models. \) ?:;/" 
These mOdeJ.s are alsokno~~as censored or truncated 

regression mOdels~1J 

Censored and truncated regression models have been developed in 

other disciplines (notably bipmetrics and engineering)' more or less 
(.-!-I u 

',' 

independently of their development in econom~trics. Biometricians u, 

the model to analyze the survival time of a patient. Censo:dng or \1 

.. I! 

~ tru~cation occurs either if a patient is still alive at the last ~~~rv~tion 
,0 

date or if Jle or sh'e cannot be loc~ted. Similarly, engine~rs use the 
~ 

*This 'research was supportedCby a, National Institute of Justice Grant 
No. 8l-IJ-CX-0055 to Rhodes Associates ,. The author is grateful to 
iTeanne E.Anderson, A. Colin Cameron, Yoonbai Kim, and Frederick C. Nold 
for helpfUl suggestions. 
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model to analyze the time to failure of materi'al or of a machine or a 

system. These models are called survival models. 2/ Sociologists and 

econom~sts have also usp.d surviYal models to analyze the duration of 

such phenomena as unemployment, welfare rece~pt, employment in a particular 

job. residing in a particular region~ marriage, and the period of time 

between births)J Mathematically, /)urvi val models belong to the same 
~~ ( 

general class of m,odels as Tobit models and share certain characteristics. 

However, I will not discuss surviVal models in ~his survey because they 

possess spec1a ea ures 0 e1 • 
° 1 f t f th or own They should best be discussed as 

a topic within the large, separate research area of continuous-time Markov 

chain models. The interested reader should consult the rsferences I 

have cited in footnotes 2 and 3 above. 

Between 1958, when Tobin's article appeared, and 1970, the Tobit 

model was used infrequently in econometric applications, but since the 

early 1970's numerous app11ca 10ns rang1ng ° to ° over a wide area of economics 

have appeared and continue to appear. This phenomenon is clearly due to 
,; 

a recent increase in the availability of micro sample survey data which 

the Tobit model analyzes well and to a recent advance in computer technology 

which has mad~estimation of large-scale Tobit models feasible. At 
.. , 

the same time, many ge~eralizations of the Tobit model and various estima-

tion methods for these models have been proposed. In fact, models and 

estfmation methods are now so numerous and diverse that it is difficult 

° t keep track of all the existing models and estimation for econometric1ans 0 0 

methods and maintain a clear notion as to' their relative merits. Thus,. 

it is now particularly useful to examine the! current situation to prep,~~e 

a unified summary and critical assessment of existing results. 
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I will try ,to accomplish this objectjve by means of classifying 

the diverse Tobit models into five basic types. (A review of the 

empirical literatur.e has suggested that roughly 95% of the econometric 

applications of Tobit models fall into one of these five types.) While 

there are many ways to classify Tobit models, I have chosen to classify 

them according to the form of the likelihood function. This way seems 

to me to "be the statistically most useful classificati'6n because a 
" 

similarity of the likeli~pod function implies a similarity of the appropriate 

estimation and cQmputation methods. It is interesting to note that two 

models which superficially seem to be very different from each other can 

be shown to belong to the same type when they are cl~ssified according 

to my scheme. 

The remainder of the paper consists of two sections; Section II 

deals with the Standard Tobit model (or Type 1 Tobit) and Section III 

deals with the remaining four types of models. Basic estimation methods, \\ -. 
~ ~ 

which with a slight modification can be a,p;plied to any of the five types, 

are discuss~a'a.t great length in Section II. More specialized estimation 
\" II 

methods are disCUSSE!d in relevant passages throughout the paper. Each 

model is illustrated with a few empiricb...':lexamples. 

I should note the topics, in addition to the survival models men-

., tioned above, which I do not discuss. I do not discuss disequilibrium 

. models except for a few basic models which ~re examined in Section III.E.5. 

Nor do Som~ general ,references on disequilibrium mode.ls are cited above. 

I"discuss the related topic of switching regr.ession models. For a survey 

on these topics ,'the reader should consult Maddala [1980]. I do not 

" ' , 
'I 

, i 
; 1 
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discuss Tobit models for panel data (individua1sob~erved through time), 

except to mention a few papers in relevant passages, since they can be 

best discussed with survival models. 

The econometrics text books which discuss Tobit models (with 

the +elevant page numbers) are Goldberger [1964], pp. 251-255; l~ddala 

[1977c], pp. 162-171; and Judge, Griffiths, Hill, and Lee [1980], 

pp. 609-616. Madda1a's survey paper [1980] mentioned above also contains 

some d:tscuss:ton o. on:t mo e • . . fT' . t d Is There are two more short surveys by 

MaQdala [1977a and b]. However, none of these references offer a com-

prehensive discussion of Tobit models. 
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II. Standard Tobit Model (TYpe 1 Tobit). 

A. Definition of the Model 
------- .. -- --.. ----

/: 
household expenditures on a durable good and household incomes looks 

'Tobin [1958] noted that the o;bserved relationship between 
'. 

like Figure 2.1, where each dot represents an obst~rvation of a parti~u1ar 

household. An important characteristic of the data is that there are 

several observations where the ex(~enditure is zero. This feat'llre destroys 

the linearity assumption so that the least squares method is clearly 

inapproprb.te. Should one fit a nonlinear relationship? First, one must 

determine a statistical model which can ~enerate the kind of data 
I; 

" depicted in F.igure 2.1. In doing so th~ first fa.ct one should recognize 

is that one cannot use ~my continuous density to explain the conditional 

distribution of expenditure given incom~ because a continuous densi~y is 

)} 
II 
(( 

., 

Figure 2.1 

Expenditure 

• • 
• • • 

• • • 
----~_4----~ ____ ~ ___ .----________ ___ 

o Income 

o 
-, _.Ie. .I ...... ·,~··"""_J,._ .... _""h ___ "._ .. _"" .... - .. ¥o--_ .... ~ __ ,.-..._V'. ___ h._. _._ 
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inconsistent with the fact that there are sever~l observations at zero. 
',\ 

Below I develop a crude utility maximization moddl to explain the 

phenomenon in question. 

Define the symbols needed for the utility maximization model 

as follows: 

y a household's expenditure on a durable good, 

the priC::e of the cheapest available durable good, 

z all the other expenditure, 

X. income. (1 

A household is assumed to/ maximize utility U(y,z) ,subJect to the budget 

cqnstraint y+z;x artd the boundary constraint or y = o. 
Sup~ose y* is the solution of the maximization subject to y+z;x 

but ignoring the other constraint, (jLnd assume y* = 13
1 

+ 13
2
x + u, where 

u may be interpreted as the collection of all the unobservable variables 

which/~ffect the utility function. Then, the solution to t.he original 

problem, denoted by y, can be defined by 

[y = y* 

.. l = 0 or 

if 

if 

y* > yO 

y* ; yo 

If we assume that u is a random variable and that yo varies with 

househOlds but is assumed known, this model will generate d~ta like 

Figure 2.1. We can write the likelihood func~ion for n 

observations from the model (2.1) as: 

independent. 

'\,' 

• 

(I 

(.1 I 
1 

(I 

() . 

c·1 .,1 t 

(} 

o 

, j 

1 

I 

.. 

(2.2) 
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L = II: F. (yo') II f. (y. ) o ~ ~ 1 ~ ~ 

where Fi ~~d fi are th€ distribution and density function respectively 

of y~, II means the ~roduct over those i 
~ 0 

means the product Over those i for which 

for which 

Y*. > Y 
~ Oi· 

y! ; YOi' and II 
1 

Note that the 

actual value of y when y* ; YO has no effect on the l.ikelihood func­

tion. Therefore., the second line 'of equation (2.1) may be changed to 

the statement "if y* ~ Yo' one merely observes that fact. ii' 

The model originally proposed by Tobin [1958] is essentially the 

same as the abo'V'e except that he specifically assumed y* to be normally 

distributed and asstuned yO to be the same for all households. We will 

define the Standard Tobit model (or TYPe 1 Tobit) as follows: 

(2.3) y* = x!13 + u. , i ~ ~ i = 1,2, ... ,n, 

(2.4) 
if y~ > 0 

~ 

l.f y~ < 0 
~ 

. 2) are assumed to be i.i.d. drawings from N(O,a • It is 

assumed t~t (Y i) an, (xi) are "observed 

{y!} are unobserved if~ly! .~ o. Defining 

for i ~ 1,2, ••• ,1l but 

X to be the n x K matrix 
~ 

whose i-th row fs -1 n, X c" • t . d f' . t 4/ lim n X ~s pos~ ~ve e ~n~ e.-

" As I stated in the previous paragraph, obs~rving Yi = 0 is equivalent 

to observing Y~ < o. 
~ = 

<II. 

'f 
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Note that yi! > 0 
~ 

-.8-

and yi! < 0 
~ = in (2.4) may be changed to 

y! > YO and y! ~ YO without essentially changing the mo~~l, whether 

YO is known or unkpown, since YO can be absorbed into the constant 

term of the regression. If, however, YOi changes with i and is 

k..1'lown for every i, the model is slightly changed because the resulting 

model would be essentially equivalent to the model defined by (2.3) and 

(2.4) where one of the elements of f3 other than the constant term is 

known. The mOdel where YOi changes with i and is unknown is not 

generally est~.mable. 

Though not needed immediately, it will be later useful to define 

the binary variable w •. 
~ 

w. 
~ =c 

by 

if 

if 

yi! > 0 
~ 

yi! < 0 
~ 

The likelihood function of t~~:':Standard Tobit model is given by 
/) , 

(2.6) 

(( 

II 
II , 

- x!f3)/o] " 
1. 

where ~ and ~ are the distribution and density function respectively 

of the standard normal Yf.!riable. 

The Tobit model belongs to what is sometimes known as the censored 

regression ~odel. In contrast, if Ol'.e observ~s. neither y i 

when yi! <: 0, the model is known as a truncated regression model.·c The 
~ = 

likelihood function of the truncated version of the Tobit model can 

be written as 

'1 

(; 

ell 

o 

1.[ 

01 

) 

I 

II 

'\ 
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(2.7) 

Henceforth, the Standard Tobit model refers to the model defined by 

(2.3) and (2.4), namely a censored regression model, and the model 

whose likelihood function is given by (2.7) ,-iill be called the truncated 

Standard Tobit model. 

B. Em~ical Examples 

Tobin [1958] obtained the maximum likelihood estimates of his 

model applied to ,data on 735 nonfarm households obtained from Surveys of 

Consumer Finances. The depend6tit variable of his estimated model was 
\\. ,-

actually the ratio of total durable good~expenditure to disposable income 

and the independent variable~) were the age of the head of the household 

and the ratio of liquid assets to disposable income. 

Since then, and especially since the early 1970's, numeroua applica­

tions of the Standard,.~Jbi t model have appeared in ~E.onomic journals, 

encompassin~ If wide 'rang~ of l:lf~elds in economics. I will present below 
" () 

a brief list of recent repres~;ntative papers,'with a description of 

the dependent variable and the main i.ndeli~ndent variables. In all the 

papers except KofJlikoff, who uses a two-step estimation method which 

I will discuss later, the method of est'imation is maximum likelihood. 

Adams [1980] 

y: Inheritance. 

x: Income, marital status, number of childre~. 

,0 

-

,,'_I' 

I' 
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Ashenfelter and Ram [1979] 

y: Ratio of unemployed/hours to employed hours. 

x~ Years of schooling, working experience. 

Fair [1978] 

y: Number of extra-marital affairs. 

x: Sex, age, number of years married, number of children, 

education, occupation, degree of religiousness. 

Keeley, Robins, Spiegelman. and West [1978J 

y: Hours worked after a Negative Income Tax program. 
I) 

PreJprogram nours worked, change in the wage rate, x: 

family characteristi~s. 

Kotlikoff [1979] 

y: Expected age of retirement. 

x: 
Ii 

/,/ Ratio of social'security benefits 1<1st at :full time 
\\ 

w"rk to full time earnings. 

Re~ce ' ['1979 J 

y: Charituble contributions. 

x: Price of contributions,~income. 

Rosenzweig [1980] 

y: Annual days worked. 

" x: Wages of husbands and wives, education Of(jhUSiban,ds and 

wives, income. 

Stephenson and McDonald [1979] 

"."'~ #-"h::"~.,j~,:';;:~~:':;.;<":';':;:';'>=~$"""""""'" ",.p~. 

y: Family earnings after a Negative Income Tax program. 

x: Earnings before the program, husband's and wife's 
U it 

( . 

01 

o 

! 

tIS 

.. 

. 
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education, o~her family characteristics, unemploy-

ment rate, seasonal dummies. 

Wiggins [1981 J, 
' .. ' 

y: Annual marketing of new "chemical entities. 

x: Research expenditure of the pharmaceutical industry, 

stringency of government. regulatory standards. 
f!~f 

Witte [1980] 

y: Number of arrests (o~,convi9tions) per month after 

release from prison. 

x: Accumulated work't;~lease funds, number of months after 

release until first job, wage rate after release, age, 

race, drug }lse. 

~I 

c. Properties of Estimators Under Standard Assumptions 
\\ ;, 

In this section I will discuss the properties of various 

estimators of the Tobit model under the assumptions of the model. The 

estimators I consider ar~ probit maximum likelihood (ML), least squares 
" .-:!.! 

(LS), Heckman's two-step~ nonlinear least squares (NLLS), nonlinear 
/Ii 

weighted least squaz',es (NLWLS), and the Tobit MI.. 

1. Probit MLE: The 
)) 

f( 

T?bit 
\\ lJ 

\\ 

triVially rewritten as follows: 
\\.., 

likeliho(~ function (2.6) can be 

(2.8) L = IT [1 -~(x!S/cr)] IT ~(x!S/cr) • 
l. 'l. o ' 1 a . 

" 1 1 
IT ~(x!S/cr)- cr- ~[(Y. - i'!S)/cr] 
1 l. l. ~ 

--
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Then, t~e first two products of the right-hand side of (2.8) constitute 

the likelihood function of a probit model, and ,the last product is 

the like:~ihood function of the truncated Tobit model as given, in (2.7). 

The probit ML estimator of a:: a/a, denoted a, is obtained by maximizing 

the logarithm-of the first two products~ The maximization must be done 

by an interation scheme such as Newton-Raphson or the method of scoring 

(see Amemiya [1981b, p. 1496]), with convergence always assured by the 

global concavity of the logarithmic iikelihood function. 51 

The probit MLE is consistent and one can show by a standard method 

(see, for example, ~emiya [1978, p. 1196]) 

where ~O is the n x n dia~o~al matrix whose i-th element is 4> (xia ) , 
- \\,,\ .,. 

Pl is the n x n diagonal matrix whose i-th element is 

~{x!a)-l[l _~{x!a)]-1~{x!a)2 and w is the vectorc~hose i-th element l. l. ,l. 

is 'the w. 
l. defined in (2.5). (See footnote 4 for usage of the symbol 

Note that the i-th element of Ew is equal to ~ (xi a ).. The symbol ~ 

-. ) 

means that both sides have the same as~ptotic d · t ·b t· 6/ The efore l.S rl. u l.on.- l' , 

a ~s asymptotically normal with mean a and asymptotic variance-covariance 

matrix given by 

(2.10) Va = (X'D X)-l 
... ~l_ 

N.ot~ thattone can only estimate the ratio a/a by thiS method 

and nJ f3 '~\~r~'} a separately.' Since the estimator ignores a part of 
~I ( 

\~. ) 

Q 

l;' ~ r 
( I 

1\ 
\\ 

,. 

{ 
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the likelihood function. that involves f3 and at it is not fully 

efficient. " This loss of efficiency is not surprising when Olle realizes 
() 

that the estimator uS.es only the, sign of y'i!, ignoring its numerical 
l. 

value even when it is observed. The main usefulness of the estimator 

is for providing the first step of Heckman's two-step estimator as I 

will shou' later. 

2. LS: From Figure 2.1 it is clear that the least 

squares regression of expenditure on income using all the observations 

including zero expenditures yields biased estimates. Though it is not 

so clear from the figure, the least squares regression using only the 

positive expenditures also yields biased estimates. I will demonstrate 

these facts mathematically. 

First,! will consider the regression using only positive 

observations ,of y.. We get from (2~3) and (2.4) l. 

(2.l1) E{y·ly· > 0) = x!f3 + E{u.lu. > -x!s) 
J. l. l. l. l. l. 

The last term of the right-hand side of (2.11) is generally nonzero 

(even without aSl;luming u. l. is normal). This implies the biasedness 

of the LS estimator using positive observations on Yi under more general 

models than the Standa~d Tobit model. When we assume normality of u. 
l. 

as in the Tobit model, (2.11) can be shown by straightforward integration 

to be 

(2.l2) x!B + a'A(x!f3/a) 
J. l. , 

j 

(J 

c-



-14-

where A (z) = !fi{ z) /Ill (z). 71 'lAs I will show below, this equation plays 

a keyirrole in the derivation of Heckman's two-step, NLLS, and NLl-1LS 

estimators. 

Equation (2.l2) clearly indicates that the LS estimator of '/13 

is biased and inconsiste~t, but the direction and magnitude of the 'bias 

or inconsistency cannot be shown without further assumptions. Goldberger 

[1981] evaluated the asymptotic bias (the probability limit minus the 

true value) assuming that the elements of Xi"except the first element 

wh:i.ch is assumed to be a constant ,"are normally distributed. More 
(; 

specifically, Goldberger rewrites (2~3) as 

(2.l3) 

and assumes x. '" N{O,l:) 
1. and is distributed independently of u .• 

1. 
(Here, 

the assumption of zero mean in~iolves no loss of generality since a nonzero 

mean can be absorbed into 130.) Under this assumption he obtains 

(2.l4) 

where 

1 - y 
2 

1 - R Y 

y = a-l A{aO,/a )[130 + a A{ao/a )] y . y y y 

It can be shown that 

and 

o < y < 1 and 2 o < p < 1; 

It is remarkable therefore, (2.14) shows that 131 shrinks 13
1 

toward zero. 

that the degree of shrinkage is unifor.m in all the elements of 
D u 

However, it is not known whether a similar result will hold if 

" '"';:::v,;;:~::.:..:~~.:n;t:~':'-~':;":·:lCt:;-,:~ .. :...":t¥.~--='~::>.'-=--""'"-'.lli: """""'.~"." ~" 
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not normal. Goldberger gives a nonnormal example Where 13
1 

= (1,1)' 

and plim 81 = (1.111" 0~'887)'. 

Next, I will consider the ~egression using all the observations 

of Yi' both positive and zero. To see that the least squares estimator 

is also biased in this case, one should look at the unconditional mean of 

y. : 
,~ 

(2.l5) = llI(x!B/a) • x!a + a~(x!B/a) 
1. 1. 1. 

Writing (2.3) again as (2.l3) and using the same assumptions as Goldberger, 

Greene [1981] Showed 

.. 
is the LS estimator of 13

1 in the regression of y. 
/' 1. 

on x. 
1. 

using all the observations. This result is even mo~e remarkable than 

(2.14)' because it implies that ~ 

(n/nl ) .. ~ 131 is a consistent estimator 

of 131 , where nl ~s the number of positive observations of Yi. 

Unfortunately, however, one cannot confidently use this 'estimator without 

knOwing its properties when the true distribution of Xi is not normal. 

3. HeckDian' s TwO-Step Estimator: HeCkman [1976], 

following a suggestion of Gronau [1914], proposed a two-step estimator 

in a two-equation generalization of the Tobit model. I classify this 

'i\ modeL as the Type 3 Tobit model and discuss it later. But his estimator 

can also be used in the Standard Tobit model, as well as in more complex 

o 

o 

" I 

, , \ 

i l 
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Tobit models, with only a minor adjustment. ~ will discuss 'the estimator 
" 

in the con.text of the Standard Tobit model because all the basic features 
1 

of the method can be reve8~ed in this model.. However, one should kelep 

in mind that since the method requires the computati~m of the probi t MLE, 

which itself requires an iterative method, the computational advantage 

of the method over the Tobit MLE (which is more efficient) is not as great. 

in the Standard Tobit model as it is in more complex Tobit models. 

To explain this estimator, it is useful to rewrite (2.12) as 

y; = x!S + aA{x!a) + e. ... ~ ~ ~ 
for i such that Yi > 0 

where I have written a = S/a as before and e. = Y; _ E{y./y. > 0) so 
,)', ~ ... ~ ~ 

that Ee. = O. The variance of e. is given by 
~ ~ 

(2.18) 

'i) , 
Thus, (2.17) is a heteroscedastic nonlinear regression model with 

observat~ons.The estimation method Heckman proposed consists of the 
• A 

following two steps: (1) Estimate a by the probit MLE (denoted a) 
A 

defined earlier. (2) Regress Yi on x. 
~ 

and A (x! cd, by least squa;res 
~ , 

using only the positive observations on y .• 
~ 

To facilitate f'ur;ther the discussion of Heckman's estimator, 

rewrite (2.17) again as 

\ 

(2.19) 
A 

y. = X!B + aA(x!a) + e; + 11; 
~ ~ ~ ... ... 

,e\ 

for i such that y. > 0 
,~ 

(\ 

('I 

oj 

() 

o 

o 

\ 

,-) 

:t 

J 

~ 

tt' 

! 
~ 

I~ 
I 

{) 

I", 
\ I 
II 
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where 11; = a[A(x!a) - A(x!~)]. ... ~ ~ I will write (2.19) in vector notation 

as 

(2.20) y = XB + OA + e + 11 

where the vectorsy" A, e, and 11 have element~ and the matrix 

has rows, corresponding to the positive observations of y .. 8/ 
~ 

I will further rewrite (2.20) as 

(2.21) y = Zy + e + 11 

A 

x 

'Where I have defined Z == (X,A) and y = (~, ,a) , • Then, Heckman's two-

step estimator of y is defined as 

(2.22) 

"The consistency of y follows easily from (2.21) and (2.22). I 

\;?will derive its asymptotic distribution for the sake of completeness, 

"~I 

though the result is a special. case of Heckman's result [1979]. From 

(2.21) and (2.22) we have 

(2.23) 
1 1 

IIil (~ - y) = (nil Z' z) -I( n7 Z 'e + n; Z 'n ) 

/) 

Since the probit MLE a is consistent, we have 

(2.24) ;..1'" A 

plimn Z'Z = 
nl-+<la 



'" 
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where Z = (X,A). It is easy to prove 
\c 

(2.25) 

where D2 :: Ee:e:' is the nl x nl diagonal matrix whose diagona= elements 

are Ve:. given in (2.18). We have by Taylor expansion of A(x'a) 
~ 

around A(x'a) 

(2.26) ~ aA A 

n -0 aat (a - a) 

Using (2.26) and (2.9) we can prove 

(2.27) 

where ~l' was defined afte,r (2.9) and D3 is the n
l 

x n
l 

diagonal 

matrix whose diagonal elements are x! aA (x! a) + A (x! a) 2 • Next, 'note 
~ 1 1. 

" that e: and n are uncorrelated because n is asymptotically a linear 

. function of w on account of (2.9) and (2. 26) and e: and ware 

uncorrelated. T"nerefore, from (2.23), (2.2U), (2.25), and (2.27) we 

finally conclude that y is asymptotically normal with mean y and 
Ii 

the asymptotic variance-covariance matrix given by 

I~ 

(2.28) Vy = ,-
'\ 

J[ 

~ 

\ 

)j o 

(I 

o 

0' 

o 

! 
, I 

! , i 

! 

:a; 
1 , 

! ~, 

I 
I 

(J 

\~ 
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It is interesting to note that the second matrix within the 

square bracket above arises because A had to be estimated. If A 

'" were known, one could apply least squares directly to (2.17) and the 

exact variance-covariance matrix vould be (Z'Z)-lZID2Z(Z'Z)-1. 

Heckman's two-step estimator uses the conditional mean of Yi 

given in (2.l2). 

ditional mean of 

A sjmilar procedure can also be applied to the uncon­

y. given bY' (2.15).91 That is to say, one can 1(>-
~ ~ 

regress all the observations of Yi including zeros on ~x. 
1 

\\ 
and cp 

after replacing the a that appears in the argument of '~ and CP by 

the probit MLE a. In the same way as we derived (2.17) and (2.19) from 

(2.12), we can d~:dve the following two equations from (2.15): 

(2.29) Y1· = ~(x!a)[x!a + oA(x!a)] + o. 1 1 1 1 

and 

(2.30) 

where [~(x!a) - ~(x!~)]x.a 
1. 1 ~ 

o. = y. - Ey. and ~. = 1 1 1 1 

A vector equation comparable to (2.2l) is 

(2.31) y = D Z Y ') + 0 + ~ 

where D is the n x n diagonal matrix whose i-th element ~s 
,"' 

!~ 
Lf 

A 

~(x!a) • 
~ 

Note that the vectors and matrices 'are underlined With a ! "~,, because 

they consj.st o.f n elements or rows. The two-step estimator of y 
. 

based on all the observations, deno'ted y, is defined as 

\; 

i 
,1 

I 

~ 
{I 
~ 
4 (' 

~ 
i'" 
'( 
'f 
'f 
), 

~, 
'j 
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(2.32) 

The estimator can easily be shown to be consis"bent. To derive 

its asymptotic distribution, we ~btain from (2.31) and (2.32) 

1 1 

(2.33) m(y - y) = (n-1 Z'D2 Z)-1(n-2 Z'Do + n-2z'D~ 

Here, uDlike the previous case, an interesting fact emerges: by 

expanding eli (x!~) 
~ 

and <jl (x!~) 
~ 

in Taylor series around 

show ;" = 
~ 

(2. 34) 

O(n -1.). Therefore, 

1 
-2 A A 

plim n Z'D ~ = 0 

Corresponding to (2.24), we have 

(2.35) 

where D is obtained from D by replacing ex 

to (2.25), we have 

(2.36) 

with ex. 

x!ex 
~ 

one can 

Corresponding 

where D = Eoo' is the n x ndiagonal matrix whose i-th element is 
_4 -- ''\ 2 

t (xi ~)[ (xia)2 + a2xidil,c Xi\> + a2
] - [~~xi~ )xia + a~ (xi~)]. '!!berer,,)e, 

from (2"033 h( 2.36), we' cpnclude that y is as~pto"Mcally normal with 

mean y and the asymptotic variance-covarian~~ ~trix given by 

(2.37) 

,-
7'':-X'';:~.;:;:'':;:'';;-J::~~:;:~~lI2Ill,~''-''''I<m''''''''''_ '4"'~. 

o 

(, 

oj 

o 

o 

I;'/'!', 
1<olJ." 

, I 

t 

! ~; 

i 

;@ 
J 

/! . l r 
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-, Which of the two estimators y and y is preferred? Unfortunately, u 

the difference of the two matrices given by (2.28) and (2.37) is neither 

positive definite nor negative definite for all tne parameter values. 

Further study is needed on the comparison of the estimators. 

Both (2.21) and (2.31) represent heteroscedastic regression models. 
\) 

Therefore, one can obtain asymptotically more efficient estimators by 

using weighted least squares (wr.s) in the second step of the procedure 

for obtaining y and y. In doing so, one must Use a consistent 

estimate of t~e asymptotic variance-covariance matrix of 
e: + n for 

the case of (2.21) and of 0 +; ·for the case of (2.31). 
Since these 

matrices depend on y, an initial consistent estim.ate of Y (say, 
-

y or y) 
is needed to obtain the WLS estimators. I call these WLS 

estimators -yW and YW respectively. It can be shown that they are 

consistent and asymptotically normal with the asymptotic variance-covariance 

matI"ices given by 

(2.38) Vy = {Z' [D + (,.2D X (X'D X)-l X'D rl Z}-l W 2 3 __ 1_ 3 

and 

Again, one cannot make a definite comparison between these two matrices. 

4. NLLS and NLWLS Estimators: Ip this .subsection I will 

consider four estimators: the NLLS and NLWLS estimatpr.s appJied to (2.17), 
'\,\ 

-- ," -"'.,.,.,. " ...... _.,-...,.-,.. ... __ ... -----.-+-.-.... 

!J 

'; 
I 

\ \ 
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denoted YN and YNW respectively, and the NLLS and NLWLS estimators 

applied to (2.29), denoted Y
N 

and Y
NW

' 

All these estimators are consistent and their asymptotic distri-

butions can be oetained st:raightforwardly by noting that all the results 

of a linear regression model hq~d asymptotically for a nonlinear regression 

model if we treat the derivative of the nonlinear regression function 

. t' 11/ I with respect to the parameter vector as the regress~on rna r~x.-- n 

this way one can show. the interesting fact that Y
N 

and Y
NW 

have 

'..J - 12/ 
the same asymptotic distributions as Y and Y

W 
respective1y.-- One 

can also show that YN and YNW are asymptotically normal with mean 

Y and with Jeheir respective asymptotic variance-cova.riance matrices given 

by 

(2.40) 

and 

(2.41) 

where S = (a -2D2 X, D
5

A) , where 

2 whose i-th e1em~nt is 1 + (x!a) 
~ 

is the n1 x n1 diagonal matrix 

+ x!aA (x!a). 
~ ~ 

It seems that one cannqt 

make a definite comparison either between (2.28) and (2.40) or between 

(2.38) and (2.41). 

In the two-step methods defining Y and Y and their generalizations 

and Y- one can natrua11y define an iteration procedure by repeating 
W' I 

,{ 

( 

ni 
I 

01 

o 

I 
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the two-steps. For example, having obtained y, one can obtain a new 

estimate of a, insert it into the argument of A, and apply least 

squares again to equation (2.17). The procedure is to be repeated until 

a sequence of estimates of a thus obtained converges. In the iteration 
A 

starting from YW' one uses the m-th round estimate of Y not only to 

evaluate A but also to estimate the variance-covariance matrix of the 

error term for the purpose of obtaining the (m + l)-st round estimate. 

Iterations starting from Y and YW can be similarly defined but are 

probably not worthwhile because Y and Y
W 

are asymptotically equivalent 

to YN and YNW as I have indicated above. The estimators 
A A 

(YN, YNW ' 
A 

from (y, 

values. 

Y N' Y NW) are. clearly stationary values of the i tel-ations starting 

Y vi' y, y W) • However, they may not necessarily be the converging 

A simulation study by Wales and Woodland [1980] based on only 

one replication with sample sizes of.,1000 and 5000 showed that· Y N 

is distinctly inferior to the MLE and is rather unsatisfactory. 

5. The Tobit MLE: The likelihood function of the Tobit 

model was given in (2.6), from which we obtain the logarithmic 1ikeJ-ihood 
~, 

function 

n1 2 1 "'. 2 
log L = ~ log [1. - ~(x~B/a)] ---log C1 - - I -(yo -x!S) 

• 2 2a2 1 ~ ~ j 
(2.42) 

Ii 

The derivatives are given by 

~~) 

-----} 
C l, 

II 

: . 

.\ 

, 



(2.43) 
- x! a)x. 

~ ~ 

and 

(2.44) 

Amemiya [1973] proved that the Tobit MLE is strongly consistent and 

asymptotically normal with t,p,e asymptotic variance-covariance matrix 

equal to _(a2 log L/aeael)-l, where 2 e = (a'" a )1. The formulae 

for the second derivatives are given on p. 1000 of Amemiya [1973]. 

The asymptotic variance-covariance matrix may also be estimated by 

-(E a
2

,lOg Ltaeael)-l, which is given on p. 1007 of the same reference. 

The Tobit MI.E is defined as a Solution of t~ES, equations obtained 

by ~q~~ting the partial derivatives (2.43) and (2.44) to zero. The 
'\;: 

equations are nonlinear iIiI the parameters and hence must be ,solved 

iteratively. However, Olsen [1978a). proved the glOb~l concavity of 

log L in the Tobit model, which implies that a standard iterative method 

such as "Newton-Raphson or the method of scoring always converges to 

the global ~aximum of log'L. Olsen proved this result by transforming 

the original parameters of the model to a ='a/a ana: h = a-I The 

log L in terms of the new parameters can '\be written as 
[I 

(2.45) log L = L log [1 - ~(x!a)] + nl log h - ~ I (hY
i o 1. 1 

:;;::J 

2 x!a) 
l. 

j 
! 

t, • 
~" ' i 

( " 

(I 

C· i 

,c:;: 

0 I 
I " 

0' 

o 

() 

-~ .. - .- .... - -·-···-----,~ __ w_,~".,... mtKleW'IIMVI" 

," 

T 

{ I 

, I 
~ 

~ 

!J 
:i 

1/ ;. 

from which Olsen obtains 

2 
Cl log L 

(2.46) 
ClaCla ' 
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= 

I X.x! 
1 lo lo, 

I y.x! 
11.1. 

o 

<Pi 
- ....... _)x.x!·_-o 
1 - CPo ~~, 

lo 

() 

-I X.y. 
1 l. 1. 

I 2 
Yi 

1 

where ;1 = ;(xia ).. and ti = t(xi")' But, ,rfa - [1 - t(Xia )J-1 ;(xi
a

) < 0 

as shown in Am~miya [1973, p. lOOn .. Therefore, the right-hand side of 

(2.46) is the sum of two ftega~ive-definite 'matrices and hence is negative 
defin:i,:fje. p 

= 
,;~ 

- ~en though convergence is assur~,d by glOb~l doncavi ty, t t is a 

good idea to start an ;t r t· '. th ' 
/, ... e a loon n~,a good e$timatof because it-will 

~pro~e the speed of convergence. cTobin [1958] used the following simple 

(j 

estimator based on a linear approximatioii of the reciproca1 of Mill$ I 

ratio to start his iteration for obtaini,ng the MLE: By equating the 

right-hand side of (2.43) to zero, we obtain 

I( 

Iive P~emultiP1Y.(2.47J~~~~:~(2a4) and add it to.the equation 

by settl.ng, (2.44) equal to zerJ we get 

b' 
II • 

n 

= 

'(; 



(2.48) 
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2 -1 ~ (" . ) 
a = n

l 
I.. y. - x!!3 y. 
1 ~ ~ ~ 

Approximate 
-1' 

(1 - ~l) 4»i by the linear function a + b· (xi!3/a ) e,nd 

subs-citute it into the left-hand side of (2.47) to obtain, 

(2.49 ) -a I [a+ b· (x!!3/a)]x. + I (y.- x!(3)x. = 0 o ~ ~ 1 ~ ~ ~ 

Solve (2.49) for !3 and insert it in~~ (2.48) to obtain a ,quadratic 

equation in ca. If the roots are tmaginary, Tobin's method does not 

work. If the roots are real, one of them can be chose~,arbitrarily. 

Once an estimate of a is determined, .an estimate of !3 can be 

detel'.lllined linearly from (2.49). Amemiya [1973] showed th~t Tobin's 

initial estimator is inconsistent. However, empirical researchers have 

found it to be a good starting value for iteration. 

Amemiya [1973] proposed the following simple consistE;!nt estimator: 

We have 

(2.50) 2 E(y .. ly. > 0) = 
~ ~ 

n 
Combining (2.12) and (2.50) yields 

0) = x! !3 E( y.1 y. > 0) + a 2. , 
~ .~ ~ 

which can be alternatively written as 
1/ 

2 ... , 2. y. - y.x.!3 + a + ~{ 
~ ~ ~ ... for i such that 

c! 

y. > 0 
.~ 

( 

(l 

(.1 

(1 
. I 

(1 

I 
, 

01 
I 

,~ ~ \ . 

1~ 
! 

.$1 

'0 
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where E(l;iIYi> 0) = O. Then, consistent estimates of !3 and a 2 

are obtained by applying an instrumental variables method to (2.52) 
,~,~- ~ .-
using (Yixi, 1) as the instrumental variables where Yi is the 

predictor of Yi obtained by regressing positive Yi on x. and, 
~ 

perhaps, powers of x .• The asymptotic distribution of the estimator 
, ~ 

is given in Amemiya [1973]. 

A consistent initial estim~tor is useful not only because it 

improves the speed of convergence but also because the second round 

estimate obtained either by the Newton-Raphson or the method of scoring 

iterati"on startlngat a regUlar consistent estimator has the same 

asymptqtic distribution as the MLE, as shown by Amemiya [1973]. Unfor-

tunately, however, Simulatio~n studjis such as the one by Wales and Woodland 

[1980] have shown this particr-£consistent estimator to be rather 
IV:: 

c/ 

inefficient. 

6. The EM Algorithm: The EM algorithm is" a general 

iterative method.for obtaining theMLE, first proposed by Hartley [1958] 
':=,:. 

and generalized by Dempster, Laird, and Rubin [1977], that is especially 

suited for censored regression models such as Tobit models. It has good 
., 

convergence properties making it especially useful for handling the 

more complex Tobit models, which I will discuss later, where global 

concavi ty may not hold. However, . I ~i'ill discuss it in the context of 

the Standard Tobit model because all the essential fea'tures of the 

algorjthm can be explained for that model. I will first present the 

definition and the properties of the EM algorithm under a general setting 

and'then apply it to the Standard Tobit model,. 

:::':::::': 

" // I) 
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I will explain the EM algorithm in a general model where a 

vector of observable variables z are related to a vector o~)unobservable 

variables y* in such a way that the value of y* uniquely determ;~nes 

the value of z but not vice versa. In the Tobit modeJ" {Yi} defined 

) * ' in (2.3 constitute the elements of y ,and {y.} 
~ 

and {w.} defined 
~ 

in (2.4) and (2.5) respectively constitute the elements of z. Let t,he 

joint density or probability of y* be f(y*) and let the joint density 

or probability of z be g(z). Also, defi~ek(Y*lz) = f(y*)/g(z). 

We implicitly assume t~t f, g, and k depend on a vector of parameters 

a • The purpose is to maximi'ze 

L(a) _ n-l log g(z) = n-l log f(y*) _ n-l log k (Y~lz) 

with respec~ to a. Define 

where we are taking expectation assuming a
l 

is the true parameter value, 

and doing this conditional on z(i Then, the EM algorithm purports to 

maximize L(a) by maximizing Q(alal ) with respect to a when a
l 

is 

given at each .step of the iteration. The "E" of' the name "EM" refers to 

the expectation taken in (2.54) and the "M" refer;:; to the maximization 

of (2.54). 

I will consider the convergence properties. Define 

. ~ 
H(~lal) =,E[n-llO,g k(y*lz, a)lz, al] 

/i 

( I 

1_-

(I 

(li 

01 

.. -

I 
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o 

I 
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~? 
i,fJ< 

;t' 
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i­

/// 

Then we have from (2.53), (2.54), and (2.55) a(idthe fact that 
If 

But we have by Jensen's inequalityW 

(2.57) 

Now, givenal , let M(Sl} maximize Q(a/s
l

) with re:;pect to a. 

Then, we have 

(2.58) 
,--) 

i.-(M) = Q(MI a
l

) 

But, since Q(Mlal ) ~ Q(alal ) by definition and H(Mls
l

);,; H(alls
l

) 

by (2.57), we have from (2.56) and (2.58) 

" "\ 
Thus, We have proved the desirable property that L always increase~ 

or stays constant ~t each step of the EM algorithm.. Next, let a;oe 

" t,he MLE. Then, L(e) ~ L[M(e» by definition. But L(e),~ L[M(S)] 

by (2.59). Therefore ~'1e have 

(2.60) 

which implies that if L( a) has a unique maximum and if the EM algorithm 

converges, it converges to e . 

'7i 

r 

'-
r 
I 
! 

/1 

:; 
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We still need to prove that the EM algorithm converges to the 

Unfortunately, it is never easy to find reasonable and easily 

verifiable' conditions for the convergence of any iterative 'algorithm. 

Dempster, et. al. do not succeed in";this attempt. I will merely give 

a sUfficient set of conditions below. 

The conditions I impose, are (A) L is bounded and (B) the smallest 

cbaracteristlp root of _a2Q(al~1)/aa aa' is bounded away from 0 for 

all al and a. Consider 

(2.61) L(a ) = Q(a /a ) _ a(a la) 
r r r r r 

and 

(2.62) L(a ... +l ) = Q(a lie) - a(e la) ... r+ " co r+ 1 r 

Since we previously established L(a r +
1

) ~ L(e
r
), assumption (A) implies 

;!: [L(ar +l ) - L(a r )] = O. Therefore, from (2.61) and (2.62) and using 

(2.57) and Q(a +lla ) > Q(a Ie ) by definition we have r r = r r . 

Now, denoting only the first argument of Q and suppressing its second 
(' (\ 

argument, we have by a Taylor expansion of Q(e ) 
, r 

c' , 

about Q(a ) 
r+l 

(2.64t " 2 
Q(ar +l ) - Q(er ) = ~(er - 9r +l )'[- a;a~'](~r -i;'r+l) 

\' 

\ >lA -(a -9 )'(e ... e ) = 2 S r r+l r r+l 

< .... ;: :::::It:~=':~~~_"~ ___ "-'_ ... ,n,_ .. _, 

/'\ 
'-~~ 

( 

c· 

(1' , I 

c", ! 
! 

0 

I' 

0 " " 

~ 

) 

l' 
.I 

) 

\ 

j 

1~ 
J 
1 
I 

C 

to 

• 
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where the matrix of the second q,;erivatives is evaluated at a point 

between a and a and 
r r+l A denotes its smallest characteristic s 

root. Note that in obtaining the equality above I have noted 

aQ(er+llar)/aer+l = 0 by definition. Thus, (2.63), (2.64), and assumption 

(B) imply 

meaning that the EM algorithm converges. 

NOW, consider an application of the algorithm to the Tobit model. 14/ 

Define e = (a', 0
2
),. Then, in the Tobit model we have 

(2.66) 
n 

1 f( * I) n 2 __ 1 ~ ( 2 og y e = - 2" log 0 t.. y~ - x! a) 
202 i=l ~ ~ 

and, for a give~ estimate el = (ai, o~)" the EM algorithm maxi~zes 
with respect to a and 0 2 

(2.67) = - L21 log 0
2 

- 12 l (y. ~ x!S)2 
20 1 ~" ~ 

- .12 r E [(y~ - ~!s)2Iw. = 0, ell 
200 ~ ~ ~ 

,1 ~ 2 
- -2 t. [E'(y~, Iw. = 0, a

l
) - x!a] 

20 0 ~ ~ ~ . 

" 1 ~ I - -:2 t.V(y~ w. = 0, el' 
20 0 ~ ~ 



I' 

where 

(2.68) 

and 

(2.69) 

where 

E(y"!l w. 
~ ~ 

v(y"!/w. 
~ ~ 

\\ 
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From (2.67) it is clear that the 'second-round estimate of 13 in 

the EM algorithm, denoted 13 2 , is obtained as follows: Assume without 

loss of generality that the first nl observations of Yi are positive 

and callcthe vector of thost~pbservations y as I did in (2.20)~Next, 
(10 

define an (n - nl)-vector y* whose elements are the Yi defined in 

(2.68). Then, we have 

13 = (X'X)-l X' ['Y] 
2 - - - 0 

y. 
c· 

where X was defined after' (2.4). In other words, the EM algorithm amounts 
'~ 

to predicting all the unobservable values of y! by their conditional 

expectations and treating the predicted values as if they were the 

,2 t d 2 . observed values. The second-round estimate of a , deno e <1
2

, ~s 

" It 

, 
( I 1 

(II 

(1 

() 

o 

0, 

I r,Ui 
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212 2 
<12 = n- [I (y. - x!S2) + I (y"! - x!S2) 

1 ~ ~ 0 ~ ~ 

+ I V (y"!lw. = 0, 9
1

)] 
0' ~ ~ 

Although this follows from the general theory of the algorithm 
- " \\ 

given earlier, we can also directly show that the MLE 9 is the equilib-

riumsolution of the iteration defined by (2.70) and (2.71). Partition 
0' , 

~ = (X',X ) so that X is multiplied by y and xO o 
by y. Then, 

inserting 9 
into both sides of (2.70) yields, after collecting terms 

(2.72) x'x i3 = X'y _ XO' 

where the last bracket denotes an (n ~ nl)-dimensional vector whose 

typical element is given inside. But, clearly, (2.72) is equivalent 
A 

to (2.47). Similarly, the MLE 9 can be shown to be an equilibrium 

solution of (2.71). 

'\ (j 

Unfor,tunately, conditions
c 
(~hand (B) do not generally hold for 

the Tobit model. However, they do hold if the sample siZe is sufficiently 

large and "if the iteration is started from a point suffiCiently close 
". 

to the MLE. ,', Schmee and Hahn [1979] performed a simulation study of, 

the EM algorithm applied to a censored regression model (a survival model) 

defined by 

cr if y"!,,,< c 
~ ~. 

Yi = 
if y"! > c 

~ 

where y"! ~ N(a + Sx., (12). They obtained goo~ convergence. ~ ~ 
i~ 

" , 

ll' ,"' ',i 
-.::.: 
'A '.\ 

}; "'~ 
l.'~'~'":>",.~'" :f' 
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D. Properties of the Tobit MLE Under Nonstandard Assumptions 

In this section I will discuss the properties of the Tobit MLE 

--the estimator which maximizes (2.42)--under various types of nonstandard 

assumptions: heteroscedasticity, serial correlation, and nonnormality. 

It will be shown that the Tobit MLE remains consistent under serial 

correlation but not under heteroscedasticity or nonnormality. 1~is result 

contrasts with the classical regression model in which the least squares 

estimator (the MLE under the normality assumption) is generally consistent 

under all of the three types of nonstandard assumptions mentioned above. 

Before proceeding with rigorous argument"I will give an intuitive 

explanation of the- above-mentioned result. By considering (2.17) we see 

that serial correlation of y. should not affect the consistency of the 
~ 

NLLS estimator, whereas heteroscedasticity changes cr to cr
i 

invalidates the estimation of the equation, by least squares. 

and hence 

If' y~ is 
~ 

not normal, equation (2.17) itself is generally invalid, which l~ads to 

the inconsistency of the NLLS estimator. Though the NLLS estimator is 

different from the ML estimator, one can expect a certain correspondence 

between the consistency properties of the two estimators. 

It should be noted that the MLE derived under certain assumptions 
I, 

generally loses it desirable properties of consistency and asymptotic 

efficiency when one or more of the a~sumptions are removed. This result, 

can be explained as follows: The consistency of the MLE is essentially 

equivalent to the condition E a log L/ae = 0. The equality follows 

from E a log Llae = EL-l.(aL/ae) = f L-l.(aL/ae) Ldy = !faL/ae)dy 

=afLdy/ae= 0, if the expectation is taken using the same L as that 

( ! 

I, , 

t 

( I 

'i ~ 
, -

j® 
j 
j 
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I 
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which is maximized. 
If the expectation is taken using a different L, 

say Ll , the second equality above generally does not hold, leading to 

the inconSistency of the MLE. Thus, it is best to remember that the 

classical normal regression model is an exceptional case. 

1. Heteroscedasticit;x:: Hurd [1979] evaluated the 

probabili ty limit of the truncated Tobit MLE when a certaih type of 

heteroscedasticity is present in two simple truncated Tobit models: 

(1) the i.i.d. case (that is, the case of the regressor consisting only 

of a constant ter.m) and (2) the case of a constant term plus one independent 

variable. 
Recall that the truncated Tobit model is the one in which no 

information is available for those ~bservation for which y~ < ° 
~ 

therefore the MLE maximiZes (2.7) rat~er than (2.6). 
and 

rn 
In the i.i.d. case, Hurd created heteroscedasticity by generating 

observations from N(~, cr~) and (1 - r)n observations from N(~, cr~). 
In each case, he recorded only positive observations. 

be the recorded observations. 

truncated Tobit MLE of ~ and 

(Note, nl ~ n.) 

2 
cr ,denoted ~ 

::::\. 

equating the first two popUlation moments of 

sample moments: 

(2.73) 

and 

(2.74) 

n. 
""" A A l. 

~ + cr A (1J / cr) = n~l l y. 
i=l ~ 

Yi 

Let Yi' i = 1,2, ••• ,n
l

, 

One can show that the 

and 
A2 
~ , are defined by 

td their respective 

, 
~~--'-",,"",,-----.,""""-"'-"-""-~ 
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Taking the probability limit of both sides of (2.73) and (2.74) and 

expressing plim n~l I y i 

2 2 

. -It 2 
and pl~m nl " lYi as certain functions of 

the parameters ~,ol' 02' and r, one can define plim ~ and 

implicitly as functions of these parameters. Hurd evaluated the 

probability limits for various values of ~ and 01 .,after having 

fixed I' = 0.5 and 02 = 1. The worst result occured when ~ = -1 
<-

and 01 = 0.5, leading to plim ~ = -121.02! 

In the case of one independent variable, Hurd generated observations 
2 

from N(a + 8xi , 0i) after having generated xi and log 10i l from 

Bivariate N(O, 0, vi, ~,p). For given values of a, 8, VI' V
2

' and p, 

Hurd found the values of 2 
a, 8, and ° that maximize E log L, where 

L is, as given in (2.7). Those values are the probability limits of the 

MLE 2 of a, 8, and ° under Hurd's model if the expectation of log'L 

is taken using the same model. Again, Hurd found extremely large asymptotic 

biases in certain cases. 

Hurd's results indicate that one should treat Tobit ML estimates 

cautiously if one suspects heteroscedasticity. In such a case,"one 

should perhaps use Powell's least absolute deviations estimator [1981] 

(to be discussed in SUbsection 5 below), which remains consistent under 

general heteroscedastic as well as nonnormal distributions. 

2. Serial Correlation: Robinson [1982] proved the 

stroItg consistency and the asymptotic normality of the Tobii;, MLE under 

very general assumptions about ui (normality is presupposed) and obtained 

its asymptotic variance-covariance matrix. His assumptions are slightly 

( i 

n 

I 

(II 
. i 

o 

.t J 

l® 
I 

c 
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stronger than the stationarity assumption but are weaker than the assump­

tion that ui possesses a continuous spectral density. His results 

are especially useful since the full MLE that takes account of even a 

simple type of serial correlation seems computationally intractable, 

3. Nonnormality: Goldberger [1980] considered an i.i.d. 

truncated sample model in which data are gene:r:-a.ted by a certain nonnormal 

distribution with mean ~ ahd variance 1 and are recorded only when the 

value is smaller than a constant c. Let y represent the recorded random 

variable and let y- 'be the sample mean. Th 
e researcher is to estimate 

by the.MLE assuming that the data are generated by N( 1) 
~ , . As in . /.'\ '" 

Hurd' s ~l.,...;.d. model, the MLE ~ i\,> defined by equating the population 
\~';, 

mean of y to its sample mean: 
/r 

(2.75) ~ - A(c -~) = y 

Taking the probability limit of both sides of (2.75) under the true model 
.-

and putting plim ~ = lJ * yields 

~ * - A (c - ~ *) = ~ - h( c _ ~) , 
.... 

where h (c -'~ {= E( Jl - ~ I y < c), the expectation being, taken using the 

true model. Defining m = 'll * - Jl and 6 = c - Jl, we rewrite (2.76) as 

m = A(e - m)- h(e) 

Goldberger calculated m as a function of (.6. when the data are generated 

by Student's t with various degrees of freedom, Laplace, and logistic 

o 
I,' 

'~, 
- -. ··-··· ... '-·-... ·~"-"' __ w ___ _ ,. 

- .-._<, ...... __ • ----....,-,..--~-.'"~.~ + 
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distributions. The asymptotic bias was found to be especially great 

when the true distribution, is Laplace. Goldperger alsu extended the 

analysis to the regression model with a constant term and one discrete 

independent variable. Arabmazar and Schmidt [1981] extended Goldberger's 

analysis to the case of an unknown variance and found that the asymptotic 
I) 

bias was further accentuated. 

4. Tests for Normality: The fact that the Tobit MLEds 

generally inconsistent when the true distribution is nonnormal makes it 

important fol.' a researcher to test whether his data are generated~1;j~~ a 

normal distribution. Nelson [1981] devised tests for normality in the 

i.i.d. censored sample model and the Tobit model. His tests are applica­

tions of the specification test of Hausman [1978]. 
... 

In Hausman's test, one uses the MLE a 

hypothesis, which is a.symptotically efficient under the null hypothesis 
:\ " 

but loses consistency under an alternative hypothesis, and a consistent 

estimator e, which is asymptotically less efficient" than the MLE under" 

the riull hypothesis but remains consistent under ah alternative hypothesis. 

Hausman [1978] noted that (6 - e) 'V-lee - e) is asymptotically distributedc::c,,;~~ 

under the null hypothesis ~s chi-square with K degrees of freedom (K Jbeing 

- ... 
the number of elements in' a), where V = v(e) vee), the difference 

of the asymptotic variance-covariance mlf1trice~, evaluated under the null 

hypothesis. An a~vantage of Hausllian's test is"that one need not know 

the covariance between e and a to perform the test. 

o 
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Nelson's i.i.d. censored sample. model is defined by 
/;:c~"':.; 

if 

if 

y! > 0 
~ 

(( 

i = 1,2, ..• ,n 

where Yi '" N(Il, 0'2) under the null hypothesis. Nelson 'considers the 

estimation of p(y~ > 0). 
J. 

'_', '" A A 

Its MLE is ~(ll/l1) where ~ and 0' are 

the MLE of the respective parameters. A consistent estimatoX" is provided 

by nlln where, as before, nl is the number of positive observations of 

y .• 
~ 

is a. consistent estimator of p(y!:?> 0) 
~ 

under any 

distribution provided ~hat it is i.i.d. Nelson derived the asymptotic 
\~J 

variances under normality of the two estimators. 

-1 lim n 
I}+CO 

If we interpret what one' is estimating by the two estimators as 
n 
r p(y! > 0), Nelson's test can be inte~preted as a test of 

i=l ~ 
the null hypothesis against a more general misspecification than just 

nonnormality. In fact, Nelson conducted a simulation study to evaluate 

the power of the test against a heteroscedastic alternative. The perfor-

manceof the test was satisfactory but not especially ·encouraging. 

In the Tobit model, Ne,lscn considers the ··estimation of 

n , 
I x.[~(x!a)x!B + O'.(x!a)]. 

i=l ~ ~ ~ ~ 

-1 -1 
n E X'y = n Its MLE is given by the 

right-hand side of this equation evaluated at the TobitMLE, and its 

-1 consistent estimator is provided by n X'y'~ Hausman's test baf:jed on 
'" -

these two estimators will work because this consistent estimator is 

consistent under general distributional assUmptions on y.Nelson 
(( 

J~' 

" 

I); 
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derived the asymptotic variance-covariance matrices of the two estimators. 

Nelson was quite ingenious in that he consisdered certain functions 

of the original parameters for which one can easily obtain estimators 

which are consistent under very general assumptions. However, it would 

be better if one could find a general consistent estimator for the 

original parameters themselves. Therefore, I would suggest a Hausman's 

test using the Tobit ~~ and Powell:s least absolute deviations e~timator 

of e as an alternative to Nelson's suggestion. The test will be com-

putationally more burdensome than Nelson's test but seems t~eoretically 

preferable. 

As s.till another alternative, Ru~d [1982] suggests contrasting 

the Tobit MLE with the probit MLE for Hausman' s tes~~ He argues that 

"t~ 
though the probit MLE is "not c.onsistent under e1ther~onnormality or 

heteroscedast±city, Hausman's test works as long as the discrepancy 

between the two estimators is more pronounced under an alternative 

hypothesis than under the null hypothesis. 

5. Nonnormal Tobit: If u. 
~ 

)(' 

in the T0 bi t model (:1,2. 3 )' 

'.'; 

is not normal, one 'of tw~ things 'can be done: (1) Specify a nonnormal ' 
~~ , 

distribution and use the true MLE or some other estilrJ.atoS:::ailormade 

for the distribution. (2) Use an estimator which is consistent under 

general distributions, both nonnal and nonnormal. .. I will mention an 

e~~ple for. ea.~h of the two approaches." 
, \'..) 

Amemiya ~nd Boskin [1974] studied the effec,t of wage and other 

independent variables on"the number of months 'during a five-year period 

in which a household received welfare payments. Since the dependent 

(, t 
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(I I 
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variable is naturally bounded between ° and 60, one must impose both 

an upper and lower truncation point if one uses a normal Tobit model. 

Instead, the authors assumed the dependent variable to be lognormal 

and hence positive, so that only)an upper truncation needs to be imposed. 

The MLE was used. 

The majority of models I will discuss iil Section III assume a normal 

distribution. Ex~eptions are some" of' the models proposed by Cragg [1971] 

discussed in Section III.B.5 andcthe model of Dubin and McFadden [1980] 

discussed in Section III.E.7. 

Powelll [1981] proposed the least absolute deviations (LAD) estimator 
05' 

for censored and truncated regression models, proved its consistency under 

general unimodal symmetric distributions, and derived its asymptotic 

I! distribution. " As I mentioned abote, the estimatQr is also consistent 

under heteroscedastic errors. The intuitive appeal for the LAD estimator 

in a censored regression model ~risel3 from the Simple fact that in th.'!~ 
.. ;;;", ..... -\\. 

(( " Li.d. sample 'case, the median (of which the LAD estimator is a generali-

zation) is not affected by censoring (more strictly, left censoring'pelow 

the mean), whereas the mean is. In a censored regression model, the LAD 
n 
l Iy. -max (0, x!a)l. 

i=l ~ ~ 
estimator is defined as that which minimizes 

The 

motivation for the LAD estimator in a truncated regression model is less 
') 

obviollS. Powell define~\ the LAD estimator in the truncated ca.se as 
u n ' , -1 

that Which minimizes l Iy. - max '(2 Y., x!aJI. 
i=l ,::!::~.=:c:,. " ~ ~ , 

E. Minor Variations of the Standard Tobit Model 

In this section I discuss a few models that are minor varia-

tions on the Tobit model.° More significant generalizations of the Tobit 

.1 

\' 
I. 

It 
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model are discussed in Section IlL 

Rosett [1959] proposed a model in which the obser-irable random 

variables {Yi} are defined by 

y~ if * < 0 ~ Yi = 

(2.78) Yi = o c if 0 < Y~ < a 
~ 

Y~ - a if a < Y~ , ~ ~ 

where ( , 2) y~~Nx.S,o • 
~ ~ One can estimate a 

i = 1,2, ••• ,n 

as,. well as 2 
o 

(! 

Rosett called i;t a model" of friction because the model implies that 

the dependent v~ri~b~e assumes a certain value (in this case 0) until 

a. change in an independent variable overcomes, the frIction. At this 

~oint"thedependent variable either increases or decreases depending. 

uJ?on the type of the stimulus. Maddala [1977] remarks that this model 

is useM in analyzing dividend,policie's, changes in wage qlfers by firms, 

and similar examples where firms respond by jumps after a certain cumula-

tive effort. 

'0 

Rosett and Nelson [19'75] considered the following simple generali-

zation of the Tobit model:, 

IJ 

al if y* 
i ~ al 

(2.79) 'Yi = y~ if al < y~ < a 2 1. ~ 

if (1 

y~ a2 a 2 < 
J. 
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where y~ ~ N(x!S, 0
2

). If x. contains a constant term, one can ~ " ~ ~ 

assume a = 0 1 withou.t l?ss of ge~erality. " - <1 Then, the Standard Tobit 

model is obtained as a speqial case by putting, a
2 

= co. According to 
. \. ': 

l1addala: [1977a], an, exall1pl.~ of a proble!ll to which this model has been 

applied is the dem~nd for health insurance by people)on medi!~,are, where 

both a minimum coverage and a ,', maximum amount are imp~s ed: 

Dagenais [1969] proposed a model which is obtained by meking the ' ,', 

bounda~~ points of Rosett's model stochastic as follows: 
(" 

y~ 
~ 

if 

(2.80) Yi = 0 if 

if 
0 

y~ + x!y 
~ ~ 

where and 

y~ < v. 
l. = ~ 

v. ,', y~ < x!y + w. ~ ~ l. ~ 

x!y 
~ 

+ w. < y~ 

and 

~ 

w'~ 
~ 

:: ~ 

are also normal. 

,9 
I, 

Unfortunately, 

there is a logica.l inconsistency in the model because "v. < x!y + w. 
~ ~ ~ 

cannot always be guaranteed. Perhaps for this reason, this model does 

not seem to have been applied to, real data. " Dagenais [1975] begins to 

discuss this model but the model he actually estimated is of TYPe 2 Tobit, 

which I will discuss later. 
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III. ~ralizations (TYpe 2 through Type 5 Tobit) 

A. Introduction 

As I stated in Section I, I will classify the ~jority of 

Tobit models into five common types according to similarities in the 

likelihood function. Type 1 is the Standard Tobit model which I have 

discussed in Section II. In Section III I will define and discuss the 

remaining four types of Tobit models. 

It is useful. to characterize the likelihuod function of each type 

of model schematically as follows: 

r'~1 Table 3.1 

Typel P(Yl < 0). p(Y
l

) 

2 P(Yl < O)·p(y
l

> 0, Y2) 
,_~f 

3 p(Y
l < 0). p(Y

l
, Y

2
) 

4 p(y 
1 < 0, Y3) • p(Yl , Y2 ) 

Q 

5 p(Yl < 0, Y
3

) • p(Y
l > 0, Y2 ) 

j = 1,2, and 3, is assumed to be distributed 

denotes a probability or a density or a combi-

nation thereof. One is to take the product of each P over the observa-

tions that belong to a particular category determined by the sign of Y
l

. 

Thus, in Type 1 (Standard Tobit model), p(Y
l 

< 0). p(Y
l

) is an abbreviated 

notation for n p(Yl " < 0) • n flo (Yl " ), where flJ." is the density of OJ., 1 J. J. 

This expression can be rewritten as (2.6) after dropping 

the unnecessary sUbscri~t 1. )7/ 
Jf' 

Q 

I 1 

!. , 

( ) 

o 

0 

C) 

-0 

() 

o 

o 

o 

0 

0 
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Another way to characterize the five types is by the following 

classification of the thr d d ee epen ent variables which appear in the 

models: 

Type 1 

2 

3 

C 

B 

C 

4 C 

5 B 

Table 3.2 

C 

C .J 

C C 

C C 

In Table 2 above"B " J.S an abbreviation for Binary and C'for Censored. 

In each type of model, the sign of Yl determines one of the two possible 

categories for the observations, and a censored variable is observed in 

one category and unobserved in the other. Note that when Y
l 

is labelled 

C, it plays two roles·. the r 1 f th " o e 0 e varJ.able whose sign determines 
c t " ~,(, h a egorJ.es ap..: t e role of a censored variable. 

We allow for the possibility that 

the parameters of the model (Q 2) j 
o Io'j'O'j , 

there are constraints among 

= 1,2, or 3. For example, 

constraints will occur if the original model is specified as a simultaneous 

equations model in terms '~f Yl,,' Y 2' "and Y 3. For, then, t,he B 's 

denote the reduced-fo~ parameters. 

I will not discuss here models in which there are more than one 

binary variable and, hence, models whose likelihood function consists 

'''''''~~''''''"'''''''''''''"''''''''~'-'''''''''''''''<'''''''''~ ....... ,~ .• --., -

i ; 

_________ ~ _____ . -~. '_'_"'-_ -~-'~""-~"~,,,,",::c=:.,~., ~~ 
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of more than two components. Such models are computationally more 

burdensome because they involve dOllble or higher-order integration 

of Joint normal densities. The only exception occurs in Section III.E.7, 

which includes ~odels that are obvious generalizations of the Type 5 

Tobit model. One notable (at least in my mind) model of the sort I do not 

discuss is a simultaneous-equation Tobit model of Amemiya [1974b]. The 

simplest two-equation case of this model is defined by 

Yli = MAX (YlY2i + XliS l + uli ' 0) and Y2i = MAX (Y2Yli + x2iS2 + u2i ' 0), 

where ( ~i' u2i ) is bivariate normal and Y 1 Y 2 < 1 must be assumed for 

the model to be logically consistent. A schematic representation of the' . 

likelihood function of this two equation model is P(Yl' Y2) ° p(Yl < 0,y3) ° 

P(Y2 < 0, Y4) ° p{Y3 <'0, Y4 ~ 0). 

1. Definition and Estimation: The Type 2 Tobit model is 

defined as follows: 

Yii = xliSl + uli 

* Y2i = x2iS2 + u2i ' 

(3.1) 
* if ' * 0 { :2i Yli > 

Y2i = 
if Yii ~ 0 i ='l,2, ••• ,n 

where {u
li

' u2i} are i'~i.d. drawings from a bivariate normal distribution 

2 al and 2 d . a2 , an covar1ance with mean zero, variances It is 

assumed that only the sign of Yii is observed and that Y~i is observed 

f I 
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only when Yii > O. It is assumed that Xli are observed for all i 

but x2i need not be obsei'"Ved for i such that * i( O. One may Yli = 
also defin~e, as in (2.5), 

=c 
if y* > 0 

li 
(3.2) wli 

if y* < 0 
Ii = 

Then, {wli ' Y2i} constitute the obs:rved sample of the model. It should 

be noted that, unlike th~ Type 1 Tobit, Y2i may take negative values. 

See the discussion of Cragg [1971] in Section B.5 below for models that 

',' prevent this. As in (:2 ~ 4), Y 2i = 0 mereiy signifies the event Yi
i 

~ o. 

The likelihood function of the model is given by 

L = IT p{y*. o 11 

where IT and IT stand for the product over those i for which ',' Y
2

. = 0 o 1 ,:\. 

and Y2i > 0 respectively and f(o/Yii> 0) stands for the conditional 

. * 0 g1ven Yli > • Note the similarity between (2.8) and 

(3.3). As in Type 1 Tobit, one Can obtain a consistent estimate of Sl/a
l 

by maximizing the probit part of (3.3), 

(3.4) Probit L = IT p(y*. < 0) IT p{y
l
*. > 0) 

o 11 = 1 1 
\\ 

Also, (3.4) is a ~art of the likelihood function for every one of the 

five types of models; therefore, a consistent estimate of Sl/a
l 

can 

be obtained by the probit MLE in each of these types of model. 

o 
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One can reWrite (3.3) as 

where f(·,.) denotes the joint density of Yii and y~i. Onevcan 

write the joint density as the product 9f e conditional density and a 

marginal density, Le. f(yii' Y2i) = f(yii 1Y2i)f(Y2i)' and determine a 

specific form of f(yii 1Y2i) from the well-known fact that the conditional 

distribution of Yii given y~i = Y 2i .. is normal with mean 

, Q -2( ') 
xli~l + a12~2 Y2i - x2iS2 and variance Thus, one can 

further rewrite (3.5) as 

(3.6) 

Note that L depends on a
l and 

if there is no constraint on the parameters, one can put a
l 

= 1 ((Nithout 

any loss of generality. Then, the remaining p!3-rameters can"be identified. 

If, however, there is at least ~~e common element in Sl and 6
2

, a
l 

can be also identified. 

model. 

I will show how Heckman's two-step estimator can be used in this 

~' To obtain an equation comparable to (2.17), we .. need to evaluate 

E(Y~iIYii > 0). For this purpose we use the well-known result 

I' 
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where ~2i is normally 1~stributed independently of Yii 

d · 2.2 -2· . ( ) an var1ance 02 - °12°1 • US1ng 3.7, one can express 

with mean zero 

as a simple linear function of E(yii/yii> 0), which was already obtained 

in Section II. Using (3.7), one can also derive V(Y~iIYii > 0) easily. 

Thus, we obtain 

(3.8) 
for i such that 

where CL
l 0, and 

As in the case of the TYPe 1 Tobit, Heckman's two-step estimator is the LS 

estimator applied to (3.8) after replacing CL
l 

with the probit MLE. 

The asymptotic distribution of the estimator can be similarly obtained 

as in Section II.C.3 by defining n2i in the same way as before. It 

was first derived by Heckman [1979]. 

The Standard Tobit (TYPe 1) is a special case of TYPe 2, in which. 

Yii = y~i· Therefo~e, (3.8) and (3.9) will be reduced to (2.17) and (2.18) 

by putting XliSl = x2iS2 and oi = o~ = 012. 

A generalization of the two-step method applied to (2.29) can be 

easily defined for this model but will not be discussed. 

" ,-. ·(-'-~-~''''·'''''-·'·'''"''''''''-'''··'''-'''''''''''~~':;.l~~J.l:~':~J;::;'-~~::';;;;~;':._.: ~.~._. ___ _ 
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2. A Special Case of Independence: Dudley and 

Montmarquette [1976] ~nalyzed whether or not the United States gives 

foreign aid to a particular coun ry an , t d lo°f loOt does, how much foreign 

aid it gives usj,ng a special case of the model (3.1) where the 

independence of u
li 

ruld u
2i is assumed. In thei,r model, the sign 

of y* ° determines whether aid is given to the i-th country, and y~i llo 

determines the ac ua amoun 0 alo. .ll t 1 t f °d T~ey used the probit MLE to estimate 

131 (assuming <11 = 1) and the least squares regression of Y2i on, 

x~o to estimate 13 2 • The LS estimator of 13
2 

is consistent in their t:::lo 

model because of the assumed independence between ~i and u
2i

• This 

is the main advantage of their model. Hqwever, it is unrealistic to 

assume that the actual amount of aid, y~, is independent of the variable 

wl.ich det~rmines whether or not aid b given, y~. This model is the 

opposite extreme of the Tobit model, which can be regarded as a special 

case of TYPe 2 model where there is total dependence between Yi and 

y~, in the whole spectrume of models (with varying correlation between <: 

Yi and y~) contained in TYPe 2. 

Because of the computational a'dvantage mentioned above, this 

"independence" model and its variations were frequently used in econometric 

applications in 1960's and early 70's. In many of these studies, authors 

made t~e additional linear probability assumption: P(Yfi > 0) = x1i13l, 

which enabled them to estimate 13
1 

(as well as, 13
2

) consistently by 

the least squares method. For examples of these studies, see Huang' 

[1964] and Wu [1965]. 
I; 

(I 

(, 

(\ 
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I 
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3 •. Gronau [1973]: I take up Gronau's model as the 'first 

example of the TYPe 2 Tobit model because he seems to be the first 
Ii 

person to suggest an empirical model of this type, even though he did 

not use all the information provided by the model and sometimes used 

incorrect estimation procedures, as I will show below. His model of 

labor supply, based on the idea of a reservation wage, has since been 

. used and extended by many authors. 

First, I will breifly sketch Gronau's theory of how a housewife 

'decides whether or not to work and how much to work. Gronau assumes that 

the offered wage W
O 

is given to each housewife indepe~dently of hours 

worked H, rather than as a schedule WO(R). Given WO, a housewife 

maximizes her utility function U( C, X) sub.1 ect to X = WO H + V and 

C + H = T, where C is time spent at home for child care, X represents 

all other goods, T is total available time, and V is other income. 

Thus, a housewife does not work if 

(3.10) f1!ljau] ac ax 
_. H=O 

and works if ,the inequality in (3.10)' is reversed. 

s 

If sheLrks, the 

hours of work R and the actual wage rate W must be such that 
() 

aUj1!l = W ac ax 

., 

Gronau calls the left-hand side of (3.10) the housewife's value. of time, 

or, more co~only, the reservation wage, denotedwr.12I 

-.~ ."""".-:-----_ .. _-."-'--_. __ .. _"._ .. _--....... _. __ ._--.j 

\ , 
! 

J 
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Assuming that both W
O 

and wf can be written,as linear combina-

tions of independent variables plus error terms, his model may be 

statistically described as follows: 

w? = x2i132 + u2i J. 

w: = z!a + v. J. J. J. ( 3.11) 

{; 
if W~ > w: J. J. 

W. = 
W~ J. 

if < w: i = 1,2, ••• ,n J. J. 
\\ 

where is an LLd. drawing from a bivariate normal distribu-

2 d 2 d . tion with mean zero, variances a . an a, an covarJ.ance 
u v 

,. 0 
a • Thus, uv 

- w: = y* ~pe model can be written in the form of (3.1) by putting Wi 
J. Ii 

and W~ = Y2i. Note that H (hours worked) is not explained bY(\~,his 
" statistical model though it is determined bY"Gronau's t~eoretical model. 

A statistical model explaining H as well as W owas later developed 

by Heckman [1974]. I will discuss this in the section on Type 3 models. 

Since the model (3.11) can be transformed into 'the form·' (3.1) 

in such a way that'the parameters of (3.11) can be determined from the 
~:-) 

parameters of (3.1), all t~e'para.t/leter~.of the mOdel are identifiable 

except v(W? - W:), which can be set equal to 1 without loss of J. J. 

generality. If, however, at least one element of x
2i 

is not included 

t 'd tOf· bl 16/ Th b to t d in Zo, all the parame ers are J. en J. J.a e.-- ey can e es J.ma e J. 

by the MLE or Heckman's two-step estimator by procedures described in 

Section B.l above. One can also use the probit MLE (the first step of o 

~ ;/ 

, 
jU 

o 

o 
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Heckman's two-step) to estimate a certain subset of the parameters. 

However, the two estimation methods used by Gronau are not among the 

above. I will described his methods and explain in wMt way.;they are 
"1 

inappropriate. 

The full likelihood function of Gronau's model (3.11) can be 

written as 

where n 
° W~ ~ w: J. - J. 

and n 
1 

and W? 
J. 

Wo J. 
n J f(W., W:)dW: 
1 .-. J. J. J. 

are the products over those observations for which 

> w: respectively and f(.,.) is the joint density J. 
o of Wo J. and w:. J. Gronau assumes that and v. 

J. 
17/ are independent.--

Under this assumption, (3.12) can be written as 

.::' 

where 

1 \/ -2" 
L* = n' {I -'" [( "'u

2 
+ "'v

2
) ( 'Q c..) ] } 't' v v x201-'2 -z.CJ J.' J. 

o ( 
n t [a -1 ( W • - z i a ) ] 
1 v J. 

Ii 

Maximizing (3.13) yields the MLE, of a, 132 , au' and a
v

' whi,ch a·re 

consistent and asymptotically efficient under Gronau's independence assump-

tiona 

L~ • 

Maximizing (3.14) yields estimates of 

(" 
,,! 

which are 
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consistent but asymptotically not fully efficient. Grpnau's two methods 
j 

of estimation can be both regarded as attempts to maximize an approxima-

tion to (3.13) as I will show below. 
I=:: 

In Gronau's first method, Wi is regressed on' x
2i for those 

observations where W? > w: 
J. J. 

and then to yj41d the LS estiIllates 
, -
\j>" 

L+ = IT {l - ~[0'-l(x2' .62 - z!a)]} IT ~[O'-l(W. - z!a)] o v J. J. 1 v J. J. 

is maximized with respect to a 
... 

and 0' • 
V 

There are two problems with, 

this method: (1)62 is not consistent, as Gronau notes, and (2) L+ 

differs from the correct L* in that '2 
0' appears i~ (3.14) but not in u 

(3.15). Note that this method would be MLE if IT appearing in (3.13) 
1 

were the product over all the observations and if L* were used instead 

of L+. 

In Gronau's second method, the first problem is solved 'as indicated 
\ 

below I) but the second problem remains. We have under Gronau's independence 

assumption 

1 
2 -2" 2 

a) a v u 
-1 

~. $. 
J. J. 

2 2 -1/2 
- z!a). whe:>re '$ • , and ~. are $ and 4> evaluated at ,(au + av ) (x2i62 J. J. J. 

Since Gronau's data are such that there are many individuals with the (1 

same value of the independent variables, one can estimate 4>. 
J. 

directly 
'l 

\1 

by the ratio of the number of working wives to the number of whres with 

the characterj.stics x .• 
J. 

Given this estimate, denoted 4>., one can estimate 
J. 

I 
I ' I 

I 

o 

o 

o 

( 

II 
II 
I. 

1\ 

\ 

... -1 ... 
by $. = $[~ (~.)]. 

J. J. 

{(~ 
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Next, one regresses positive w. 
J. 

This estimate, denoted 62 , is consistent 

(provided that the above estimates of 'i and ~i are conSistent), 

and, therefore, the first problem of the first estimation method is 

(\OlV;~d. Gronau, then, maximizez L+ after replacing 62 by 62 , but, 

62 by 62 , he would have obtained 

<- ~~ 

had\te maxinized L* after replacing 

consistent estimates of the remaining parameters. 

Despite the minor error in the estimation method, Gronau's article 

made a significant econometric contribution (besides a substantive 

empirical contribution which I have ignored) by suggesting a two-step 

method based on ,the conditiona2rexpecta:tion equation, which became a 

precursor of Heckman's two-step estimator. 

For a panel-d~ta generalization of Gronau's model, see Kiefer and 

Neumann [1979 and 1981]. The likelihood function of the Kiefer-Neumann o 

model is obtained by taking the product of (3.12) over the time periods 

in the sample. They used the MLE. 

4. Other Applications: Nelson [1977] noted that a Type 2 

Tobit m,odel arises it Yo in (2.1) is assumed to be a random variable 

with its mean 'equal to a linear combination of independent varia.bles. 
\] 

He reestimated Gronau's mode~ by maximizing the correct likelihood 

function (3.13). 

Dagenais [1975] used a TYpe 2 ~obit model to analyze household 

purchase of automobiles. 'lf! * In this mod~ , Y2 in (3.1) represents the 

desired expend~ture on a car and x2 includes permanent income, 

,I , 
,1. 

l 
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education, and the number of children. He assumes that a household 

purchases a car if y~ exceeds a stochastic threshold S = a 1 + a 2A + v, 

where A is the dummy variable taking unity if the household anticipated 

buying a car at the time of a prior questionaire and the actual value 

of purchase Y2 -- Y2* -If Y2* > S. Th * S 1 th 1 f *-In • us, Y2 - pays e ro e 0 Yl • 

( 
(1",,-) 

3.1' . Like Gronau, Dagenais assumes independence between Y~ and S, 

and, in addition, he assumes equality of the variances of .Y~ and S. 

These assumptions are not necessary for identification. Dagenais' model, 

like Gronau's, has a weakness in that an arbitrary separation of the 

independent variables into some which go into the y~ equation and some 

which go into the S equation (~ equation and WO equation in Gronau's 

model) is maintained. 

In the study of Westin and Gillen [1978], y~ represents the 
, .:: 

parking cost with x2 including zonal d~ies, wage rate (as a proxy 

for value of walking time), and the square of wage rate. A researcher 

observes Y~ = Y2 ~f y~ < C where C represents transit cost, which 

itself is a function of independent variables plus an error term. 

5. Crass [1971] : As I mentioned in the beginning of 
u 

Section B.l, Y2i can be negative in the T,vpe 2 model. Cragg [1971] 
" 

proposed three models that ensure the llonnegativity of Y2i' It will 

be readily seen that, st.rictly speaking, Cragg's models 2 and 3 defined 

below can be classified as nonnormal'models and his modell, though based 
,'. "0\ 

on the normal distrl.bution, does not belong to any of the five types. 

~ 

i 

l 
(, i f) 

0 If) 

'~I 

(II (> 
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Nevertheless, I discuss these models here as 'they can be regarded as 

modifications of the TYPe 2 model. 

Model 2: 

Model 3: 

if 

otherwise 

(yt, y~) ~ Biva~~ate N(xi81' 

with y~ t~9:1ted so that 

if Yi > 0 

if 

Same as Model, 2 except 

and y~ > 0 

2 
x282, 1, a2 , a12 ) 

y~ > 0 

Cragg compared the above three models and the, Standard Tobit model 

by a simUlation study. One pu~pose of his investigation was to see how 

close the MLE is to its asymptotic normal distribution in each model. 

His results were rather inconclusive. Another purpose of the study 

was to see how often a 'true model is selected against the other competing 
(! 

models by Bayes' posteri<?r odds ratio. Cragg found it hard to distinguish 

b~tween Models 1 and 2. 

Cragg fitted a simplified version (fewer independent variables) 

of Wu's model [1965] by the four models and the ranking according to the 

posterior odds ratio ranked Model 3 best, follow'ed in order by Model '2, 

i 
I, 

~ , 

···S)' "~'~"""'''-.)._<F",_"""_"", . .,,,~,_, """'.,,,, .. _"~,,,,~e ... __ • ,-" ~"""'~~"*·-~~V __ :O:»';"""",",,,~M"""""_"_""' __ ~J,o..-.. ,"""'iI<_~~"'''' _;...,,,,~.,,,,,,,)<",,, ........ .,.. ... , ... _ ... ~_ .. ,,,_, ~'''-''-'''-t"q'',*",-''''''~~1r.-,~.'t'''Lt.!.>o:~~!'C.::;::.,,::::~: .. _.::, ' 
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Modell, and fina+ly Tobit. The estimates dbtained by Models 2 and 3 

were found to be similar to Wu' s estimates. 

c. Type 3: 

1. Definition and Estimation: The Type 3 Tobit model is 

defined as follows: 

* Yli = xiial + uli 

* Y2i = x2ia2 + u2i 

ra!i if y* > 0 
(3.17) Ii 

Yli = 0 . 
if y* < 0 

Ii = 

r~i 
if y* > 0 

Ii 
Y2' = l. 0 if * < 0 i = 1,2, ••• ,n Yli = 

where {u
1

" u2 '} are LLd. drawings from a bivariate normal distribution' 
-l. l. 

with mean zero, var.iances O'i and O'~J' and covariance 0'12. Note that 

this model differs from Type 2 only in that Yii is also observed when 
II 

it is positive in this model. 
" c, 

Since the estimation of this model can be handled similarly to that 

~f Type 2, I will discuss it only briefly. Instead, in the following I 

will give a ,detailed discussion of the estimation of Heckman's model 
., ,- Ii 

[1974], which constitutes the structural-equations version of the modet 

() 

( I 

(! 

I 
. - .. - I 
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(J 

o 

• 
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o 

o 

o 
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The likelihood function of the model (3.17) can be written as 

f(. ,. ) 

L = IIP(Yl*l.' ~ 0) n f(Yl" Y2') 
OIl. .' l. 

is the joint density of Yii and Since 

observed when it is positive, all the parameters of the model are 

identifiable., including a~. 

is 

Heckman's two-step estimator was originally proposed by Heckman 

[1976] for this model. Here we obtain two conditional-expectation equa-

tions (2.17) and (3.8) for Yl and Y2 respectively. (Add subscript 1 

to all the variables and the parameters in (2.17) to conform to the 

notation of" the present ser::tion.) In the first step of the method, 

a l = alO'~l is estimated by the probitMLE a l • In the s£cond step, least 

squares is applied separately to (2.17) and (3.8) after replacing a l by 

al • The asymptotic variance-covariance matrix of the resulting estimates 

of (aI' 0'1) is given in (2.28) and that for (a2 , 0'120'~l) can be 

similarly obtained •. The latter is given by Heckman [1979]. A consistent 

estimate of 0'2 can be obtained using the residuals of equation (3.8). 

As Heckman [1976] suggested and as I not.ed in Section II. C. 3, a more 

efficient WLS can be used for each equation in the second-step of the 
., 

method. An even more efficient GLS can be applied simultaneously to the 
., 

two equations. However, even GLS is nQt fully efficient compared to MLE, 

and the added compJtational burden may not be sUfficiently compensated 

for by the gain in efficiency. A two-step method based on unconditional 

means of Yl and Y2' which is generalization of the method discussed 

in Section II.B.3, can be also trs~d for this model. 
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Wales and Woodland [1980] compared the LS estimator, Heckman's 

two-step estimator, probit MLE, conditional MLE (using only those who 

worked), MLE, and another inconsistent estimator in a Type 3 Tobit model 

.in a simulation study with one replication (sample size 1000 and 5000). 

The particular model they used is the labor supply model of Heckman [1974], 

which I will discuss in the next sUbsection.18/ The LS estimator was 

found to be poor, and all three ML estimators were found to perform well. 

Heckman's two-step estimator was ranked somewhere between LS and MLE. 

2. Heckman [1974]: Heckman's model differs from Gronau's 

model (3.11) in that Heckman includes the determination of hours worked 

H in his model. Thus, Heckman's model is a natural consequence of 

Gronau's theory of labor supply. Like Gronau, Heckman assumes that the 

offered wage WO is given independently of H; therefore, Heckman's WO 

equation is the same as Gronau's:' 

Heckman defines ~ = (au/ac)/(au/ax) and specifies19/ 

(3.20) Ii = yH. + z!a. + v. 
~ ~ ~ ~ 

It is assumed that the i-th in:dividual works if 

(3.21) w: (H. = 0) _ z! a. + v. < W? 
~ ~ ~ ~ ~ 

and then, the wage W. 
~ 

and hours worked Hi are determined by solving 

(3.19) and (3.20) simultaneously after putting w? = w: = 
~ i Thus, we 

t. 

I. ; 

( 

(l 

-, 

o 

can define Heckman's model as 

(3.22) 

and 

(3.23) w. = yH. + z!a. + v. 
~ ~ ~ ~ 

for those i for which desired hours of work 

(3.24) , 

where xiiSl = y-l(x2iS2 - zia ) 

(3.21) and (3.24) are equivalent 

and -l( uli = y u2i - Vi)' Note that 

because y > O. 

I will call (3.22) and (3.23) the structural equations; then, (3.22) 

and the identity part of (3.24) constitute the reduced form equations. 

The reduced form equations of Heckman's model can be shown to correspond 

to the Type 3 Tobit model (3.17) if we put H* * H WO * =Yl' =Yl! =Y2 , 

and W = Y 2' Since I have already discusse.d the estimation of the 

reduced-fprm parameters in the context of the model (3.17), I will now 

discuss the estimation of the structural parameters. 

Heckman [1974J estimated the structural parameters by MLE. In 

the next two subsections I will discuss three alternative methods of 

estimating the structural parameters. 

For a panel-data generalization of Heckman's model, see Heckman 

and MaCurdy [1980]. 

"-J, 

'" 
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3. Heckman [1976]:~. This article proposes the Heckman 

two-step estimator of the reduced-form param~ters, which I have discussed 

in sUbsection 1 above, but also reestimates the labor supply model of 

Heckman [1974] using the structural equation version. Since (3.22) is 

a reduced-form as well as a structural equation, the estimation of 13 2 

is done in the same way as I have discussed in subsection 1: namely, 

by applying least squares to the regression equation for E(wi1cfii > 0) 

after estimating the argument of A (the hazard rate) by probit MLE. 

So I will only discuss the estimation of (3.23) here. Rewrite (3.23) as 

By subtracting E( v.1 H~ > 0) 
~ ~ 

(3.25) further as 

(3.26) 

from v. 
~ 

and adding the same, we rewrite 

where O'lv = Cov (uli ' vi)' O'i = Vuli , and e: i = vi -. E(vcilHi > 0). 

-1 -1 -~;' -1 Then, consistent estimates of y , ay' ,and O'lvO'l ~'y are obtained 

by the least squares regression applied to (3.26',) after replacing 13/0'1 

by its probit MLE and W. by W., the least squares predictor of W~ 
. ~ ~ ~ 

obtained by applying Heckman's two-step estimator t9 (3.22). The 

t .. . t· .' f th' t . \t'~' b d d 'd asympto ~c var~ance-covar~ance ma r~x 0 ~s es ~ma ~r can e e uce 
f 

from the results in Heckman [1978], who considered the estimation of a 

more general model (which I will discuss in the .section on TYPe 5 Tobit 

models) • 

(I 

I., 

o 

o 
'1 

I 

i 

, j 

I 
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.Actually, there is no apparent.reason why one must first solve 

(3.23) for H .. and proceed as I have indicated' above. 
~ 

Heckman could 

just as easily have subtracted and added m(v., H~ > 0) 
~ ~ 

to (3.23) itself 

and proceeded similarly. This method would yield alternative consistent 

estimates. Inferring from a well-known fact that the two-stage least 

squares estimates of the standard simultaneous equations model yield 

asymptotically equivalent estimates regardless of which normalization is 

chosen, I conjecture that the Heckman two-step method applied to (3.23) 

and (3.25) would also yield asymptotically equivalent estimates of y 

and a. 

Lee, Maddala, and Trost [1978] extended Heckman's simul taneous-

equations two-step estimator and its WLS version (taking account of the 

heteroscedasticity) to more .. general simultaneous-equations Tobit models 

and obtained their asymptotic variance-covariance matrices. 

4. Amemiya's LS and GLS: Amemiya [1978 ,and 1979] proposed 

a gene~al method of obtaining the estimates of the structural parameters 

from given reduced-form paramet~r estimate~ in generaT Tob~t-type models 
\~\ 

\'::: 

and aerived the asymptotic distribution. The structural paramete:C's y 

and a· ofa p~rticul:ar equation are generally related toi;he relevant 

reduced~form parameters 'IT and IT in the following 'way: 

'IT = ITy + Ja 

wl1ere J is a known matrix consisting of o~y o.nes and zeros. It is 

assumed that 'IT, y, and 13 a.re vectors. and IT and J are matrices of 
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conformable siZes. Equation (3.27) holds for Heckman's model and more 

general simultaneous-equations Tobit models t as well as the standard 

simultaneous-equations model. 

Now, suppose certain estimates ~ and n of the reduced-form 

parameters are given. Then, using them, we rewrite (3.27) as 

A A 

(3.28) ~ = ny + JI3 + (iT - ~) - (n - n)y 

Amemiya proposed applying LS and GLS estimation to (3.28). From Amemiya' s 

result [1978], one can infer that Amemiya's GLS applied to Heckman's model 

yields more efficient estimates than Heckman's simultaneous-equations 

two-step estimator discuss~d above, Amemiya [1982] shows the superiority 

of the Amemiya GLS estimator to the WLS version of the Lee-Maddala-Trost 

estimator in a general simultaneous-equations Tobit model. 
;' 

5. Other Examples: Shishko and Rostker [1976] used Heckman's 
\0 

model to explain the wage and hours worked in a second job. They estimated 

the wage equation (3.22) by least squares (yielding inconsistent estimates) 

and estimated the hours equation (3.25) by the TobitMLE after replacing 

W. by its least squares predictor. This estimation procedure is not, 
~ 

recommended. 
" 

Roberts, Maddala, and Enholm [1978] estimated two types of simultaneous-

equations Tobit models to explain how utility rates are determined. One 

of their models has a reduced form which is essentially Typ,~ 3 Tobit and 

the other is a simple extension of Type 3. 

The structural equations of their first model are 

X 2' .13 2 + u2 · 
~ ~ " 

,I 

I, 

\. ' 

(", 

Ii 

~-") 
l~ 
" 

l~ 
! 

\, 

'/ " 

I 

() 
., 
~-.... ~-.. --~-

« 

and 

~ 

Y3i = yY~i + x3i13 3 + u3i 
(3.30) 

wherg y~i is the rate requested by the i-th utility firm, Y3i is the 

rate granted for the i-th firm, x2i includes the embedded cost of L 

capital and the last rate granted minus the current rate being earned, 

and includes only the last variable mentioned. It is assUmed that 

are observed,only if 
"',( 

where z. 
~ 

include the earnings characteristics of the i-th firm. (Vv. 
J: 

is assumed to be unity.) 'The yariable Yi may be regarded as an index 

affecting a firm's decision as to whether or not it requests a rate 

increase. The' above model can be labelled as P(Yl < 0) • P(Yl > 0, Y2' Y3) 

in my short-hand notation and tl\\erefore is a simple generalization of 
,', 

Type 3. The authors' estimation method is that of Lee, Maddala, and 

Trost [1978] and can be described as follows: (1) Estimate a by the 

probit MLE. (2) Estimate 132 by Heckman's two-st.ep method. (3) Replace 
A 

. y~i in tbe right-hand side of (3.30 )by y~i obtained in step (2) and 

estimate y and 

the hazard ,rate term 

by the least squares applied to. (3.30) after adding 

E (u3 · I YJ*' > 0). 
~ .~ 

The second model of Roberts, etc' al. is the same as the first 

model except that (3.31) is replaced by 

\~ 

(3.32) 

,J 

. ... -"'-..-" •• , ",-«"",: """"='':'~' ;:;:':::::.!:.~!.- "~~ •• - _ .. --'.-,",-.~. -_._-.. --.. -,"'"'"'"""--..,... .. ,._,. 
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where R. 
~ 

refers to the current ra~~ being earned~ an independent 
;J 

variable. Thus, this model ise~~ntiallY Type 3. (It would be exactly 

Type 3 if R. = O. ) 
~ 

The estimation method. is as follows: (1) Estimate 

62 by the Tobit MLE. (2) Repeat (3) as described in the preceding 

paragraph. 

Nakamura, Nakamura" and ,Cullen [1979] estimated;)essentially the 

same model as Heckman [1974] using Canadian data on married women. They 

used the WLS version of Heckman's simulilineous=E!quations two-step estimator; 

that is, they appliei)WLS to (3.26). Nakamura and Nakamura [1981] estimated 

a more elaborate version of the preceding model incorporating income tax, 

leading to a complex nonlinear hours equation~ 
u 

Hausman and Wise [197.6 , 1977, and 1979] used Type 3 and its 

generalizations to~ analyze the labor supply of participants in the Negative 

Income Tax (NIT) experiments., Their models are truncated models since 

they used observations on only those who participated in the experiments. 

The first model of Hausman and Wise [1977] is a minor variation of the 

Standard Tobit model where earnings I, .: , Ii 
( 

y follow 
'\-;: 

Y. = Y~ 
~ ~ 

if Y~ < L. 
~ ~ 

, 

where Li is a (known) poverty level which qualifies the i-th person to 

participate in the NIT program. It varies systematically with family 

size. The model is estimated by LS and MLE. (The .LS estimates were 

always found to be smaller in absolute value, cd!lfirming Greene's result 

given in Section II.C.2.) In the second model of the same article, earnings 

are split i!lto wage and hours as Y = W· H, leoadillg to the same equations 
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as Heckman's (3.22) and (3.23) except that the conditioning event is 

log Vl. + log H. < log L .. 
~ ~" ~ 

(3.34) 

instead of Heckman's (3.24). Thus, -this-cnl0del is a simple extension of 
~< ~'-•. 

" ~ 
Type 3 and belongs to the same type of models as 1;·he first model of 

'~, 

Roberts, Maddal:a., and Enholm [1978], which I diSCUS~\'d earlier, except 

'" :, for the fact that the model of Hausman" and Wise is a t;kcated one. The 
, ~ 

" model of Hausman and Wise [1979] also belongs to this type.·~e model 

of their [1976] article is "an extension of (3.33), where earningsobserva­

,tions are split intO the pre-experiment (subscript 1) and experiment 

(subscript 2) periods as 

Thus, the model is essentially Type~3, exc;pt for a" minor variation 

due to the fact that L. varies wit~ ... il 
1. .0:. 

ii 

.u _ 

" 

if: 
l_i 

-- (!-'----~-.----~------
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1. Definition and Estimation: The TYPe 4 Tobit model is defined 

as follows: 

* Yli = Xii 61 -+- '\i 

y~i = x:h62 + u2i 

* Y3i ::: x3i63 + u3i 
() 

{:ti if * 0 Yli> 
(3.36) 

c~ Yli = 
if * 0 '\ Yli ;; 

~, ., 

L 

',,-

= {:~i yii> 0 '\ if 

Y2i 
if * 0 Yli ;; 

-r~i if * < 0 Yli = 
Y3·-~ 0 if y* > 0 Ii i = 1,2,.:. ,n 

where {uli ,u2i , u3i} are i.i.d. drawings from a trivariate normal 

distribution. 

This mode,l differs from 'l"yJ?e 3 defin~d by (3.17) only by the 
" 

addition of Y3i' which~ls observed only if Yii ~ O. The estimation 

of this model if!, not significantly different from that of Type 3. The" 
~ \ ' 

likelihood function can be written as 

o 
L = gL f'3(yii' Y§i)dyii • ~ f2 Gli , Y2i)O , 

, 
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where f 3("') 'is the joint denSity of yii and Y3i and f
2

(' ,.) 

is the joint ~en;;i ty of Yii and Y~i. Heckman's two-step method 

for this model is similar to the method for the preceding model. However, 

one must deal with three conditional expectation equation in the 

present model. The, equation for Y3i will be slightly different from 

the other two because the variable is positive when yii is nonpositive. 

'~We obtain 
'J) 

I will discuss three example~ of the Type 4 Tobit model below: 

Kenny, Lee, Madd~ and T~ost [1979], Nelson and Olson [1978], and 
~ 

Tomes [1981]. In"the first two models, the y* equations are written 
rJ 

as simultaneous equations, like Heckman's model [1974], for which the 

. reduced-form equations take the form of (3.36). Tomes' model has a slight 

twist. The estimation of the struct~al parameters of such models can be 

handled in much the same way as the estimation of H,eckman.' s model [19~(4 J: 

that is, by either Heckman's simultaneous-equations two-step method (and 

i tsLee-Macidala-Trost '~xtensio9..) or by Amemiya.' s LS and GLS, both of which 

I discussed U~ Section C above. 
U I" 

In fact,' these two estimation methods can easily accomodate the 

following very general 'simultaneous-equations Tobit model: 

r'y* = i B'x. + u. 
~ J. i = l.2: ... \ 

where the elements ,of the vector" yr contain the f~&~i~g three types 
o 

of variables: (1) alwaYScolllpletely observable, C2) sometimes completely 

fJ a 

/I 
( 



-70-

pbservable and sometimes observed to lie in intervals (like y!i> 0), 

and (3)' always observed to lie in intervals. Note that the variable 

classified as C in Table 3.2 belongs to Class (2) above, and the 

variable classified as B belongs to Class (3). The models of Heckman 

[1974], Kenny, Lee, Maddala, and Trost [1979], and Nelson and Olson 

[1978], as well as a few more models I will discuss under Type 5 such 

as Heckman [1978], are all special cases of the model (3.39). 

2. Kenney. Lee. Maddala. and Trost [1979]: These authors 

tried to explain earnings differentials between those who went to college 

and those who did not. I will explain their model using the variables 

appearing in (3.36). In their model. y! refers to the desired years of 

college education. y~ the earnings of those who go to college, and 

the earnings of those who do not go to college. A small degree of 

y* 
3 

simultaneity is introduced into the model by letting y~ appear in the 

right-hand side of the y~ equation. The authors used the MLE. They 

note that the MLE iterations did not converge when started from the LS 

estimates, but did converge very fast when started from Heckman's two-

step estimates (simultaneous-equations version). 

3. Nelson and Olson [1978J: The empirical model actually 

estimated by these authors is more general than TYPe 4 and is a general 

simUltaneous-equations Tobit model (3.39). The Nelson-O~son empirical 

model involves the following four elements of the vector y*: 

II 

y!: Time spent on vocational school training, completely 

observed if Yi > 0, and otherwise, observed to lie in 

the in'!;erval (-CiO '. 0]. 

I' .: 

(, 
I' 

f" ; 
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y*. 2· Time spent on college education, observed to lie in 

one of the three intervals ( oo(lO , 0]' (0, 1], and 

(1, (10). 

y*. 3· Wage, always completely observed. 

y*. 4' Hours worked, always completely observed. 

'llhese variables are related to each other by simultaneous equations. 

However, they me~ely estimate each reduced-form equation separately by 

various cppropriate methods and obtain the estimates of the structural 

parameters from the estimates of the reduced-form parameters in an 

arbitrary ~y. 

The model which Nelson and Olson analyzes theoretically in more 

detail is the following twqr~qUation model: 

(3.40) 

and 

,(3.41) 

where 

'y~i > 

Y2i 

O. 

Y* = Ii 

is alwaysobserv'ed and y!i is observed to be y Ii if 

This model may be used, for example, if one is interested in 

explaining only y! and Y3 in the Nelson-Olson empirical model. The 

likelihood function of this model may be characterized by 

P(YI < 0, Y2) .P~Yl' Y2)' and therefore, the model is a special case 

of Type 4. 

Nelson and Olson proposed estimating the structural parameters of 
'.i ~\, 

this model by the following sequential method: (1) Estimate the parameters 
tfl 
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of the reduced-form equation for y* by the Tobit MLE and that for 
1 

Y2 by LS. (2) Replace Y2i in the right-hand side of (3.40) by its 

LS predictor obtained in step (1) above and estimate the parameters of 

(3.40) by the Tobit MLE. (3) Replace y~i in the right.-hand side of 

(3.41) by its predictor obtained in step (1) and estimate the parameters 

of (3.41) by LS. Amem.iya [1979] obtained the asymptotic. variance-

covariance matrix of the Nelso-Olson estimator and showed that the 

Amemiya GLS (see Section III.C.4) based au the same reduced-form estimates 

is asymptotically more efficient. 

4. Tomes [1981]: Though it is not stated explicitly, 

Tomes' model can be defined by 

and 

* if y* > 0 -f'li li (3. 44) 
Yli - 0 

if y* < 0 
li = 

where is the inheritance and Y2i is the recipient's income. Note 

that this model differs from Nelson's model defined by (3. 40) and (3.41) 

only in that Yli' not y!i' appears in the right-hand side of (3.43). 

Assuming -(lY2 < 1 for the logical consistency of the model (as in 

Amemiya [1974]' and mentioned in Section III.A), we may rewrite (3.42) as 

I 

I 

, I 

I 
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a.nd (3.43) as 

(3.46) 

Thus, the likelihood function of the model is 

o 
II f ( * CO»~ * ( ell) L = f Yli' Y 2 . dy 1· II f Y 1 ., Y 2i 
0..00 1. 1.1 1. 

which is the same as (3.37). 

1. Definition and Estimation: The TYPe 5 Tobit model is 

obtained from the TYPe 4 model (3.36) by omitting the equation for Yli. 

One merely observes the sign of y!i. Thus, the model. is defined by 

(j ';> 

",,: 
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Yii = XliSl + uli 

* Y2i = x2iS2 + u2i 

Y3i = x3iS3 + u3i 
(3.48) 

= f:~i 
if y* > 0 Ii 

Y2i 
it' * < 0 Yli = 

* if * < 0 -r3i Yli = 
Y3· -J. 0 if y* > 0 i = 1,2, ••• ,n Ii 

{ } are J.·.J.·.d drawings from a trivatiate normal where uli ' u2i ' u3i 

distribution. 

The likelihood function of the model is 

o ~ 

L = ~ .£. f3 (yii' Y 3i) dyii· ITi l f2 (Yii' Y 2i) dyii 

II 
~ 
\ d f· d· (3 37) Since this model is somewhat 'where f 3 and f 2 are as e J.n(~ J.n .• • 

simpler than TYPe 4, the estimation methods I discussed in the preceding 

section applY. to this model a for°li2!:i.' Hence, I wi+l immediately go into 

the discussion of applications. 

2. Lee [1978] and Ilee and Trost [1978]: In Lee's model 

[1978], y~i represents the logaritbm of the wage rate' of the i-th worker 

'in case he or she joins the union and represents the same in case 

he or" she does not join the union. Whether or not the worker joins the 

union is determined by the sign of the variable 

D 
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(3.50) y* = y* - y* + z!a + v Ii 2i 31 2 i 

Since we observe only y~i if the worker joins the union and Y3i if 

the worker does not, the logarithm of the observed wage, denoted y., 
J. is defined by 

if 

,if 

Y* > 0 li 

Lee assumes that 
(the independent variables in the y~ 

and Y3 equations) include the individual characteristics of firms 

and workers such as regional location, city size, education, experience,' 

race, sex, and health, whereas z includes certain other individual 

characteristics and variables which represent the monetary and non-monetary 

costs of becoming a union member. Since y* 
1 is unobserved except for 

the sign, the variance of Yi can pe assumed to be unity without loss 

of generality. 

Lee estimated his model by Heckman's two-step ~ethod applied 

separately to the y* 
2 and the Y3 equations. In Lee's model, simultaneity 

exists only in the Yi equation and hence is ignored in the application 

of Heckman's two-step method. Amemiya's LS or GLS, which accounts for 

the;, simultaneity, will of course work for this model as well and the latter (';'" r 

will yield more efficient estimates, though, of course, not as fuily 

efficient as the MLE. 

The "model of Lee an~ Trost [1978] is identical to Lee's model' abQYe 
u 

except that Yii' is defined Simply as zia + Vi and does not depend o 

" ',' 
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on the difference y~i - Y3i as in Lee's model. Thus, there is no 

simultaneity in the Lee-Trost model. In their model, Yi and 

represent annual expenditure on the housing owned and rented respectively, 

and include the age, race, sex of the family head, family size, 

income, city size, distance from center of city, and the rela.tive price 

index of housing, while z includes all the independent variables above 

except the last. In estimation, Heckman's two-step estimates were 

obtained and then used to start the Newton-Raphson iteration. 

3. Heckman [1978]: Heckman's model is a simultaneous 

equations model consisting of two:cequations 

and 

where we observe Y2i' xli' x2i ' and wi defined by 

if 

if 

Y* > 0 Ii 

'y* < 0 Ii 

There are no empirical results in this article ,but" the same model is 

estimated by Heckman [1976], in which y~i represents the average income 

. " of black people in the'i-th state, Yii the unobservable sentime~t 'toward 

blacks in the i-th state, and 

instituted in the i-th state. 

w. = 1 1. 
if an antidiscriminat'ion law is 

,() I 

I. ' 

(, 

o 

o 

" .'£; 

'" , 

, ) 

-' f,. 

o 

I) 

-Tr-

.'1 

Another possible application of the model is to the same problem 

to which Lee's article was addressed (though Lee's model seems more 

suitable for this problem). Then, Y2i would represent the i-th worker's 

wage (or earnings) for both union and nonunion workers, and yfi would 

represent the i-th worker's propensity to join a union. As I will discuss 

later in subs~ction 4, such an application was made by Schmidt and Strauss 

[1976J using a special case of Heckman's model. 

When one solves (3.52) and (3.53) for Yii' the solution should 

not depend upon w., for that would clearly lead to logical inconsistencies. 
~ 

Therefore, one must assume 

in order for Heckman I· S model to be logically consistent. 20( Using the 

" 
above constraint, the reduced-form equations (though strictly speaking 

not a ~educed form because of the presence of w.) of the model can be 
~ 

written as 

and 

Y* = Ii x1.!'II'l + v, . 
.~~ 

= 02w. + x!w2 + v2 · 1. 1. 1. 

where one can assume VVli = 1 without loss of generality. Thus 

Heckman I s model is a special ca~e of Type :? with just a constan~ shift . 

between '" y~ and Y3 (,. * - .. 1..e., Y2· - x·'II'2 + v2 · 1.. 1. 1. 
" 

Moreover, if 02 = 0, it is a special case of Type 5 where Y* = y* 2 3' 
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Let us compare Heckman's reduced-fol~ model defined by (3.56) 

and (3.57) with Lee's model. Heckman's (3.56) is essentially the same 

as Lee's (3.50). Lee's (3.51) can be rewritten as 

By comparing (3.57) and (3.58), we readily see that Heckman's reduced-form 

model is a special case of Lee's model in which the coefficient m~ltiplied 

by wi is a constant. 

Heckman proposed a sequential method of estimation for the structural 

parameters, which can be rega.rded as an extension of Heckman's simultaneous-

equations two-step estimat.ion discussed in Section III.C.3. His method 

consists of the following steps: (1) Estimate ~l by applying the 

probit MLE to (3.56). Denote the estimator ~l and define 

(2) Insert (3.56) into (3.53), replace 'iT
l 

with ~l and wi with Fi' 

and then estimate Y 2' e2 , and O2 by least squares applied to (3.53). 

(3) Solve (3.52) for Y2i' eliminate y~i by (3.56), and then apply least 

squares to the resulting equation after replacing ~l by ~l and wi 

, -1 -1 -1 
by Fi to estimate Yl ' Yl el , and Ylo l . 

Amemiya [1978] derived the asymptotic variance-covariance matrix 

of Heckman's estimator defined above and showed that Amemiya's GLS (de~ined 

in Section III. c.4) applied to the model yields an asymptotically more 

efficient estimator in the special" case of o = 0 = O. 1 2 As pointed out 
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by Lee [1981], however, Amemiya's GLS can be a&so applied to the model 

with nonzero o's as follows: (1) Estimate ~l by the probit MLE 

~l applied to (3.56). (2) Estimate and by applying the 

instrumental variables method to (3.57) using F. as the instrument 
~ 

for Denote these estimators as w •• 
~ and (3) Derive the 

estimates of the structural parametersii Y l' e
l

, 0
1

, Y 2' e
2

, and O
2 

from ~l' ~2' and O2 using the relationship between the reduced-form 

parameters and the structural parameters as well as the constraint (3.55) 

in the manner described in Section III.C.4. The r.esulting estimator can 

be shown to be asymptotically more efficient than Heckman's. 

4. Schmidt and Strauss [1976] and Related Papers: Schmidt 

and Strauss [1976] studied the effect of unions on earnings and earnings 

on unions by the following model: 

p(w. = lIY2·) = .L(x!el + Y
IY2.) 

,~ ~ ~ ~ 

(3.60) 

In this model, wi = 1 if the i-th worker is a union member, Y2i represents 

the i-th worker's earning~, and xi includes education, experience, race, 

sex, and regional dummies. 

Equat~on (3.60) can be written as,a regression equation like (3.57), 

bu~, unlike (3.57), w. 
~ 

is independent of the error term of the regression 

') 
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because (3.60) describes a conditional distribution. From (3.~9) and 

(3.60) one can derive the marginal distribution o£ wi as 

" 

In the process o£ obtaining the above result, it becomes ,,~pparent that 

one must have 

in order £or the model to be logically co.-isistent because, unless (3.62) 

holds, y 2i will appear in the argument of "- in the right,,;.hand side of 

(3.61).21/ Note that (3.61) can be written in the £orm o£ (3.56) with 

v,. £ollowing a logistic distribution. Hence, we conclude that the 
.!.~ 

Schmidt-St.rauss model is essentially a special case 9.1 Heckman's model 

in which v
1i 

and v
2i 

are independent. This independence considerably 

simpli£ies the estimation: assuming that X. 
l. 

does not contain a constant 

term, the MLE o£ all the parameters can be obtained py applying LS to 

(3.60) and the 1.ogi t MLE to (3.61) separately. 

Warren and strauss [1979] used the same model as above to study 

a related but di£fe~1:'ent problem. In their study, w. = 1 i£ the i-th 
c, n1. 

,;: 

state has r:Lght-to-lvork legislation and y 2i represents the proportion 

of nonargicultural employement that is unionized. &e constraint (3.62) 

was also ignored in this' study 7, 

SchIp.idt [1978] ,considered ~he same union and earnings problem using 

a model. which is a slight generalization of the Schmidt-Strauss model. 
'J 

It can be interpreted as Heckman's model in which (3.57) is generalized as 

('I 
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\ 

Note that this equation is between (3.57) and (3.58) in its degree of 

generality concerning the term multiplied by w .• While it is more 
" ~ 

general than Heckman's model in this sense, it is more restrictive than 

Heckman's in the more., signi£icant sense that Schmidt ~ like Schmidt and 

Strauss or Warren and Strauss, assumes independence between VIi and 

Another example o£ the Schmidt-8t~auss model is the model of 

Ray [1981], in which Wi = 1 i£ nontariff barriers existed in th;"" r"::'.:!;_h 

industry (U.S, four-digit manufacturing industry), Y2i 

average of tariffs within the i-th industry, and x. 
~ 

industry chara~\~ristics. 

rep,l:"esents an 

includes various 

5 • Disequilibrium Models : Disequilibrium models cc;msti tute 

an extensive area o~ research, in which numerous papers have 'geen ~)ritten. 

The lastest bibliography compiled by Quandt [1982] contains 93 economic-

theoretic references and 121 econometric references concerning disequilibrium 

models. S,ome of the early ,econometric mod,els are surv~yed by Maddala 

and Nelson [1974]. See, also, Hartley li976] for a connectioribetween 

a disequilibrium mod~l and the Standard Tobit model. Here I will only 
( , :) 

mention two basic models first discussed in the/pioneering work of Fair 

and Jaffee [1972]. 

The simplest disequilibrium model of Fair and Jaffee is a special 

case of the Type 5 model ( 3.48) , Rin which y~i is the quantity demanded 
~ 

in the i-th period, Y3i is the quantity SUPPlied in the i-th period, and 
Jr \,. -.:-~ 

Yii = Y3i - y~i' Thus, the actu~l quantity sold, which a researcher 

':' "r 

_~~.",_n __ _ 
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observes, is the minimum of supplr and demand. The fac'Ltha.t "the 

. f (* * cy' *) is only of rank 2 because variance-covariance matr~x 0 y l' Y 2' 3;; 

of the linear relationship above d0es not essentially change the nature 

of the model because the likelihood function (3.49) involves only 
\" 

bivariate densities. 

Another model considered by Fair and Jaffee adds a pr~ceequation 

to the above as 

(3.64) 

d t hange in the price at the i-th period. where Y4i eno es a c The likelihood 

. m function of this model can be wr~tten as 

o 
L = IT J f3 (y!i' y 3i I Y4i) f (Y4i) d Y!i • 

0-.0 

The for.m of the likelihood function does not qhange if. one adds a nor.mal 

'\ th . ht h d s';de of (3 64) In .. either case, the model error ter.m to e r~g .- an... .. 

.' may be schematically characterized by 

(3.66) , . 

which is a/hmple generalization of the Type 5 model. 
/ 
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6. .Mul tivariate Generalizations: By a multivariate 
1,\ 

generalization of ~~ .. e 5, I mean a model in wh';ch y* d * . 
"'J~ ... 2i an Y3i ~n 

(3.48) are vectors, whereas yii is a scalar variable whose sign is 
c::) 

observed as before. Therefore, the Fair-Jaffee model with likelihood 

function characterized by (3.66) is an example of this type of model. 

In Lee's model [1977], the~;2Jyr equation is split into two 
. ~/ equations 

;/ '\' 
(3.67)' 

and 

(3.68) 

where 
o 

({ 

C* and 2i T2*· . ~ denote the cost and the time incurred by the i-th 
/,;;.-. 

person trave,\t;ling by a pri vatef;.'mode of transportation and, similarly, 

the cost and the time of travelling by a public mode are specified as 

" and 

T3*'; = z' a + v ... 13i 3 ~ 

Lee assume~ that and T2*. 
-~ 

"privat'e mocte and C
3i 

and T3i 
t> 

mode. A private mode is used if 

,\ 

are obse~ed if the i-th person uses a 

are observed if he or she uses a public 

is"given by 

• c 

~ '----.~=~".~-.. ~ ... 
\) 

'I.' 

, ('J 
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Lee estimated his model by the following sequential procedure: 

(1) Apply the probit MLE to (3.71). (2) App~y LS to each of the fo~r 

equa t1;9ns (3.67) ·bhrough~( 3.70) after adding to the right-hand side of 

each the estimated hazard from step (1). (3) Predict the dependent 

variables of the four equ~tions (3.67) through (3.70) using the estimates 

obtained in step (2) above, insert the predictors into {3.71) and apply 

the probit MLE again., (4) Calculate the MLE by iteration starting from 

the estimates obtained at the end of the: step (3). 

Willis and Rosen [1979] studied earnings differentials between 

those who went to coll~~e and those who did not using a more elaborate 

model than that of KennY', Lee, Maddala, and Trost [1979], which I discussed 

in Section III.D.2. In the model of Kenny, et ale Yii (the desired years 
If' 

of college education, whose sign determines whether one attends college) 

is specified not to depend directly on Y2i and Y3i (the earnings of 

thr college-goer and the no~-college-goer respectively). The first 

inclination of a researcher might be to hypothesize 
Yl*i = y* - y* 2i 3i' 

H?wever, ehiS woul,d be an oversimplification because the decision to go 

to colJ,ege should depend on th~,~ifference in expected life time earnings 
,J , 

,rather than current earnings. ,s;:? 
, :;- ~,':\ "~ /)1 

Willis and Rosen SOtVed this problem by, developing ".~l~ ingenious 

theory of the maxim;"zati'on of discounted, expected life-time earnings, 

whic;!}{i led to the following model: 

(I 

{ 1 

1 

I 
J~ 

CT 

I 

:~ 
I 

!~ 
·1 ' 

and 

Ri = sly + e: i 
,y 

i = 1,2, ... ,n 

where I2i and ~~i denote the initial earnings and the growth rate 

of earnings for the college-goer, I
3i

and G3i denote the same for 

th~'l.lon-college-goer, and Ri denotes'the discount rate. It is assumed 

that the i-th person':goes to college ~f Yii > 0 where 

and that the variables with subscript ~ are observed if Yii > 0, those 

with subscript 3 are observed if Y!i ~ 0, and Ri is never observed. 
, (I 

Thus, the model is formally identical to Lee's model [1977]. The estima-

tion method of Willis and, Rosen used only tl:\e first two steps of Lee's 

method given, above. 

Borjas and Rosen [1980] used the same model as Willis and Rosen to 

study the earnings differential between those who chang7d Jobs and those 

who did not within a certain period of observation. 

7. MUlti-response Generalizations: In all the models 

we have considered so far in Section E, the s;i.gn of Y!i determined two 

) 
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basic categories of observations, such as union members versus non-union 

members, states with an anti-discrimination law versus those without, 

or college-goers versus non-college govers. By a multi-response generaliza-

tion of TYPe 5, I mean a model in which observations are classified into 

more than two categories. I will devote most of this section to a dis-

cussion of Duncan [1980], who seems to be the first person to present a 

full discussion of estimation methods applicable to thl.s type of model. 

Duncan presents a model of Joint determination of the location of 

a firm and its input-output vectors. A firm chooses the location for 

which profits are maximized, .~nd only the input-output vector for the 

chosen location is observed. Let siCk) be the profit of the i-th firm 

when it chooses location k, i :::: 1,2, ••• ,n and .ok = 1,2, ••• ,K, and 

let Yi (k) be the input-output vector for the i.-th firm at the k-th loca-

tiona To simplify the analysis, I will subsequently assume y. (k) 
~ 

is 

a scalar, for a generalization to the vector case is straightforward. It 

is assumed that 

(3.78) s. (k) 
(1) , 

+ uik 
1'1 

= xik ~ I' 
~ i 

and 

(3. 79) Yi(kJ = 
(2) j 

Xik a + vik 

where are vector functiohS of the input-output prices 
;.; 

II 

a a:ppears inbothequations.W an~ economic theory dictates that the same 

It is assumed that (u· l ' uJ.·2'···' .u· K ' v· l ' v· 2 ,···, v. ) ~ ~ ~ J. .J.K 
is an i.i.d. 

f' 

(. 

(',. 

(i 

1\, 
V 

I 
I ,"r!) ..., 

I 
, { 
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drawing from a 2K-variate normal distribution. Suppose s.(k.) > s.(j) 
~ ~ ~ 

for any Then, a researcher observes y. (k.) 
~ ~ 

but does not 

observe for J rf k .• . ~ 

For the subsequent discussion i~ is useful to define K binary 

variables for each i by 

(3.80) = 110 w. (k) 
~ 

if i-th firm chooses k-th location 

otherwise 

and define the vector Wi = [wi(l), wi (2), .•• , wiCK)]'. Also define 

Pik = P(Wi(k) = 1) and the vectqr Pi = (Pi1 , Pi2 ,···, P
iK

)'. 

There are many ways to write the likelihood function of the model, 

but perhaps the most illuminating way is to write it as 

L=n f[y.(k·)lw.(k.)= 
i ~ ~ ~ ~ 

where ki is the actual location the i-th firm was observed to choose. 

The estimation method proposed by Duncan can be outlined as follows: 

(1) Estimate the a that characterize f in (3.81) above by nonlinear 

WLS. (2) Estimate the a that chare .. cterize P in (3.81) above by the 

multi-:response probit MLE using the nonlinea.r WLS iteration. (3) Choose 

the optimum linear combina.tion of the two es'bimates of (3 obtained in stElPS 

(1) and (2). I will explain these steps in more detail below. 

In order to descri'~e step (1) explicitly, we must evaluate 

lJi - E[Yi(ki)lwi(ki ) = lJ and C1~ = V[y.;(k.)lw.(k.) = 1] as functions 
~ ... ~ ~ ~ 

of a and the variances and covaria.nces of the error terms of equations 

These conditional moments can be obtained as follows. 
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Define z. (j) = s. (k.) s. (j) and the {K - I)-vector 
~ ~ ~ ~ 

z. = (Z.(l), ••• , z.(k. 1), z.{k. + 1), ••• , z.(K)]'. To simplify the ~ ~ ~~ ~~ ~ 

notation, write z. as 
~ 

z omitting the subscript. Similarly, write 
y. (k.) 
~ ~ 

as y. Also, define R = E(y - Ey)(z - Ez)'. [E(z _ Ez)(z _ Ez),]-l 

( ) () bt . 24/ and Q = Vy - HE Y - Ey z - E z. Then, we 0 a~n-

(3.82) 

and 

II i = E (y/ z > 0) = E Y + R E (z/ z > 0) - R E z 

2 
0i = V(y/ z > 0) = 

1\ 
Ii 

RV(z/z > O)~? + Q 
j 

The conditional mo~ents of z appea1f~g in the formulae above can be 
;;I 

found in Amemiya [1974, p. 1002] asJwell as in DUncan [1980, p. 850]. 
II 
:1 

Finally, I can d~scribe the nonline!!l:!" WLS iteration of step (1) above 

as follows: Estimate oi by inserting the initial estimates (for example, 

those obtained by minimizing 2 [y.(k.) -I'll.] ) 
~ 1. ~ 

the right-hand side of (3.83)--call it 

(3.84) 

of the parameters into 

Minimize 

f/ 

wi th respect "to the parameters that appear in the right~hand side of 

(3.82). Use these estimates to evaluate the right-hand side of (~.83) 

again to get another estimate of 2 o .. 
~ 

Repeat the process', to yield new 

estimates of 8. 

I I 

(I 

(."1/ 

I 
() I 

i 

! 
n/. 

I 

In 

; ,t;. 
I ~. 

1 

o 

c· 
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Now, consider step (2). Define 

t.:: E(w. -P.)(W'~ -P.)' =D. _P.P! 
~ ~ ~ ~ ~ ~ ~~ 

where Dl is the K x K diago~l lIlatrix whose k-th diagonal element is 

To perform the nonlinear WLS iteration, first, estimate 
E. by 
~ 

inserting the initial estimates of the parameters into the right-hand side 
A 

of (3.85) (denote the estimate thus obtained as E.) and, second, minimize 
~ 

(3.86) I (w. - P.)' t:- (W; _ p;) 
i ~ ~ ~ ... ... 

where the minus sign in the superscript denotes a generalized inverse, 

with respect to the parame~ers that chara~terize Pi' and ,repeat ,the 

proces~ until the estimates converge. 

Finally, regarding step (3) above, if we denote the two estimates 

of 13 " obtained by step (1) and (2) by 13
1 

and 13
2 

respectively' and 

r t t· .. . t. 25/ their respec ~ve asymp 0 ~c var~ance-covar~ance ma r~ces-- by VI .and 

V2 , the optimal linear combination of the twc;> estimates is given by 

( -1 -1)-1 _l,[1 (-1 . -1)-1 -I" 
VI + V2 VI 131 + VI + V2 V2 13 2 • This final est~\mator is 

• '1\ asymptotically not fully efficient, however. To see th~s, iSuppose the 
"1) 

regression coefficients of (3.18) and (3.79) differ: call them 13
1 

and 

132 , say. Then, by a result: of Amemiya [1976J, we know that 8
1 

is an 

asymptotically ~fficient estim/:!,tor of 13
1 

• Howevl~r, as I have indic:ated 

in Section II.C.4, S2 is not. So ,a weighted average of the two could 

not be asymptotically efficient. 

, ,." 
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Dubin and McFadden [1980] used a similar, model to Duncan's in 

their study of the joint determination of the choice of electr~i~ 

In their model, s.Ck) 
J. 

appliances and the consumption of electricity. 

may be interpreted as the utility of the i-th family when they use 

the k-th portfolio of appliances, an~ Yi Ck ) as the consumption of 

electrici ty for the i-th perso'n holding the k-th portfolio. The 

"11 ""1 t Duncan's The main difference estimation method is essentJ.a y sJ.mJ. ar ,0 • '" 

is that Dubin and McFadden assume that the error terms of (3.78) and 

(3.79) are distributed as Type I extreme value distribution and hence 

the P part Qf (3.81) is multinomial logit. (Cf. Amemiya [1981, p. 1516]). 

',I 

(j 
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, , 
! 

! 

\, 
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2. 

3. 

4. 

5. 
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Footnotes 

The model is called truncated if the observations outside the 

specified range are totally lost and censored if one can at 
\1 " 

least observe the exogenous variables. A more precise defini-

!.Ition will be given later. 

See Kalbfleisch ~nd Prentice [1980] and Miller [198l]~ 

See Bartholomew [1973], Singer and Spilerman [1976], 'fuma, 

Hannan, and Groeneveld [1979], Lancaster [19'(9], Tuma a.nd 

Ho bins [1980], and Flinn and HeckmaI1.[ 1982] . 

In the Tobit model one needs to distinguish the vectors and 

matrices of positive observations from the vectors ~nd matrices 

of all the observations. I will do so by putting the symbol 

under the latter. 

Let log L(a) be a logarithmic likelihood function of a parameter 

vector e in general. Then, global concavity means that 

a
2 

log L/aaaa' is negative definite over the whole parameter 

space. Let a be the MLE. Then, by a Taylor .expansion we have 

where we have used the fact that, a log L/ae evaluated at a 

is zero by definition of the ~ffiE, and a2 log L/aaaa' is 

evaluated at a point between a and a, Therefore, global 

concavity implies " log L(a) <' log L(a) ,'~ for any a >/: a. 
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6. More precise1.y, ~ means in this partic'w.ar case that IU 

times both sides of the equation hav~the same limit distribution. 

7. A(·) is known as the hazard rate and its reciprocal is known 

as Mills' ratio. Tobin [1958] gives a figure which shows that 

A(Z) can be closely approximated by a linear function of z 

for -1 < z< 5" Johnson and Kotz [1970, p. 27Bf. ] give various 

expansions of Mills' ratio. 

B. See footnote 4. 

9. 

10. 

11. 

12. 

13. 

This was suggest~d by Wales and Woodland [1980]. 

To the best of my knowledge, this result was first obtained by 

Stapleton and Young [1981]. 

See Amemiya [198la]. liar~ley [1976b] proved the asymptotic 

normality of Y
N 

and YNW and that they are asymptotically 

not as efficient as the MLE. 

The asymptotic equivalence of Y
N 

and Y was proved by Stapleton 

and Young [1981]. \\ 

We have by (2.55) 

where I have omitted the conditioning v~riable z to simplify 

notation and Ee means that the expectation is taken on the 
1 

assumption that th~ density of y* is k(y*l'e l ). But, by Jensen's 

inequality (see Rao [1973, p. 149)] 

,', 

Ee log [k(y*le)/k(y*ls l )] < 
1 

lo~ Ee [k(y*le)/k(y*lel )] 
1 

I j, 

, ' 

" ' 

c' 

(I . i 

(I I 
cC 

.0 " 

(I 
f~') 

o 

(t 
, 

, 
, , 

1% 
'. 
I 
1 

~ 

~ 
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Thus, (2.57) follows from the above results and by noting 

log Ea [k(y*le)/k(y*lel )] = log f k (y*la) dy* = a 
1 

For an alternative account, see Hartley [1976c]. 

15. F~r a more elaborate derivation of the reservation wdge model 

16. 

17. 

lB. 

it 
\\ 
\\ 

based on search theory, see Gronau [1974]. 

Gronau specifies that the independent variables in the ~ 

equation include woman.'s age and education, family income, number 

of children, an,d husband's age and education whereas the independent 

variables in the WO equation include only woman's age and 

education. However, Gronau readily admits to the arbitrariliness 

of the specification and the possibility that all the variables 

are included in both. 

This may not be a realistic assumption since common independent 

variables, which are excluded from the set of regressors, may 

be included in both u. and v .. The assumption is not necessary 
l. l. 

if one uses either the MLE or Heckman'~ two-step estimator. It 

should be noted that the independence of u. 
l. 

does not 

imply the independence of u+i and in (3.1), so that 

Gronauts·model is not as simple as the model considered in Section 

B.2 above. Also note that this assumption makl;s all the parameters 

identifiable even if no element of ~ is set equal to zero. 

Though Heckman's model [1974] is a simul,.taneous-equations model, 

Heckman's two-step estimator studied by Wales and Woodland is 

essentially a reduced-form estimator which I havecliscusse~~~ the 

C\ 
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(i 

present sectlon, rather than the structural equation version 

I will discuss in the next subsection. 

'i Actuallr, Heckman uses log wr, and log W
O The independent 

variables x2~ include hy;sband's wage, asset income, prices, 

and individual characteristics and z include housewife's 

schooling and experience. 

Constraints like (3.51) are often necessary in simultaneous equa-

tions model involving binary or truncated variables, as was first 

noted by Amemiya [1974b]. For an i.nteresting unified approach to 

this problem, see Gourieroux" Laffont, and Monfort [1980]. , ' . 

This constraint was' overlooked by Scqmidt and Strauss [1976] and 

was noted by Olsen [1978b]. 

A more explicit expression for, the likelihood function was obtained II 

f 

by Amemiya [1974a], who pointed out the incorrectness of the ( 

likelihood function originally given by F~ir and Jaffee. 
I=-, 

( 3.78) is the maximized profit function and (3.79) is an itlput . ' 

demand or output supply r-~on obtained by di~ferentiating (3..78), 

wi th respect to the own. input or <;m.tptit price (Hotelli~g' s lemma). 
_/ I) 

For convenience only one 

striC~lY' ~peaking' xi!) 

II' 'I' 
input or output lias peen assUIiled, so 
, (2) 
and xik are scalars. 

These two equations correspond to the two equations in the proposi-

tion on p. 851 of Duncan ~1980]. 

omitte~he last term from (3.82). 
//0 

Itfl5eems that Duncan inadverten~ly 
~. 

\, 

These matrices can be obtained by a starigard proc~dure. See, for 
(l 

examnl~, Amemiya [1981]. '~e matric~~' must be 
~ r: S" (-t/l0 ~ A A 

evaluated at some 

consistent estimates; either 81 or 82 will 
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