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TOBIT MODELS: A SURVEY
by

Takeshi Amemiya¥*

I. Introduction 7 -

_Tobit models refer to regression models in which the range of the

dependent variable is constraired in Some way. In economics, such a

b

A_ model was first suggested in a pioneering work by Tobin [{958]. He

analyzed. household expenditure on durable gbods using a regressionfmodel

o 5 ‘
which sbe&gfidglly took account of the fact that the expenditure (the

dependent variable of his regression model) cannot be negative. gpbin

called his model the model of limited dependent variables. It and its
various generalizations are known popularly amoné economists as Tobit -

models, a phrase coined by Goldberger [1964], becriuse of similarities to

5 w B /’ :
probit models. These mode).s are also knowi;: s censored or truncated

4

" G

Censored and truncated regression models have been developed in
other disciplines (notably b%pmetrigs and engineering)’more or less
independently of their development in econometrics. Biometricians use

the model to analyze the survivael time of a patient. Censoring or A
it

ftrqncation occurs either if a paéient is still alive at the last 8E§9rvgtion

o~

date or if he or she cannot be located. Similarly, enginegrs use the

*This research was supported by a National Institute of Justice Grant
No. 81~IJ—CX-0055 to Rhodes Associates, The author is grateful to
Jeanne E. Anderson, A. Colin Cameron; Yoonbai Kim, and Frederick C. Nold
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model to analyze the time to failure of material or of a machine or a

Sociologists and

system. These models are called survival models.g/ ‘
econom’sts have also used survivai models to analyze the duration of g
such phenomena as unemployment, welfare receipt, employment in a particular
Job. residing in a particular reglon marrlage and the period of time
between b1rths.3/ Mathematlcally,ﬁ;urV1val models belong to the same
general class of models as Tobit models and share certain characteristics.
However, I will not discuss survival models in %his survey because they
bossess special features of their own. They should best be discussed as
a topic within the large, separate research area of continuous-time Markov
chain models. The interested reader should consult the references I
have citeduin footnotes 2 and 3 above.

Between 1958; when Tobin's article appeared, and 1970, the Tobit
model was used infrequently in econometric applications, but since the

early 1970's numerous applications ranging over a wide area of economics

have appeared and continue to appear. This phenomenon is clearly due to
a recent increase in the availability of\micro sample surrey data which i
the Tobitvmodel analyzes well and to a recent advance dn computer technology
which has madefestimation of large-scale Tobit models feasiple. At

the same time, many gen;ralizations of the Tobit model and various estima-
tion methods for these models have been proposed In fact, models and
estlmatlon methods are now so numerous and diverse that it is difficult

Y

for econometricians to keep track of all the existing models and estimation - i

methods 4nd maintain a elear notion as to their relative merits. Thus , -

-

it is now particularly useful to examine the current situation to prepare

a unified summary and critical assessment of exlstlng results.

il

4

&
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&
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I will try to accomplish this objective by means of classifying
the diverse Tobit models into five basic types. (A review of the
empirical literature has suggested that roughly 95% of the econometric
applications of Tobit models fall into one of these five types.) While
there are many ways to classify Tobit models, I have chosen to classify
them according to the form ofbthe likelihood function. This way seems
to me to'be the statist;cally most useful classificatidn because a
similarity of the llkellhood function implies a similarity of the appropriate
estimation and computation methods. It is interesting to note that two
models which superficially seem to be very different from each other can
be shown to belong to the same type when they are clussified according
to my scheme.

The remainder of the paper consists of two sections;\Section IT
deals with the Standard Tobit model (or Type 1 Tobit) and Section IIT

deals with the remaining four types of models. Basic estimation methods,

\
\

which Wlth a slight modification can be applled to any of the five types,

are discuss§é great length in Section II. More specialized estimation

H .
methods are discussed in relevant passages throughout the paper. Each
model is illustrated with a few empirica -, ex tamples.,

I should note the topies, in addition to the survival models men-

tioned above, which I do not discuss. I do not discuss disequilibrinn

" models except for a few basic models which are examined in Section III.E.S.

Some éeneral references on disequilibrium models are cited above. Nor do

Idiscuss the related topic of switching regression models. For a survey

on these toplcs, the reader should consult Maddala [1980]. I do not

a3
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discuss Tobit models for panel data (individuélswobeepved through time),
except to mention/a few papers in relevant passages, since they can be
best discussed with survival models. |

The econometrics text books which discuse Tobit modéls (with
the relevant page numbers) are Goldberger [1964], Pp. 251-255; Maddala
[1977e], £P. 162-171; and Judge, Griffiths, Hill, and Lee [1980],
pp. 609-616. Maddala's survey paper [1980] mentioned above also contains
some discussion of Tobit models. There are two more short surveys by
Maddala [197Ta and b].

However, none of these references offer a com-

prehensive discussion of Toblt models.

-
(Y
N

G

o

O
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II. Standard Tobit Model (Type 1 Tobit)

A. Definition of the Model

’/\ .. ot o o & o e s e

"Tobin [1958] noted that the observed ‘relationship between
household expenditures on a durable good and household incomes looks
like Figure 2.1, where each dot represents an observation of a partlﬂular
household. An important characteristic of the data is that there are
several observations where tﬁe exﬁénditure is zero. This feature destroys
the linearity assumption so that the least squares method is clearly
1napproprlate. Should one fit a nonlinear relatlonshlp? First, one must

determine a statistical model which can generate the kind of data

y
4

depicted in Figure 2.1. In doing so the first fact one should recognize
is that one cannot use eny continuous deusity to explain the conditional
distrivution of expenditure given incomz because a continuous densifly is

/

ﬁﬁ Figure 2.1 . ’ V -

7 o

Expenditure A\

0 ' - Income
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. I < (2'2) L = HFi(in) H f.(y') s N i
inconsistent with the fact that there are severﬂl observations at zero. 0 1 t? ’ ' ) g
Below I develop a crude utility maximization modé& to explain the <fT
hene . o1 ' g 3 Where Fi and fi‘ are the distribution and density function respectively
bhenomenon in question. o T
. v f; of y;, I means the product over those i for which y* <y ., and I
Define the symbols needed for the utility maximization model 8 e tho duct th 1="01 1 .
: | » ans the product over those i for which y#* > .. :
as follows: : ¥i > ¥g;- Note that the
. g actual value of y when y¥ < Yo has no effect on the likelihood func—
Y ... a household's expenditure on a durable good,, ; T . ) : o
. - »1 . C ﬁ ,, tion. Therefore, the second line of equation (2.1) may be changed to
Yo - € price of the cheapest available durable good, f the statement e g < Vo> one merely observes that fact.
Z ... all the other expenditure, ' % -
. | i The model originally proposed by Tobin [1958] is essent1al’y the
¥ ... income. ! : O é +
, P ‘ j Same as the above except that he specifically assumed ¥¥* to be normally
A household is assumed to maximize utility U(y,z) . subject to the budget j
constralnt ‘o< ani the bounda consbraint , y . o ; distributed and assumed yo to be the same for all households. We will
v i ¥=% Y define the S i -
- efine e Standard Tobit model (or Type 1 Tobit) as follows:
v Suppose y* is the solutlon of the maximization subject to y + 2 $x C
‘&
but 1gnor1ng the other constraint, and assume y* Bl + 82x + u, where (2.3) y§ = Xiﬁ + u, s i=1,2,...,n.,
1 may be interpreted as the collection of all the unobservable variables a
s L fqs . , . : . i y¥ ifr y%*s> o0
which /affect the utility function. Then, the solution to the original el (2.4) i i
- - 2. ¥y, =
A ) i
problem, denoted by y, can be defined by 0 if y; 0 ,
I
J . N
= ¥ s * .
(2.1) J'y y it y* >y, ] where {ui} are assumed to be i.i.d. drawings from N(O,c2). It is
’ = ' 1 # < . (’3 ! . ¢
1 0 or y, it y* <y, ‘ assumed that {y.} and w{xi} are observed for i = 1,2,....n but
. {y;} are unobserved if yg < 0. Defining X to be the n x K matrix
If we assume that u is a random variable and that y, varies with - ) ‘ N 1 ‘ "
ﬁ | 3 | ; » ‘whose i-th row {is x{, we assume that lim n ~ X'X is positive definite.—/
households but is assumed known, this model will generate data like (3‘ o e -
oy \\ As I stated i 10us 1 Ving v. = 0 i emui
~ Figure 2.1. We can write the likelihood function for n independent. in the prevxsus paragraph, obserV1ngv Yi 0 is equivalent
' e : to ob i * .
observations from the model (2.1) as: : , serving yj £ 0
\\1 7 ; ’

)

B

O
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Note that yg >0 and y§ <0 in (2.4) may ﬁé changed to\ 3
y; >“yO and‘ y? £ Y wi?hout essentially changing the mo@gl, whetﬁer
¥a is known or unknown, since ¥y, can be absorbed into the cqnstant
term of the regression. If, however, Yoi changes with 1 and is
known for evéry ‘i, the model is slightly changed because the resulting
model would be essentially equivalent to the model defined by (2.3) and
(2.4) where one of the elements of B .other than tﬂe constant term is
known. The model where ydi changes with i and is unknown is not
generally estimable. ' 03

Though not needed immediately, it Will be later useful to define

the binary variable we by

1 if y*> 0

(2.5) W,

|

o
[
y
<

*
nA

o

The likelihood function of tﬁé}Standard jgbit_model is given by
' i ,

)

1 (.
(2.6) L =11 - elx!g/c)lne ¢l(y. - xig)/c] .,
i i i
0 1

where ¢ and @ are the distribution and density function respectively

of the standard normal.variable.

The Tobit model belongs to what is sometimes known as the censored

regression model. 1In contrast, if one observes neither ¥y mor Xx.~

'v‘\«J&,t ]

when y¥ < O, the model is known as a truncated regression model.: The
I 1= o -

likelihood function of the truncated version of the Tobit model can

be written as

&)

Sk

(2.7) L= e(xip/o)™ 6Ty - xig)/o] .

Standard Tobit model.

4 B. Emjirical Examples

i Tobin [1958] obteined the maximum 1ikelihood

Consumer Finances.
\#

and the ratio of liquid assets to disposable income.

Since then, and especially since the early 1970's

encompassing d’' wide range ofvgields in etonomies.
oo LU

Adams [1980]

¥: Inheritance.

“”

PUEREREICENR s, 25k e pess it o B e T S IOV—
]
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Henceforth, the Standard Tobit model refers to the model defined by
- (2.3) ana (2.4), namely a censored regression model, and the model

whose likelihood function is given by (2.7) will be called the truncated

estimates of his

S model applied te data on T35 nonfarm households obtained from Surveys of
The dependéét variable of his estimated model was
actually the ratio of total duraﬁie goddg\expenditure to disposable income

and the independent variableé}were the age of the head of the household

» numerous applica-

tions of the SgangardﬁTébit model have appeared in economic joufnals,

I will present below
a brief list of recent repreéqntative papers, with a description of

the dependent Qgriable and the main indeyéndent variaﬁles. In all the
papers except Kotlikoff, who uses a two-step estimation me%ﬁod which

I will discuss later, the method of estimation is maximum likelihood.

x: Income, marital status, number of children.

o :

==
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dy . education, other family characteristics, unemploy-
Ashenfelter and Ham [1979]

ment rate, seasonal dummies.

. Wiggins [1981]

¥y: Annual marketing of ﬁew chemical entities.

¥y: Ratlo of unemployed hours to employed hours.

x: Years of schoollng, worklng experience.

Fair [1978]

y: Number of extra-marital affairs.

X: Research expendlture of the pharmaceutlcal 1ndustry,

strlngency of government regulat tory standards.
X: BSex, age, number of years married, number of children,

Witte [1980]
education, occupstion, degree of religiousness. - : ’ y: HNumber of arrests (or-convictions) per month after
Keeley; Robins, Spiegelman, and West [1978] . ) § g relcsse from prison. :
| y: Hours worked after a Negative Income Tax program. (;g ? * x: Accumulated work release funds, number of months after
x: Preﬂprogram hours worked, Ch&ﬁée in the wage rate, : :; : 2 \ | release until first job, wage rate after rele;se age
family characteristics. - 2 ; : race, drug Quse. .
Kotlikoff [1979] . ¢ é ¥ ) - A% i
¥y: Expected age of retirement. p a . ,,f ” c. Propertlas of Estlmators Under Standard Assumptlons
x: Ratio of s;cial”security benefits lﬁét at full time In this sectlon I will discuss the properties of varlous
work to full time earq@ngs. \>> ' {?} \ 'estlmators of the Tobit model under the assumptlons of the model. The
Reece‘fl979] : ﬁx‘ ' ‘ /Z . o x estlmators I consider are problt maximum llkellhood (Mm), least squares
. ot Charitoble comtrfbubions. | | ‘ (18), Heckman s two-step, nonllnear least squares (NLLS) ﬁonline&f,
. Xx: Price ofucontributions,tincome. - ,tﬁé . weighﬁed.Least squargs/fNLWLS), and the Tobit Mf. .
< f L, ‘ L
“Rosenzweig”[lQBO] ¢ ) 1. Probit ﬁiﬁfy The Tiblt llkellhOCd function (2 6) can be
vi Anmual days worked. : tr1v1ally rewritten as follows' \‘ w
Xx: Wages of husbands and ﬁdves,~education ofﬁfusbands and o
wives, income. | (2.8) L= g 1 - o(xig/o)] 1 ¢><x£s/c) .
' “ L T : p »
Stephenson and McDonald [1979] . | b | j ; ¢(£13/c)‘ld*i¢[(y ;Bfwé)/cj (.m N
y: TFamily earnings after a Negative Income Tax program. o o : T“] 1 i ) i 2 ’ , W
X Farnings befgre the prdgram, husband's and wife's o Ef
: ' ! 5
;K S o
! < S o
- @ e
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Then, the first two products of the right-hand side of (2.8) constitute
the likelihood function of a probit model, and the last product is

the llkeelhOOd function of the truncated Tobit model as glven in (2.7).

- The probit ML estimator of o = B/0, denoted a is obtained bv max1m1z1ng

the logarithm of the first two products. The maximization must be done
by an interation scheme such as Newton-Raphson or the method of scoring
(see Amemiya [1981Db, p. 1496]), with convergence always assured by the
global concavity of the logarithmic iikelihood function.éj

The probit MLE is consistent and one can show by a standard method

(see, for example, Aﬁemiya (1978, p. 1196]) o

(X'D Htx D D‘l(w-Ew) ,

(2.9) , o D, X X' D, D,

where D, is the nx n diagqpil matrix vhose i-th element is ¢(xia),

Pl is the n x n diagonal matrix whose i-th element is |
@(xia)—l[l -'¢(x£a)]-l¢(§iq)2 and ‘Y is the vectoriyhose i-th element
is‘ﬁhe w, defined in (2.5). (See footnote 4 for usage of the symbol ~.)
Note that the i-th element of Ew is equal to @(x!a). ‘The symbol g

6
means that both 51des have the same asymptotlc dlstrlbutlon. / Therefore,

<
~

o is asymptotlcally normal with mean o and asymptotlc variance-covariance

matrix given by’

(2.10) Va = (XD 0T

mote that -one can only estlmate the ratio B/c by this method

RN
‘\\

“\and not B8 or (o] separately. Since the estlmator ignores a part of

Y /[

\

the likelihood function. that involves g ang 05 it is not fully
efficient. . This loss of efficiency is not surprising when one realizes
that the estlmator uses only the, sign of y*, ignoring its numerical
value even when it is observed. The main usefulness of the estimator

is for providing the first step of Heckman's two-step estimator as I

* ¢« will show later.

2. LS: From Figure 2.1 it is clear that the least
squares regression of expenditufe on income using all the observations
including zero expenditures Yields biased estimates. Though it is not
SO0 clear from the figure, the least squares reéression using only the
positive expenditures also yields biased estimates. T will demonstrate
these facts mathematically.

First, I will consider the regression using only pssitive

observations .of y,. We get from (2.3) and (2.4)

(2.11) ‘ E(yilyi > 0) = xiB + E(uilui > -xiB) .N

%

The last term of the right-hand side of (2.11) is generally nonzero
(even without assuming u, is normal). fThis implies the biasedness

of the LS estimator using positive observations on ¥s under more general

‘,

models than the Standard Toblt model. When we assume normality of ui

as in the Tobit model, (2.11) can be shown by straightforward integration i

e

to be

(2.32)  E(yyly; > 0) = xi8 + ar(xz8/0) , - |

2
e »& e B

[«

@
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where A(z) = ¢(z)/®(z).1/“h%s I will show below, this equation plays
a keyirole in the derivation of Heckman's two-step, NLLS, and NLWLS
estimators.

Equation (2.12) clearly indicates that the LS estimator of /8
is biased and inconsistent, but the direction and magnitude of theebias
or inconsistency cannot be shown without further assuﬁptions. Goldberger
[1981] evaluated the asymptotic bias (the probability limit minus the
true Yelue) assuming that toe elements of xi,’except the first eleﬁent
which is assumed to be a cogetant,”are normally distributed. More

specifically, Goldberger rewrites (2.3) as

(2.13) Y = By + X8y +uy

and assumes E. n N(O,Z) and is dlstrlbuted 1ndependently of u,. (Here,

Pl

the assumption of zero mean 1nvolves no loss of generality since a ncnzero

mean can be absorbed into Bo.) Under this assumption he obtains

s
Vs |
. . - -
(2.14) 7 plim 8, = 1- B, >
l - Q7 Y
,M; (‘)
where vy = ot A(B /o B, + o A(B./o )] and p2”= 0-28'28 where
¥y 0"y "0 y "0y y 1y
L) o
05 = 02 + B'ZB It can be shown that 0 < Yy<1 and 0 < 92 < 1
therefore, (2.14) shows that B, shrinks B, toward zero. It is remarkable o
that the degree of shrinkage is uniform in all the elements of Bl.
However, it is not known whether & similar result will hold if “ii is'
e %
A s
) 7
i ‘ - ,\ © O

T L TR A T . R s e A s b
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not;normal. Goldberger gives a nonnormal example where Bl = (1,1)!

and plim él = (1.111, ou887)r,

Next, I will consider the regre551on using all the observations

of ‘yi, both positive and zero. To see that the least squares estimator

is also biased in this case, one should look at the unconditional mean of

it

(2.15) Ey; = ¢(x£3/c) ° xIB + o¢(x£8/c)

Writing (2.3) again as (2.13) ang using the same assumptlons as Goldberger,

Greene [1981] showed -

. Ir
(2.16 i = .

\ ) plim By ¢(Bo/oy) By
where Bl is the LS estimator of 81 in the regression of Y.

on X,
1

using all the observations. This result is even movre remarkable than

(2.14) because it implies that (n/n )c» B, isa consistent estimator

of Bl, where ny is the number of positive observations of ‘y .

Uhfortunately, however, one cannot confidently use this' estimator wlthout

knowing its propertles when the true distribution of xl is not normal. 0

3. Heckmsn's Two-Step Estlmator. Heckman [1976],

following a suggestion of Gronau [1974], proposed a two-step estimator 5

in a two-equation generalization of the Tobit model. I classify this

model.as the Type 3 Tobit model and discuss it later. But his estimator

8 T

can also be used in*the Standard Tobit model, as well as in more complex

s
35 SRR

rxwglxaé*myw{mv

R N i o A % e g 01
B e TRt

4



~ of the method ¢an be revesled in this model.

‘rewrite (2.17) again as

;16_
Tobit models, with only a minor adjustment. % will discuss the estimator
) : N
in the context of the Standard Tobit model because all the basic features
However, one should keep
in mind that since the nethod requires the computation of the probit MLE,

which itself requires an iterative method, the computational advantage

of the method over the Tobit MLE (which is more efficient) is not as great

in the Standard Tobit model as it is in more complex Tobit models.

To explain this estimator, it is useful to rewrite (2.12) as

= ! ' s ‘
(2.17) Y5 xiB + oA(xia) +e, , for i such that v > o,

where I have written o = B/c .as before and €, =Yy - E(yilyi > 0) so

s

that Eei = 0. The variance of € is given by

(2.18) Ve, = o - ozxial(xia) - oax(xj'_a)2 )
R

Thus, (2.17) is a heteroscedastic nonlinear ;egression model with n,

observations. -The estimation method Heckman proposed consists of the
following two steps: (1) Estimate o by the probit MLE (denoted a)

defined earlier. (2) Regress y; on x, and A(xia)k by least squares
using only the positive observations on Y-

To facilitate further the discussion of Heckman's estimator,

4 &

= ! ’A : i i 0
(2.19) v; xie + cx(xia) +-gi + n; s for i such that ¥ > .

o L Rt ik ik e e e, e i e e s e 3

4

N\

e

i

O

C)”»

I
&

&2
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where n, = c[l(xia) - A(xia)]u I will write (2.19) in vector notation

as

- (2.20) =XB+or+ec+n ,

A

“where the vectors ¥s 2, €, and n have n, elements andrthe matrix X

has nl Trows, corresponding to the positive observations of yi.§/

I will further rewrite (2.20) as
(2.21) Yy=2y +e+n ,

‘where I have defined Z=(XA) and vy = (B',0)'.

step estimator of y is defined as

(2.22) vy = (z'z)‘lz'y .

' The consistency of y follows easily from (2.21) and (2.22). 1

: \*w1ll derive its asymptotic dlstrlbutlon for the sake of completeness,

though the result is a special case of Heckman' s result [1979] From
(2 21) and (2.22) we have

7

1 1
2 2

(2.23) Y (y - 22) (0, %20 + 0 220m)

- =

2]

Since the probit MLE o« is consistent, we have

<

(2.24) . Plimnt2'Z = 1in nilz'z ,
. ) nl+ou n l‘m

NS

o

Then, Heckman's two-

Tt e s




-18-

where 2 = (X,l). It is easy to‘prove

s

ot

Z'e »~ N(O, lim n,

(2.25)

l ]

where D2 Z Bee' 1is the ny x n, diagonal matrix whose diagonal elements

are Vti given in (2.18). We have by Taylor expansion of A(x'a)

around A(x'a)

(2.26) ns o % (@ -a) .

Using (2.26) and (2.9) we can prove

1

(2.27) n12 Z'n + N[O, 02Z'D3X(X'Dl x)":L X'D3 z]

where Dlu was defined after (2.9) and D3 is the n, X n, diagonal

2 , .
matrix whose diagonal elements are xiak(xia) + A(xig) . Next, note

that € and n are uncorrelated because n is asymptoticéllyea linear

" function of w on account of (2.9) and (2.26) and ¢ and W are

uncorrelated. Therefore, from (2.23), (2f253, (2.25), and (2.27) we
finally conclude that vy is asymptotically normal with mean and

the asymptotic variance-covariance matrix given by

2

—

N
D,

~ - _l _l
vy = (2'2) lZ'[D2 + “Dy X(X'D, X) ™ x'D,1 2 (2'2) f,

.
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S
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It is interesting to note that the second matrix within the
square bracket above arises because A had to be estimated. If AU
were kndwn, one could apply least squares directly to (2.17) and the
exact variance-covariance matrix would be (Z'Z)-lZ'DQZ(Z'Z)_l.

Heckman's two-step estimator uses the conditional mean of ¥
giveP in (2.12). A similar procedure can also be applied to the uncon-
ditiohal mean of y, given by (2.15).2/ That is to say, one can .

regress all the observations of ¥ including zeros on @xi and ¢

it

after replacing the a that appears‘in the argument of ¢ and ¢ by
the probit MLE a. In the same way as we derived (2.17) and (2.19) from

(2.12), we can d¢bvive the following two equations from (2.15):

(2.29) y; = o(xfa)[xi8 + oAlxia)] + 8, i
and
(2.30) T‘yi = ¢(xi&)[xJ!_B + c{)\(x}.‘_;)] to.+E,

vwhere §. = ¥; - By; and g, = [¢(xi9) _ ¢(xi&)]xi8 +‘c[¢(xia) - ¢(xi&)].

A vector equation comparable to (2.21) is

/
¢
i | |
(2.31) Ly = Yo+ § +E . .

g
IR

where D is the n x n diagonal matrix whose i-th element is ¢(xia).
Note that the vectors and matrices are ﬁndgrlined with a " """ because
they consist of n  elements or rows. The two-step estimator of Y

based on all the obServatiéns, denoted vy, is defined as

o

A

e o N ‘?‘W‘Sm AR e e

g
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. ‘ ¢ . Which of the two estimators Y and Y is preferred‘? Unfortunately,
‘ -1 : :
(2.32) (Z'D Z) ?PY . the difference of the two ma.trlces given by (2 28) and (2.37) is neither
. . ‘ ositive deflnlte nor negative definite for all the arameter values.
The estimator can easily be shown to be consistent. To derive 1 P P g p i
' - s Further study is needed on the comparison of the estimators.
its asymptotic distribution, we obtain from (2.31) and (2.32) ¥ P
' Both (2.21) a.nd (2.31) represent heteroscedastic regression models.
1 éA R %A R ) ’ \ ‘I‘herefore, one can obtain asymptotically more efficient estimators by
Valy = v} = (o1 Z'D z) (n “2'Ds + n “2'Dp . o
(2.33) nly v) R T ! using weighted least squares (WLS) in the Second step of the procedure
: ’ ; ~
Here, unlike the previous case, an interesting fact emerges: by for obtaining y and y. In doing so, one must use g consistent
expanding Q(xia) ~and ¢(xj'_a) in Taylor series around x]!.a one can ! g . estimate of the asymptotic va.rlance-cova.rla:nce matrix of 4e +n for
show £, = 0(n"Y). Therefore, = o “ ~ the case of (2. 21) and of & + £ for the case of (2.31). Since these
1 ‘ ;
? matrices depend on Y, an initial consistent estimate of «y (say,
1 é‘ -~ -~
) - AP i Y or vy) is needed to obtain the WLS estimators. I call these WLS
{2.34) plimn ~ 2'Dg =0 . |z -
T | ; > estimators Yy @and Yy Tespectively. It can be shown that they are ,
Corresponding to (2.24), we have | ; consistent and asymptotically normal with the asymptotic variance-covariance
1 g‘ .
{
' a 4 matrices given b
1n ’/?{2 . o1 'D2 z ¥ g Yy
(2.35) plim n g‘D Z=1limn™2'D"2 , ‘ i
Y ~ A ¢ A 2 -1 -1,,~-1
1 4 1 . 8 - 1 + 1) X'
T i " ith Corresponding i (2.38) VYW tz [D2 ° D3X(Z( Pl EC) D3] 2
where D 1is obtained from D by replacing o wi x. |
~ ~ 4 ¥
to (2.25), we have b and
: 1 ~ w2 =l =1 ‘
“5a A - 2 o, - : (2.39) Vy,, = (2'D°D;~ 2) .
(2.36) 2Z'D<S + N(O, lim n 1z Dy, Z) Yu N
-~ o G ~ ‘?[;\ ~ ~ »
Y . ain, one cannot make g definite comparison between these two matrices. :
where D, = ES§' is the n x n diagonal matrix whose i-th element is ’ O | e Again, ! D

Q(xia)[(xiB) + sz'/a')\(x \c\) +0 ] - [@(x ot)x B + o¢(x a)] Therefox}/e, b )

L. NLIS and NIWLS Estimators: In this subsection T will =
from (é".’ 33)a(2.36)," wé’ conclude that Y is asg)mpto%ica}ly normal with “ )

’ , ¢

consider four estimators: the NLLS and NLWLS estimaté:;r.'s applied to (2.17)
. . ; Y .

mean vy and the asymptotic variance-covariance matrix given by ;, 0 ! ’
2 e py=1 J;’
(2.37) v = (z'0°2)™ 2'D°D, 2(z'D72)™" . - ' 3 A
3; 3

O

o b ST AMERA € 2 ri tnn R T b kst e S e T T et i Pt
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A

denoted Yﬁ' and YNW respectively, and the NLLS and NLWLS estimators

appliéd to (2.29), denoted ;N and ;NW'

All these estimators are consistent and their asymptotic distri-
butions céh be obtained straightforwardly by noting that all fhe results
of a linear regression model hold asymptotically for a'ndﬁlinear regression
model if we treat the derivative of the nonlinear regressionwfunction

with respect to the parameter vector as the regression matrix.;i/ In

YNw
~ - 12/

the same asymptotic distributions as vy and Yy respectively.=— One

this way one can show.the interesting fact that Yy and have

can also show that Yy and Yyw Bare asymptotically normal with mean

y and with %their respective asymptotic variance-covariance matrices given

by ﬁ
(2.40) V:rN = (s's)'ls'p‘,as(s's)'l
and

J
(2.41) Wy = (5'0;r )7, |

where S = (0—2D21X, Dsl) , where D5 is the n, x nl"diagonal matrix
(2]

whose i-th element is 1 + (x{a)‘ + xial(xia). It seems that one cannot

make a definite comparison either between (2.28) and (2.40) or between

(2.38) and (2.41).
In the two-step methods defining y and y and their generalizations

~ ~

Yy and Yy one can natrually define an iteration procedure byyrepeating

Y

i

RIS AP by sore Sk i i R - L S

w4
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the two-steps. For example, having obtained ;, one can obtain a new
estimate of a, insert it into the argument of A, and apply least
squares again to equation (2.17). The procedure is to be repeated until
a sequence of estimates of a thus obtained converges. In the iteration
starting from ;W’ one uses the m-th round estimate of y not only to
evaluate A but also to estimate the variance-covariance matrix of the
error term for the purpose of obtaining the (m + 1)-st round estimate.
Iterations starting from ; and ;W can be similarly defined but are
probably not worthwhile because ; and ;W are asymptotically equivalent
to ;N and ;NW as I have indicated ahove. The estimators
(;N’ ;NW’ ;N’ ;NW) are clearly stationary values of the iterations starting
from (;, ;W? ;, ;W)’ However, they may not necessarily be the coqverging
values.

A simulation study by Wales and Woodland [1980] based on only
one replication with sample sizes ofﬁlobo and 5000 showed that- ;N

is distinctly inferior to the MLE and is rather unsatisfactory.

5. The Tobit MLE: The likelihood function of the Tobit

model was given in (2.6), from which we obtain the logarithmic likelihood

s

function

W

(2.42) log L = 2L 105 o7 - L
. og L = % log [1 - ¢(xis/c)] -'Er‘los g.="5

’.‘l 2
5 ) (y; -x{8)

)

The derivatives are given by

P~ ©
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0] from which Olsen obtains ‘
: . : By Y
o(x! 8/ o), ~ | \ R b
(2.43) 2228l 1 s S 1 (3 - xe)x, | [ i -
. 01 - ‘I’(X.'B/O’) o R ¢ ) ‘ 3 log L 3 log L Z ¢3_ , ¢i ‘
1 : b 4 dada’ . 3d3h ‘l—jT (xia - —)x.x! -— O - e e
o (2.46) " = |0 1 1-9 *%
4 {1 E 2 - 1
an . s s B .
; { d - };'q;c;g' L - 9 1025 L 0 nl \
x!'B¢(x!8/s) n ! 5 ; i} ® a# 1L f B )
(2.)414) 3 log L = 13 Z 1 1 _ 12 +—1E-Z (yl - xj'.B) ) , 1 )
302 207 01 - o(x!g/g) 25~ 2¢ 1 e 4 .,:
1 { ] Z X.x! —Z X.¥.
'} i 11 i l\ l 1“1
Amemlya [1973] proved that the Tobit MLE is strongly consistent and i i 3 VX! ¥ y2 ?
| . 1 - 1
i P ; ! 1 1 1
asympto tically normal w1th the asy’mptctlc variance-covariance matrlx { i: ¥ -
£ % " ,, «
equal to -(3 log L/3639") "+ , Where = (g', gw)'. The formulae ) j {; where $; ¢(x a), and ¢, = o(x! a) But, ;Eza -[1 - Q(x!a)]-l¢(x"a) <0
for the second derivatives are given on P. 1000 of Amemiya [1973] as shown in Amemlya [1973 p- 1007].. Therefore the right-hand side of
The asymptotlc variance-covariance matrix may also be estlmated by ¥ (2.46) is the sum of two Besatlve-deflnlte matrices and hence is negative
& 5 )
-(E 32 log L/3836') l, which is given on p. 1007 of the same reference. definite. - .
The Tobit MLE is defined as a solution of & - equations obtained “ - Even though convergence is ;.ssured by global c.oncav:_ty it is a
’ N
by equatlng the partlal derivatives (2. 43) and (2.44) to zero. The good idea to start an 1teratlon with,a good estimator because it will
(' | &
equatlons are nonlinear ir the parameters and hence must be golved l improve the speed of convergence. -Tobin [1958] used the :t‘ollow:.ng simple
iteratively. However, Olsen [1978a] proved the global concavity of | estimator based on a linear appr oxmatlou of the reciprocal of Mills'
log L in the Tobit model, which implies that a standard 1terat1ve method - Fatio to start his 1teratlon for obta.lnlng the MLE: By equating the
: O V
such as ‘Newton-Raphson or the method of scoring always converges to right-hand side of - (2.113) to zero, we obtain
» R . o i ’ ’ E . .
the global maximum of log L. Olsen proved this result by transformlng ' © G ) -
' ) ‘ ) g’ = §
. e - ; -1 (2 }47) E ¢l o ’ . L !
the original parameters of the model to o = B/c and h =0"", The y -G ) ——=— X, + Z (y - x! 3) iz . / , ‘ s 5
/ : N » 0 1~ Q G » C N
; . O } : » L
log L* in terms of the new parameters can'be written as T o oo o . /
oo ) 3 = Y : /
| 1 - 5 If we pr emultlply (2 hT, .‘ﬁf: '/ (20 ) and ada it t0 .the equatlon obta/med ,
(2.45) log L = ] log [1 - Q(x]!_a)] +n, log h - '2'2 (hy. - x'a) , ¢ ' '
. 0 ; i I ot 1 5 . LT by setting. (2. 1) equa.l to zerd, we get - . :
) " 0 g \\» L . [ ’ ; o J
" RV
k NI O 3
. B ? i Bl u y
o 1 . . . ”\ .-
;;;;; S . i == | . <o
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.work. If the roots are real, one of them can be chosenﬁarbitrarily{ ’ o

ol

v v |
(218) o =n )y - xelyy - ,,
Approximate (1 - ¢i)-l¢i ’fy the linear function a + b (xi%/c) and ~ (\l

3 ' : . i
substitute it into the left-band side of (2.4T) to obtain. : ‘

(2.49) -(r% [2 + b (x]8/0)]x; + § (y, - x/8)x, =0 .
Solve {2.49) for B and insert it into (2.48) to obtain a quadratic

equation in ~o. If the roots are imaginary, Tobin's method does not

4
¥

Once an estimate of o is determined, an estimate of B can be
determined linearly from (2;&9). Amemiya [i973] showed that Tobin's
) 4
initial estimator is inconsistent. Howeyer, empirical researchers have ) o
found it to be a good starting value for iteration.

Amemiya [1973] proposed the following simple consistent estimator:

We have A N . O
: 2 ‘4 ' 2 ' ' . 2
= + N
(2.50) E(y{ly; > 0) = (x{g)” + oxigr(xja) + 0" |
- Y ) O
Combining (2.12) and (2.50) yields
(2.51) "E(y2|y > 0) = x';‘sE(y |y, > 0) +:‘02 .
y N1V i BBy ’ |
Eor] - . . N O —\
which: can be alternatively written as
, )
. 2 . 2. S : e :
(2.52) yo S y.x!8+0°+ 7, , for i such that y, >0 |,
i i%i i i B
» | | | e
O

~and generalized by Dempstéf, Léird, and Rubin [197T], that is especially

A

b
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where E(;ilyi > 0) = 0. Then, consistent estimates of 8 and o2

are obtained by applyirg an instrumental variables method to (2.52)

A

Lpéing (yixi, 1) as the instruméntal variables where y; 1is the

predictor of ¥y obtained by regressing positive y; on X. and,

i
perhaps, powers qf X, - The asymptotic distribution of the estimator
is given in Amémiya [1973].

A consistent initial estimator is useful not only because it
improves the speed of convergence but also because the second round

estimate obtained either by the Newton-Raphson or the method of scoring

iteration starting at a regular consistent estimator has the same

N asymptotic distribution as the MLE, as shown by Amemiya [1973]. Unfor-

tunately, however, simulation studﬁés such as the one by Wales and Woodland

[1980] have shown this part%g;lég/:onsistent estimator to be rather

I
inefficient.

6. The EM Algorithm: The EM algorithm is a general

iterative method.for obtaining the MLE, first proposed by Hartley [1958]

o ‘ ; L A
suited for censored regression models such asﬁTobit models. It has good ¢ !
donvergence properties making it'especially useful for handling the
more complex Tobit models; which I will discuss later, where global

o

concavity may not hold.‘ However, I will diséuss it in ﬁhe dontext of

Oy

A S R TR T RS O L SRS e, T RN

the Standard Tobit model because all éhg éésentiai features of the

algor}fhm éan be ekplained for that’model. I ﬁill Tirst present the

definition and the pfoperties of the EM algofithm under a general setting

;ndehen apply it“to the Sténdard Tobit model.
[

s
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I will explain the EM algorithm in a general model where a
vector of observable variables 2z are related to a vector of- unobservable
variables y* in such a way that the value of ¥* uniquely determihes

the value of 2 but not vice versa. In the Tobhit model, {y*} defined
in (2.3) comstitute the elements of y¥*, and {y } and {w } defined
in (2.4) and (2.5) respectively constitute the elements of z. Let the

and let the joint density

f(y*)/g(z).

joint density or probability of y* be f£{y*)
or probability of z be g(z). Also, defive X(y*|z) =
We implicitly assume that f, g, and k depend on a vector of parameters

8. The purpose is to maximi%e

(2.53) L(8) = n™" log g(z) = n™t 1log £(y*) - n" log k (y*{z)

with respect to 9. Define

(2.54) alele,) = Eln™ log't(y*[s)|z, 6,1 ,

where we are taking expectation assuming el is the true parameter Value,
and doing this conditional on 2z, Then, the EM algorifhm purports to
maximize L(8) by maximizing Q(elel) with respect to 6 when 0, is

The "B" of the name "EM" refers to

"

given at each step of the iteration.

the expectatlon taken in (2.54) and the "M" refers to the maximization

" of (2.54).

v jf

I’will consider the convergence properties. Define

(2.55) CH8[o,) = B[n™" 1log k(y*|z, 0)]z, 0,1

(i

¥

¢

O
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Then we have from (2.53), and (2.55) gﬁéAthe fact that

(2.54),
L(elel) = L(e)

(2.56) ©Le) = afele,) - x(efa)) .

But we have by Jensen's inequalitylé/

(2.57) U 8le.) <
aelo,) < x(eyle,) .
' P
Now, given 561, let M(Bl) maximize Q(Glel) with respect to 6.

Then, we have

(2.58) /’ : I?(:M) = Q(M[el) - H(Mlel)

But, since Q(Mle ) > Q(O‘IG ) by definition and H(Mle ) s H(e le )

by (2.57), we have from (2.56) and (2. 58)

L(M) 2 n(6,) .

N

AN
Thus, we have proved the desirable property that L always increases

or stays constant at each étep of the EM algorithm. Next, let 5 ‘De

the MLE. Then, L(6) » LIM(8)] by definition. But L(6) < L[M(8)]
by (2.59). Therefore we have
= L{M(g)] ,

(2.60) “ L(6)

o

whlch 1mp11es that 1f L(6) has a unlque maximum and if the EM algorlthm

_converges, 1t converges to e T ;

I
.,w;..f,.,...‘.—.-\\...m_'-wa,jr»’m,-,Q,H e i i
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We still need to prove that the EM'algorithm~bonverges to the
MLE. Unfortun;tely, it is never easy to find reasonable and easily
verifiable conditions for the coﬂvergence of any itérative'algorithm.
Dempster, et. al. do not succeed in‘'this attempt. I will merely  give

a sufficient set of conditions below.

The condifion§ I impose are (A) I is bounded and (B) the smallest

characteristip root of -32Q(9,61)/86 96' is bounded away from 0 for

all '61 and 8. Consider

(2.61) Le.) = q(e fe.) - m(e o)
and
(2.62) MOpg) = €0, 18 - w6, l0)

Since we previously established L(9r+1) > L(Gr), assumption (A) implies

lim [L(e_..) - L(e )] = o. Therefore, from (2.61) and (2.62) andg using
o r+l r

(2.57) ana Q(er+ller) > Q(erler) by definition we have

@

@] . '
(2.63) s f}gf‘mrﬂler) - Qleyle )1 =0 .

By

Now,&denoting only the first argument of Q and supprgssigg its second

)

(=2
argument, we have by a Taylor expansion of ‘Q(er) about Q(er+l

= ‘ l —;1’ ) ' ] V 
(2.64) Q(er-i-l) - ale,) = z (0, - O re1) ['f§65§74(?r =91
S S . ‘l . , S
) z E,Zs .(er - er+l) (Gr - er+l) ?

@

Ol
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where the matrix of the second Gerivatives is evaluated at a point

between er and er+l and As denotes its smallest characteristic

root. Note that in obtaining the equality above I have noted
8Q(er+ller)/aer+l = 0 by definition. Thus, (2.63), (2.64), and assumption

(B) imply

(2.65) lim (

™o B er) =0

ver+l
meaning that the EM algorithm converges.

Now, consider an application of the algorithm to the Tobit model.lﬁ/
Define 8 = (g', 02)'. Then, in the Tobit model we have

. n
(2.66) log f(y*|e) = - g-log o2 - —55-_2 (y* - x;B) ,

and, for a given estimate el = (Bi, ai)', the EM algorithm maxihizes

with respect to B and 02

(2.67)  El10g £(y*|0)]y, w, 6,] = - 2 10g o - ) (v, - x:8)°

26 1

1 Y-
- ——2-§ E [(y¥ - x!8) Iwi =0,0,]

20
n | 2 1 2
=-2l0g0® - 17 (3. - x8)
-2 202 1 i i
‘;l;. * = - x1r1°

R

N
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2 2 _ -1 e 12 * _ g )2
} (2.71) O, =n [§(y& - x{8,)° + %(yi - x!8,)
vhere b * - n
+ §~v (yilwi =0, el)]
o, ¢
11 0 ,
: Hu, =0,0.)=x], - =
(2.68) E(YIIWi ? l) il 1-6 i Although this follows from the general theory of the algorithm =
l .
given earller, We can also directly show that the MLE 9 is the equilib-
and rium solutlon of the iteration defined by (2. 70) and (2.71). Partition
5 = (X', x° ) so that X is multiplied by y and x° by yo. Then, !
. 2, .0 1t |90 , ' :
(2.69) V(yifwi =0, 61) =0y *+x8, - . - inserting 6 into both sides of (2.70) yields, after collecting terms
. 1l - ¢l 1 - 1 «
.‘ 2.12) N or | 9¢(xi8/a)
_ 6 = alwt 2.72 © X'Xg = X'y - ¥
vhere ¢, = ¢<x{31/°1)» and ¢, o(xisl/ol).

1- ¢(Xi8/o)
From (2.67) it is clear that the 'second-round estimate of 8 in

the EM algorithm, denoted B5s 1s obtained as follows: Assume vithout where the last bracket denotes an (n - nl)-dimensional vector whose ;

loss of'generality that the first n. observations of y are positive

1

and call -the vector of those observations ¥y as I did in (2. 20). Next,
[

define an (n - n )-vector y¥ whose elements are the s defined in

typical element is given insige. But, clearly, (2.72) is equivalent
to (2.47). Similarly, the MLE 6 can be shown to be an equilibrium ’ i o
solution of (2.71).

Q

(2.68). Then, we have Unfortunately, conditions (Al.and (B) do not generally hold for

the Tobit model. However, they do hold 1f the sample 31ze is sufficiently
o R : _
(2.70) = (xrx)7t s Ty &
-~ o~ ~ 0
, ol

large and . if the 1terat10n is started from a point sufficiently close
o to the MLE. * Schmee and Hahn [1979] performed a s1mulatlon study of
’wh;re, X was defined after (2.4). In other words, the EM algorithn amounts the EM algorithm applied to & censored regression model (a survival model)

to predlctlng all the unobservable values of y* by thelr conditional defined by ' : o o , | %

s 0 =

expectations and treatlng the predicted values as if they were the

2 2
observed values, The second—round estlmate of ¢-, denoted 05, is

0
1£:

. ¢ if y¥> o R
given by , Y1

_ Where y; v N(a + Bxi, 02), They obtained good convergence.
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D. Properties of the Tobit MLE Under Nonstandard Assumptions
In this seétion I will discuss the propertiés of the Tobit MLE

--the estimator which maximizes (2.42)--under various types of nonstandard
assumptions: heteroscedasticity, serial éorrelation,land nonnormality.
It will be shown that the Tobit MLE remains consistent under serial
correlation but not under heteroscedasticity or nonnormality. This result
contrasts with the classical regression model in which the least squares
estimator (the MLE under the normality assumption) is generally consiétent
under all of the three types of nonstandard assumptions mentioned above.

Before prbceedigg with rigorous arguﬁent,,l will give an intuitive
explanation of the above-mentioned result. By considering (2.17) we see

that serial correlation of ¥ should not affect the consistency of the
NLLS estimator, whereas heteroscedasticity changes ¢ to o5 and hence-
ihvalidates the estimation of the equation. by least squares. If’ y; is
not normal, equation (2.17) itself is generally invalid, which leads to
the inconsistency of the NLLS estimator. Though the NLLS estimator is
different from the ML estimator, one can eipect a certain correspondence
between the consistency properties of the two estimato?s.

It should be noted that thé MLE derived under certain assumptioﬁs
generally loses it desirable pfoperties of consisten%y and asymptotic

efficiency when one or more of the assumptions are removed. This result

can be explained as follows: The consistency of the MLE is essentially

equivalent to the condition E 3 log L/56 = 0. The equality follows

. (YBL/BB) = j("aL/ae)ay

from E 31log L/30 = EL = [t (ar/90) Lay

= afIniy/BB = 0, if the expectation is taken using the same I as that

&

s

o |
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which is maximized.‘ If the expectation is taken using a different L

9

say Ll, the second equality above generally does not hold, leading to
the 1ncons1stency of the MLE. Thus, it is best to remember that the

classical normal regression model 1s an exceptlonal case,

1. Heteroscedasticity: Hurd [1979] evaluated the

probability limit of the truncated Tobit MLE when a certaln type of
heteroscedast1c1ty is present in two simple truncated Tobit models:
(1) the i.i.d. case (phat is, the case of the regressor consisting only
of a constant term) and (2) the case of a constant term plus one independent
variable. Recall that the truncated Tobit model is the one in which no
information is available for those observatlon for which y* < 0 and
therefore the MLE maximizes (2. T) rather than (2.6).

In the 1.1.d. case, Hurd created heteroscedasticity by generating

. 2
rn  observations from N(u, ¢ ) and (1 - r)n observations from N(u, o, )

In each case, he recorded only positive observations. Let y., i=1,2, n,
5 el ,

be the recorded observations. (Note n < n.) One can shoﬁ that the

1

~

: 2 ~
truncated Toblt MLE of 4 and ¢ » denoted yu and 02, are defined by

equatlng the first two population moments of ¥; to their respective

sample moments:

BN
n, N

Py " A A A 1
(2.73) , M +0A(u/o) = Il y v
q i=1
and
an !
(2.74) I cul(u/o) #0221 Y. y? .
. 13571
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Taking the probability limit of both sides of (2.73) and (2.Th) and

expressing -plim n]-_lZyi and plim nIJ“ny as certain functions of

A

the parameters u, ci, 02, and r, one can define plim ¢ and plim ;
implicitly as functions of these parameters. Hurd evaluated the

probability limits for various values of u  and o -after having
fixed r = 0.5 and 0y = 1.

= 0.5, leading to plimyu =

The worst result occu;ed when u = =1

and o -121.02!

1 v
In the case of one independent variable, Hurd generated observations

from N(a + Bx ’ 0 ) after having generated x and log lo.[ from

2

Blvarlate N(o, 0, Vl’ 59 p). For given values of a, B, V 10 Vé, and o,

Hurd found the values of g, 8, and 62 that maximize E log L, where
L 1is as given in (2.7). Those values are the probability limits of the
MLE of o, B, and 62 under Hurd's model if the expectation of log' L
is taken using the same model. Again, Hurd found extremely large asymptotic
biases in certain cases.

Hurd's results indicate that one should treat Tobit ML estlmates
cautiously if one suspects heteroscedasticity In such a case,’one
should perhaps use Powell's least absolute deviations estlmator [1981]
(to be dlscussed in subsection 5 below) whlch remains con51stent under

general heteroscedastic as well as nonnormal dlstrlbutlons.

2. Serial Correlatlon Robinson [1982] provea the

strong consistency and the asymptotic normallty of the Toblt MLE under
very general assumptions about us (normallty is presupposed) and obtained
its asymptotic variancescovariance matrix. His assumptions are slightly _

@

|85

o %
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stronger than the stationarity assumption but are weaker than the assump-

tiou that ui His results

bossesses a cortinuous spectral density.
are especially useful since the full MLE that takes account of even a

simple type of serial correlation Seems computationally intractable,

3. Nonnormality: - Goldberger [1980] considered an i.i.d.

truncated sample model in which data are generated by a certain nonnormal

distribution with mean y dnd variance 1 and are recorded only when the

value is smaller tﬁan a constant c. Let y represent the recorded random

variable and let y ‘be the sample mean. The researcher is to estimate

M by the MLE assuming that the data are generated by N(u,1). As in

Hurd's 1ﬁe.d. model, the MLE u i3 3 defined by equating the population
: \

mean of y  to its Sample mean:

(2.75) w-Ale-n)=7F .

Taking the probability limit of both sides of (2.75) under the true model

and putting plim a = u* yields

(2.76) - afle = u*) u - hie - u)

o
%1

where h(c -y) = E(y - xly < ¢), the expectation being.taken using the 1

true model. Defining m = u* - U and 0 = ¢ - U, We rewrite (2.76) as

(2.77) = (8 =m) - n(a) .

f o

3 5; \
Goldberger calculated m as a function of .8, when the data are generated | j
by Student'

t with various degrees of freedom, Laplace, and logistie . ©

=
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\ o

 distributions. The asymptotic bias was found to be especially great

when the true distribution is Laplace. Goldberger also extendedikhe
analysis to the fegression model with a constant term”and one discrete
independent variable. Arabmazar and Schmidt [1981] extended Goldberger's
analysis to the case of an unknown variance and found‘phat the %symptotic 4

bias was further accentuated.

" b4, Tests for Normality: The fact that the Tobit MLE is

generally inconsistent when the true dﬁstribution is nonnormal mékes it
important for a researcher to test whether his data are generated;b?yé
normal distribution. Nelson [1981] devised tests for norﬂality in the
i.i.d. censored sample model and the Tobit model. His tests aréﬂapplica-
tions of the specification test of Hausman [1978].

e
» =

In Hausman's test, one uses the MLE 5 obtained under the ?nki
hypothesis, which is asymptotically efficient under the null hyp6£hesis
but loses consié%ency under an éiternative hypothesis, and a consistent’
estimator 5, which is asymptotically less efficient’than fhe MLE under
the null hypothesis but remains consistent under ag alternative hypothesis.
Fausman [1978] noted that (8 - 8)'V™L(8 - 8) is asymptotically distribubed--
under the null hypothesis as chi—sqﬁare wifh K degrees of freedom (K gbeing
the number of elements in 6), where V = V(g) - V(g), the difference E
of the asymptotic variance-covariance m%trices evaluated under the null
hypothesis. An advantage of Hausman's tést is“th&f one need not know

the cova:iance between 6 and 6 +to perform the test.

4l
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Nelson's i.i.d. censored sample.moﬁel is defined by
Vs
14

\\:\

o
e
H
«
*
A

0, i=1,2,...,n ,

(
I

where y; a Ny, 02) under the null hypothesis. Nelson ‘considers the

estimation of P(&; > 0). Its MiE is o(u/o) where j and o are
the MLE of the respective parametefé. “A consistent estimator is provided

by nl/n ﬁhere, as before, n, 1is the number of positive observations of

1

¥s- Cleafly, hl/n is a consistent e;timatorhof P(y;?>,0) under any

distributioﬁ provided that it is i.i,d. Nelson derived the asymptotic

variances under ﬁormality of the two estimators.
If we iﬁterpret what one is estimating by the two estimators as

n , , .
lim ot ) P(y; > 0), Nelson's test can be interpreted as a test of
N i=1 - ,

the null hypothesis against a more general misspecification than just

nonnormality. In fact, Nelson conducted a simulation study to evaluate
the power of the test against & heteroscedastic alternative. The perfor-
mance -of the test was satisfactory but not especially -encouraging.

In the Tobit model, Nelscn considers the ‘estimation of

nl Exy =27t ) x;[o(x[a)x!g + oo(x]a)]. Its MLE is given by the
- - i=1" T © i .

right-hand side of this equation evaluated at the TobithLE, gnd its

_consistent estimator is provided by n"l'g'yt ngsman's test based on

o

these two estimators will work because this consistent estimator is K

~

consistent under general distr%butional assumptions on y. Nelson
I { ' v - S

)
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deriveé the asymptotic variance-covarienCe matrices of the two estimators.

- Nelson was quite ingenious in that he consisdered certain functions
of the ofiginal parameters for which one can easily obtain estimetors
which are consistent under very general assumptions. However, it would
be better if one could find a general consistent estimator for the
original parameters tﬁemselves. Therefore, I would suggesf a Hausman's
test using the Tobit Mprend Powell’s”least absolute deviations estimator
of B as an alternative to Nelsenfs suggestion. The test will be com-
putationally more burdensome than Nelson's test but seems tpeorefically
preferable. _

As still another alternative, Ruud [1982] suggests contrasting

the Tobit MLE with the probit MLE for Hausman's tes@zi He argues that
though the probit MLE is‘’not consistent under eithe;&gonnormality or
heteroscedasﬁécity, Hausman's test works as long as the discrepancy

between the two estimators is more pronounced under an alternative

. hypothesis than under the null hypothesis.

5. Nonnormal Tobit: If u, in the Tobit model (2.3)

is not normal, one'of two things"can be done: (1) Specify a nonnormal - -

distribution and use the true MLE or some other estimato’ “ailormade

for the dlstrlbutlon. (2) Use an estimator which 1; consistent under

general distributions,botklnorma; and nonnormal.“\I willhmention an

eﬁémple forze%eh~of the two approaches.’ .
Amemi&a/ahd Boskin [19T4] studied the effecf of wage and other

1ndependent variables on-the number of months- durlng a flve-year perlod

<in which a household received welfare payments. Since the ‘dependent

O

S

variable is naturally bounded between 0 and 6Q, one must impose both
an upper and lower truncation point if one uses a normal Tobit model.

Instead, the authors assumed the dependent variable to be lognormal

"~ and hence p051t1ve, so that only an upper truncation needs to be imposed.

The MLE was used.

The majority of models I will discuss ifi Section ITI assume a normal
distribution. Exceptions are some' of the models proposed by Cragg [1971]

discussed in Sectlon III.B.5 and-the model of Dubin and McFadden [1980]

H

discussed in Section ITI.E.T.

Powelll [1981] proposed the least absolute deviations (LAD) estimator

o3

for censored and truncﬁted regression models, proved its con51stency under

. general unimodal symmetrlc dlstrlbutlons and derived its asymptotic

#distribution. * As I mentioned aboye, the estimatqr is also cohsistent

under heterqscedastic errors. The intuitive appeal for the LAD estimator

in a censored regression model arises from the simple fact that in the
RN
i.i.d. sample case, the median (of which the LAD estimator is a gegerali-

zation) is not affected by censoring (more strlctly, left censoring below
the mean) wherees the mean is. In a censored regre551on model, the LAD
estlmator is defined as that which minimizes Z [y -max (0, x! B)[ The
motivation for the LAD estL;ator in a truncatez iegre551on model is less
obvious. Powell deflnes the LAD estimator in the truncated case as

<

that which minimizes Z ly - max ¢ (271 ¥is X B)[
“ ’ i=1 e a

E. Minor Variations of the Standard Tobit Model ‘ \

”In this section I discuss a few models that are minor varia-

tions on the Tobit model.’ More significant generalizations of the Tobit

i
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model are discussed in Section ITI.

Rosett [1959] proposed a model in which the observable random

variables {yi} are defined by

* *
yi if yi < 0
(2.78) yi=-<o'*‘ if o<y*i'<a
y; -q if o < yg ; is= l,é,...,nu .

“ One can estimate o as,well as g and 52.

where y? " N(x!B, 02).
Rosett called it a model "of frlctlon because the model 1mp11es that
the dependent varisble assumes a certaln value (in this case 0) until
a change in an independent variable overcomes the friction. At this

point the dependent varlable either 1ncreases or decreases dependlng

upon the type of the stimulus. Maddala [1977] remarks that this model

is useful in analyzing d1v1dend policles, changes 1n wage offers by firms,

and sxmllar examples where flrms respond by Jumps after a certaln cunula-

tive effort.

Rosett and Nelson [1975] cons1dered the follow1ng simple generali-

zation of the Tobit model:.

a if y¥

1 is al
B - * .\.' ‘ N *
(2.79) Yy = vi if o) <y¥c< oy
f! Iy *
aa; if s < yj 5
s

RS e e b
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“assume al =0 without loss of geherality

7

where yI " N(xiB, 02). Ir X, contains a constant term, one can

Then, the Standird Tobit

el

" model is obtalned as a spec1al case by puttlng G, = @, According to

2
Mhddala [1977a], an. example of a problem to which this model has been

applled is the demand for health 1nsurance by people ‘on medlnare where
both a mlnlmum cOVerage and a maximum amount are 1mposed.
Dagenais [1969] proposed a model whlch is obtained by meking the

boundary points of Rosett's model stochastlc as follows:

[ » : *
RRE L Eooyisvy
= 3 ) " 2 ¥* 1
(2.80) y; =40 if vip{ yi < xy +w =
('); ,‘
* ’ $ ? * !
.yi + XY ir XYy +w, < ¥i
where y? n N(x!B, 02) and v; and wi are also normal. Unfortunately,

there is a logical 1ncon51stency in the model because . Vs < x'y + w
cannot always be’ guarenteed. Perhaps for this reason, this model does
not seem to have been applied to real data. « Dagenals [1975] begins to
dlscuss this model but the model he actually estlmated is of Type 2 Tobit,

which I wlll disecuss later. ) N ‘
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III. Generalizations (Type 2 through Type 5 Tobit)

' A. Introduction | r

bs T stated in Section I, I will classify the mbjority of -
Tobit models into five comﬁon types according to similarities in the
likelihood function. Type 1 is the Standard Tobit model which I have
discussed in Section II. In Seetion IIT T will define and discuss the
remaining four types ofiTobiﬁ models.

It is useful to characterize the likelihood function of each type

of model schematically as follows:
P Table 3.1

Type 1 P(yl < 0). P(yl)

n

P(yl < 0) P(yl > 0, yz)

3 P(yl < O) . P(yl, y2) 4
4 P(yi < 0, y3) « Ply;, ¥,) ' «
S5 By < 0, y) By 5 0, yy) "

In the aboée, each yJ, J=1,2, and 3, is assumed to be distributed.

as N(XSBJ’ ci), and P denotes a probability or a density or a combi-
nation thereof. One is to take the product of each P over fhe observa-
tions that belong to a particular category determined by the sign of Yy-
Thus, in Type 1 (Standard Tobit model), P(yl < 0). P(yl) is an abbreviated
notation for 1 P(yli < 0)- n fli(yli)’ where f,. 1is the density of

0 1

N(x' ;B1» oi) This expression can be rewritten as (2.6{\af§er dropping

< Y = s . §
uee unnecessary subecrlpt 1. /?y/

[=2a
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Another way to characterize the five types is by the following

) classification of the three dependent variables which appear in the

models:

Table 3.2

Type 1 o]
2 B c A
3 c c
L c c C
5 B o c

In Table 2 ebove,‘B is an abbreviation for Binary and C wfor Censored.
In each type of model, the sign of yl determines one of the two possible
categories for the ob%ervatlons and a censored variable is observed in
one category and unobserved in the other. Note. thiat when ¥y is labelled
C, it plays two roles: the role of the variable whose sign determines
categories agd/fhe role of a cehsored variable.

We allow for the possibility that there are constraints among

the parameters of the model (BJ’ o?)' J = 1,2, or 3. For example,

constralnts will oceur if the original model 1s specified as a simultaneous
equations model in terms of Yy yz,nand y3. For, then, the Rg's

denote the reduced-form parameters.

I will not dlscuss here models in which there are more than one

binary variable and hence models whose likelihood function consists

A 5 SN s e
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of more than two components. Such models are computationally more
burdensome because‘they involve double or higher-order integration

of Jjoint normal densities. The only exception occurs in Section III.E.T,
which includes models that are obvious generalizations of the Type 5

Tobit model. One notable (at least in my mind) model of the sort I do not
discuss is a simultaneous-equation Tobit model of Amemiya/[l97hb]. The
simplest two-equation case of this model is défined by

Vg = MAX (yp¥p; + X[38y *+ Up;. 0) and y,, = MAX (yyy;, + %38, + w5, 0),
where (uli’ u2i) is bivariate normal and 7172 <1l mu;t be assumed for
the model to be logically consistent. A schematic representation of the -

likelihood function of this two equation model is P(yl,”ye) . P(yl < 0, 'y3) .

P(y2 < 0, yh)- P(y3 < 0, ), < 0).

B. Type 2: P(yl < 0). P(yi.> 0, ya)

1. Definition and Estimation: The Type 2 Tobit model is

defined as follows:

o * = ! ' ’ ) "’v
T PR T ,\
‘ ‘ (i
* = v? R
. ¥3; x2i82 + Uy,
(3-1) L
v3; if vy > O
Yn: = . . N
2L o ir Y0 , i=12...10 , O
-
where '{uli, uZi}‘ are ifi.d, drawings from a bivariate normal distribution
with mean zero; variances ci and og, and covgriance 012. It is
: o , G

assumed that only the sign of yii‘ is observed and that ygi is observed

O

2

l‘-:Q
s

£
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only when y{i > 0. It is assumed that X4 are observed for all i
but Xos need not be observed for i such that y* x 0. One may

1i =
also define, as in (2.5),

1 if yIi >0
(3.2) w,, =

A
o
.

0 if yIi g

Then, {wii; y2i} constitute the observed sample of the model. It should
be noted that, unlike the Type 1 Tobit, y2i may take negative values.

See the discussion‘of Cragg [19T1] in Section B.5 below for models that

" prevent this. A4s in {2.4), Yp; =0 mereiy signifies the event y{i/g 0.

The likelihood function of the model is given by

. = * *
(3.3) L g 1=(y1i < 0)1111~(y2i|yli > O)P(yIi > 9) ,

where g and NI stand for the product over those i for which® Yo; = 0
1 ;

and y,. > 0 respectively and f(-lyii > 0) stands for the conditional

dens;ty of ygi given yIi > 0. Note the similarity between (2.8) and

(3.3). As in Type 1 Tobit, one can obtain a consistent estimate of Bl/cl
by maximizing the probit part of (3.3),

il

o i = * *
(3.4) Probit L g P(yli < o)rlrp(yli > 0)

A
Also, (3.4) is a part of the likelihood function for every one of the
five types of models; therefore, a consistent estimate of 8,/c, can

be obtained by the probit MLE in each of these types of model.

a
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1f there is no constraint on the parameters, one can put o}
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One can rewrite (3.3) as

(3.5) L=TP(y* <0)n [ £iy*
10

where f(+,+) denotes the Joint density of y{. and ys.. One’ can

write the joint den51ty as the product of 2 conditional den51ty and a
marginal density, i.e. f(yll, y21) = f(ylilyzi)f(yzi),‘and determine a
specific form of f(yiilyzi) from the well-known fact that the conditional
.is normal with mean

2 =2 .2 .
] - - .
xllBl + o o (yzi x 32) and variance o o 12%2 Thus, one can

distribution of y{ given yg. = Vo4

=

further rewrite (3.5) as

(3.6) L =g [1 q>(x' {8197 1y
-1 -2
L ~ :
2 o 273 a1, .
(1010077 05 17 05 ¢ lyy; = x48,)

Note that L depends on ¢ only through B

-1 .
1 and 01201 H therefore,v

L =1 without
any loss of generality. Then, the remaining parameters can’ be identified.
If, however, there is at least cne common element in ’Bl and 82, oy
can be also identified. ’ | |

I will show how Heckman's two-step estimator can oe u%edtin this
model. To obtain an equation comparable t05(2117),,we:need to evalﬁzzef
E(ysily{i > 0). For this purpose we use‘theﬁell;;nown result'

p o Wy
7 R .
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¢ o
. £ o= gt *
(3.7) Y5y = xhiBo + 01507 (y'li xilsl) o s

where ;2i is normally q;stributed independently of y;i with mean zero

. 2
and variance o- ~

2 =2 .
2 = 0150, - Using (3.7), one can express E(ygilyfi > 0)

as a simple linear function of E(y{ilyf. > 0), which was already obtained

in Section II. Using (3. 7), one can also derive V(y;l[ * > 0) easily.

Thus, we obtain

-1
= x! i
(3.8) Ypi = XpsB, + 0,597 l(xiial) te, 5 for i suco that
0

y2i > 0 , -

Y

-1
rhere @, = 31“1'qu€21 = O,Mand

(3.9) C Ve,

1]
Q

2 52 o) [x) lA(x @) + l(xiiai)z]
As in the case of the Type 1 &obit, Heckman's two-step estimator is the LS
estimator applied to (3.8) after replacing ai‘ with the probit. MLE.
The asymptotic distribution of the estimator can be similarly obtained
as in Section IT.C.3 by defining Nos in the same waf as before. It
was first derived by Heckman [1979]. |
The Standard Tobit (Type 1) is a special case of Type 2, in which -

y{i = ygi. Therefore (3 8) and (3. 9) will be reduced to (2.17) and (2.18)

2

by putting x' Bl 2162 and of =0, = Oi10-

A generallzatlon of the two-step method applled to (2 29) can be

easily deflned for this model but will not be dlscussed
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2. A Special Case of Independence: Dudley and

Montmarquette [1976] analyzed whefher or not the United States gives
foreign aid to a particular country and, if it does, how much foreign
aid it gives using a special case of the model (3.1) where the
independence of u; . and Uy is assumed. In their model, -the eign
of yfi determines whether aid is given to the i-th country,’and ygi

determines the actual amount of aid. They used the probit MLE to estimate

Bl k(assuming 0, = 1) and the least squares regression of ¥p; OB,
xZi to estimate 82. The LS estimator of 82‘ is consistent in their

model because of the assumed independence between U, and Ugs - This
is the main advantage of their model. However, it is unrealistic to
assume that‘the actual amount of aid, yz, is independent of the variable
wiich determines whether or not aid is given, y{;' This model }s the
opposite extreme of the Tobit model, whieh can be regarded as a special
case of Type 2 model where there is total dependence between yl and
yn, in the whole spectrume of models (wlth varying correlation between
yl and yg) conteined in Type 2.

Because of the computational advantage mentioned above, this
"independence" model and its variations were frequently used in econometric
applications in‘1960'e and early TO's. In many of these studles, authors -
made the addltlonal linear probablllty assumptlon P(yll‘> 0) = xilsl,
which enabled them %o eetlmate Bl (as well as- 62) eoneistently by
the ieast squares method. For examples of these studies: see Huang'

[1964] and wu [1965].
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“hours of work H and the actual wage rate W must be such that » i

or, more commonly, the reservatlon wage denoted Wr ;2/
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3. Gronau [1973]: I take up Gronau's model as the first

example of the Type 2 Tobit model because he seems to be the first

N
berson to suggest an empirical hodel of this type, even though he did
not use all the information provided by the model and sometimes used

incorrect estimation procedures, as I will show below. His model of

4_labor supply, based on the idea of a reservation wage, has since been

-used and extended by many authors.

First, I will breifly sketch Gronau's theory of how a housewife

"decides whether or not to work and how much to work. Gronau assumes that

the offered wage Wo is given to each housewife independently of hours
worked H, rather than as a schedule WO(H). Given WO, a housewife
maximizes her utility function U(C,X) subject to X = WH + V and
c+ H= T, wvhere € is time spent at home for child care, X represents
allsother goods, T is total available time, and v is other income. -

Thus, a housewife does not work if /ﬁ

' U /38U \ 0 o

010 S—. ———— t\ . N
(3.10) [30. QXJ >.h\\\‘ , :
' H=0 AN 1 ‘

)

Sy
/
and works if the inequality in (3. lO) is reversed. 1If she/éorks, the

Q
3
C/ o

Gronau calls the left—hand side of (3.10) the housew1fe s value of time, '

@
<
(=

=W .

|
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Assuming that both Wo and Wf can be written as linear combiha-

tions of independent variables plus error terms, his model may be

4

statistically described as follows:

c_ .,
Wy = XpiBp v uyy
*(3.11) 4 .
.0
o W,
W, = 0
! 0 if W, gW., , i=12....n ,

y

Q

where (uZi’ vi) is an i.i.d. drawing from a‘bivariate normal distribu-
éion with mean zero, variances cﬁ and 02, aﬁd covarlance qu"'ihus’
the model can be written in the form of (3. l) by puttlng Wo Wi = y{l
and Wg, y2l Note that H (hours worked) is not explalned byuthls
stétistical model though it is determined bwa:onau s theoretical model.
A‘statistical model explaining H .as well as W -was later developed
by Heckman [197h4].
Since the model (3.11) can 5; transformed into ‘the form'(3.1) .
in’such a way ghat‘the parameters ogﬂ(3.ll) can be determiﬁed from the
parameters of (3.1), all tge-parameterﬁ»of the model are identifiable-
éxcept V(Wg - Wi), which can be set equal to 1 ﬁithout loss of
is not included

generality. If, however, at least one'élement of x2i

/

in zl, all the parameters are identifiable.l - They can be estlmated

by the MLE or Heckman s two-step estimator by procedures descrlbed 1n

Section B.1 above. One can also use the~prob1t MLE (the first step of

I will discuss this in the section on Type 3 models. -

.
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PAaY

Heckman's two-step) to estimate a certain sgbsetqof the parameters.
However, the two estimﬁtidn,methods used by Gronau are not among the
above. I will described his methods and expléin in whAt wayﬂthey are
inappropriate. B

 The full likelihood functi;n of Gronau's model (3.il) can be

written as

% . ' = W .

B 1 '
(3.12) L=0p( <w) T [ 2., v)aw’ .
0 1=, 7 i i

where g and I are the ﬁroducts over those observations for which

0 : ; ,
Wi g W; and Wg > Wi respectively and f(e,.) is the Joint density
, i 17/

(o]

of W, and W.. Grozmau assumes that u..
i .1 i

Under this assumption, (3.12) can be written as

and v, are independent.

R T . :
(3.13) L=1L I{ou‘ ¢[0u (wi xéisg)] s
where 7 ' o
) Vi
. 1 7
(3.14) T (-0 [(6® + 62) 2( 8 )1} x
- ooy = - Uu GV x2i82 - zi,a ¢

0 .
. {
. g@ [o‘v (Wi - zn!.oz)"]‘ .‘

o

Maximizing (3.13) yields the MLE of o, By, 0, and vcv, which are

”con51stent and asymptotlcally eff1c1ent under Gronau's 1ndependence assump-

tion. Max1mlzlng (3. lh) ylelds estlmates of a, Bz, ‘and 9, whlch are —
e : : AN
. ’ ; SN

Gt ,7;:,.7:&‘ f"i.fii;:’ll'::‘\".,,:“f.mm<‘
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-where f¢i hand éi are ¢ and ¢ evaluated at 1(a§ + 03)
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consistent tut asymptotically not fully efficient. G;?nau's two methods
- of estimation can be both regarded as attempts to maximize an approxima-

tion to (3.13) as I will show below.

In Gronau's first method, Wi is‘}egressed on - Xy, for those

"~

observations where Wg > Wi to yi=2ld the LS estimates 82 and then

(3.15) it = g {1 - @[0;1(xéié2 - zia)]}llé[c;l(wi - zia)]
; 1l

is maximized with respect to a and O There are two problems with

this method: (1) B, 1is not consistent, as Gronau notes, and (2) Lt

~differs from the correct L* in that &i appears in (3.14) but not in

(3.15). Note that this method would be MLE if N appearing in (3.13)

, 1
were the product over all the observations and if L* were used instead

of LY.

In Gronau's second method, the firsP problem is solved 'as indicated

below, but the second problem remains. We have under Gronau's independence

assumption

. r_ .0y _ _, 2, 2 2 -1
(3(‘.\/10) E(wi]wi< Wi)-x2182+(ou+ov) o ¢. b,

o

- =1/2

B

Since Gronau's data are such that there are many individuals with the

same value of the independent variables, one caﬁ estimate °i directly
nd ‘»tl. P
by the ratio of the number of working wives to the number of wives with

i

i
Vi

the cparacterist}cs xi. Given this‘estimate, denoted ¢i’ one éan estimatev

(xéisg - Z:ia ) .

5

3

£

Va P

C

o

o) AP T 05

sib
i

¢; by $i = ¢[¢-l($i)]. Next, one regresses positive W, on x,,
and ;;161 . to estimate 52' This estimate, denoted 52’ is consistent
(provided that the above estimates of ¢, and ¢, are consistent),
and, therefore, the first problem of the first,estimation method is
&g;zgd. Gronau, then, maximiziz L+ after replacing éz by 52, but,
had the maxinized L* after repiacing B by 82, he would have obtained
consistent estimates of the remaining parameters. O

Despite the minor error in the estimation method, Gronau's article

made a significant econometric contribution (besides a substantive

empirical contribution which I have ignored) by suggesting a two-step

method based on the conditional” expectatiori equation, which became a

precursor of Heckman's two-step estimator.

o

For a panel-data generalization of Gronau's model, see Kiefer and

Neumenn [1979 and 1981]. The likelihood function of the Kiefer-Neumann

‘model is obtained by taking the préduct of (3.12) over the time periods

in the sample. They used the MLE.

4. oOther Applications: Nelson [197T] noted that a Type 2

_Tobit model arises if #0 in (2.1) is assumed to be a random variable

with its meanhequal to a linear combination of independent varisbles.
He reestimated Gronau's model by maximizing the correct likelihood

o

function (3.13).
Dagenais [1975] used a Type 2 Tobit model to analyze household
‘ ; . |
purchase of automobiles. In this modéi, ¥4 in (3.1) represents the

desired expenditure on a car and X, includes -permanent income,

e T A T T
et L e T

et

]
e
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education, and the number of children. He assumes that a household

purchases a car if yg exceeds a st0chastiC”threShold S = 61 + 62

where A is the dummy variable taklng unity if the household antlclpated

A+ v,

' buy1ng a car at the time of a prior questionaire and the actual value
of purchase y2 = yg ir yz > 8. Thus, yz - S plays the roie of y{ in
(3.%7. Like Grohau, Dagenais assumes independence between ys and S,
and, in addition, he assumes equality of the variances of _yg and S.
These assumptions are not necessary for identification. Dagenais' model,
like Gronau's, has arweakness in that an arbitrary separation of the
independent variables into some which go into the yg equation and some
which go into the S eqpatvon (Wr equation and W0 equation in Gronau's
model) is maintained.
-

' In the study of Westin and Gillen (1978],;y§ represents the
parking cost with Xy including zonal dum&ies, wage rate (as a pfbxy
fpr value of walking time), and the square of wage rate. A researcher

observes yg = y2' if yg < C where C represents transit cost, which

itself is a function of independent variables plus an error term. -

5. Cragg |1971[ -As I mentloned in the beginning of
Section B.l,‘ye. can be negatmve in the Tvpe 2 model. Cragg [1971]
. proposed three models that ensure the nonnegativity of Yoy- It will
be readily seen that, strictly speaking, Cragg's models 2 and 3rdefined

below can be classified as nonnormal ‘models and his model 1, though based

on the normsl dis%fﬁbution, does not belong to any of the five types.
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Nevertheless, I discuss these models here as ‘they can be regarded as
modifications of the Type 2 model.

Model 1: (y{, yg) n Bivariate N (x!

2
1813 xé829 1, 02, 0'12)
yg if
e |

0 otherwise //

S

y{ > 3 and yg > 0

Model 2: (yf, yg) "N Bivariate N(xisl, X855 1, cg, 612)

with yg truncated so that y* >0

2y,

Model 3: Same as Model 2 except 1log vE o N(x232, 5

Cragg compared the above three models and the Stgndarquobit inodel
by a simulation study. One pﬁfposg of his investigation was to seé how
close the MLE is to its asymptotic normal distribution.in each model.

His results were rather 1nconclu51ve. Another purpose of fhe study

was to see how often a true model is selected against the other competing
models by Bayes posterigr odds ratioc. Cragg found it hard te distinguish
bgtweenAModels 1l and 2. . )

Cragg fitted a simplified version (fewer independent variables)
of Wu's model [1965] by tﬁe four models and the ranking according to the -

posterior odds ratio ranked Model 3 best, followed in order by Model 2,

X

Wbt e vt s 8 e 7o g
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Model 1, and finally Tobit. The estimates obtained by Models 2 and 3

were found to be similar to Wu's estimates.

C. Type 3: P(y, < 0)« P(y;, ¥,)

1. Definition and Estimation: The Type 3 Tobit model is

defihed as follows:g

% [
T P R T

» [}
Y35 = ¥p4Bp * Uy

' ” * it y* >0
a3 . [yll 1
1i 0o

if, yIi <0

. * 3 . *
- v, M v 0
Yoi =

0

o - if yIi

A

, i=1,2,...,n ,

where {uli,'uei} are i.i.d. dfawings from a bivariate normal distribution-
with mean zero, variances ai and 02» and covariance Oyo° Note that
this model differs from Type 2,ohly in that yii is also observed when

3

it is positive in this model.

Since the estimation of this model can be handled similarly to that

of Type 2, I will discuss it only briefly. Instead, in the following I

will give a detailed discussion of the estimation of Heckman's model
. ’ \ , . )
[1974], which constitutes the structural-equations version of the model

(3.17).

.
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The -1ikelihood function of the model (3.1T) can be written as

(3.18) L= gP(YIi < 0) n'f(yli,. Yoi) s
1

where f(.,») is the joint density of y{i and yzi. Since yIi is
observed when it is positive, all the paramefefs of the model are
identifiable, including ci.

Heckman's two-step estimator was originally proposed by Heckman
[1976] for this model. He;e we obtain two conditiohal—expectation equa-
tions (2.17) and (3.8) for y, and y, respectively. (add subscriéf 1
to all the variables and the parameters in (2.17) to conform to the
notation of the present section.) In the first step of the method,
@, = Bldzl. is estimated by the probit MLE ;1. In the second step, least
squares is abﬁlied separately to (2.17) and (3.8) after replacing @, by
;l' ?he aSygptotic variéﬁce—covariance matrix of the resulting estimates
12051) can be
similarly obtained.. The latter is given by Heckman [1979]. A consistent

of (Bl, ol) is given in (2.28) and that for (82, o

estimate of o, can be obtained using the residuals of equation (3.8).
As Heckman [1976] suggested aﬁd as I noted in Section II.C.3, a more
efficient WLS can be used for each equation in the second-step of the
?ethod. An even more efficient GLS’can be appliéd simﬁltaneously to theC
two equatio;s. However, even GLS is’hot fully efficient compared to MLE,X
and the added compﬁfational bﬁrden may not be sufficiently compensated

for by the gain in efficiency. A two-step method based on unconditional

means of v, and Yo which is generalization of the method discussed

in Section II.B.3, can be also uUséd for this model.

o N
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Wales and Woodland [1980] compared the LS estimator, Heckman's
tﬁo-step estimator, probit MLE, conditional MLE (using only those who
worked), MLE, and another inconsistent estimator-in a Type 3 Tobit model
in a simulation study with one replication (sample‘size 1000 and 5000).

The particular model they uéed is the labor supply model of Heckman [19T4],

18/

which I will discuss in the next subsection.=—~ The LS estimator was

found to be poor, and all three ML estimators were found to perform well.

Heckman's two-step estimator was ranked somewhere between LS and MLE.

3

2, Heckman [1974]: Heckman's model differs from Gronau's

model (3.11) in that Heckman includes the determination of hours worked
H in his model. Thus, Heckman's model is a natural consequence of
Gronau's theory of labor supply. Like Gronau, Heckman assumes that the
offered wage WO is given independently of H; therefore, Heckman's WO

equation is the same as Gronau's:

. o
(3.19) Wi = xéiB2 +u, .

Heckman defines W = (3U/8C)/(8U78X) and specifiéslg/

A ) : .
(3.20) wﬁ YE, + zla + v,

¥ )
It is assumed that the i-th individual works if

(3.21)

' 0
= = ! .
Wi (Hi 0) = zia + vi< Wi'

"and then, the wage ‘Wi and hours worked Hi are determined by solving

(3.19) and (3.20) simultaneously after putting Wg = Wz = W,.. Thus, wve

et e e e e e m e S e <

Q

=

&4

e

.

€3
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can define Heckman's model as
.22 = x!
(3.22) W, = x}.B, + Uy,
and
(3.23) W, =

H + z'a + v,
Y i i i

for those i for which desired hours of work

3-21" #* ]
( ) Hi xliBl + uli >0 ,

-1(

-1 | ‘
where x! B, =¥ (xéiﬁz - zia) and u Uy - vi). Note that

1i 11 - Y
(3.21) and (3.24) are equivalent because y > 0.

I will call (3.22) and (3.23) the structural equations; then, (3.22)
and the identity part of (3.24) constitute the reduced form equations.
The reduced form equations of Heckman's model can be shown to correspond
to the Type 3 Tobit model (3.17) if we put H¥ = v E=y, W = v4,
and W = Yoo Since I have already discussed the estimation of the
reduced-form parameters in the context of the model (3;17), I will now
discuss the estimation of the structural parameters.

Heckman [197L4] estimated the structural parameters by MLE. In
the next two subsections I will discuss fhree alternative methods of
estimating the structural parameters.

For a panel-data generalization of Heckman's model, see Heckman

and MaCurdy [1980]. Z
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3. Heckman [1976]:  This article proposes the Heckman

two-step estimator of the reduced-form paramgters, which I have discussed

in subsection 1 above, but also reestimates theﬂlabor supply model of {7
Heckman [19T4] using the structural equation version. Since (3.22) is
;}reducedfform as well as & sfructural éQuation, the estimation of 82

is done in the same way as I have diséussed in subsection 1: namely, O
by applying least squares to the regression equation for E(WiLﬁg > 0)

after estimating the argument of A (the hazard rate) by p?obit MLE.

So I will only discuss the estimation of (3.23) here. Rewrite (3.23) as .

- -1
= -2! - .
(3.25) H =y lWi ziay Y OV,

i

. 4 o
By subtracting E(vilH; > 0) from v, and adding the same, we rewrite
(3.25) further as
(3.26) H, = y-lwi - ziay‘l - crlvq_;l Y-ll(xiiBl/cl) - Y-'l € | 'y
where g, = Cov (uli’ vi), ci =Vu,, and g, =V, -‘E(vi|H; > 0).
Then, consistent estimates of y-l, ayfl, and alvoixy-l are obtained :
by the least squares regression appiied to (3.26) after replacing Sl/ol
g& its probit MLE and Wi by %i’ the least squares predictor Of, Wi
obtained by applying Heckman's two-step estimator tqv(3.22). The o
asymptotic variance;covari;nce matrix of this estimaﬁ?r can be de@uce&
from the r;sults in Heckman [1973],Lwho considered the estimaﬁion‘of a
more general model (which I will discussQin'the section on Type 5 Tobit G
models). !
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Actually, there is no apparentAreaéon why one must first solve
(3.23) for Hi. and proceed as I have indicated above. Heckman could
just as easily have subtracted and added E(vilﬂg > 0) to (3.23) itself
and proceeded similarly.  This method would yield alternative consistent
estimates. Inferring from a well-known fact that the two-stage least
squares estimates.of thé standard simultaneoﬁs equations model yield
asymptotically eqﬁivalent estimates regardless of which normalization is

chosen, I conjecture that the Heckman two-step method appiied to (3.23)

and (3.25) would also yield asymptotically equivalent estimates of v
and a. r y
Lee, Maddala, and Trost [1978] extended Heckm;ﬁ's simultaneous-
équationsftwo-step gstimator and its WLS version (taking account of the

heteroscedasticity) to more. general simultaneous-equations Tobit models

and obtained their asymptotic variance-covariance matrices.

4. Amemiya's LS and GLS: Amemiya [1978 and 1979] proposed

a general method of obtaining the estimates of the structural parameters

‘ \ . . ;
- from given reduced-form parametér estimates in general Tobit-type models

and derived the Qéymptotic distribution. The structural parameters vy

and B ’ofia"pgrticnlarﬂequation are generally related to the relevant

reduced—fqrﬁ parameters 7 and I in the following way: .

(3.27) mo=Ty +J8 ,

where J is a known matrix consisting of only ones and zeros. It is

assumed that w, y, and B are vectors and I and J are'matrices of

B}

SRR
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conformable sizes. Equation (3.27) holds for Heckman's model and more
general simultaneous-equations Tobit models, as well as the standard
simultaneous-equations model. '

Now, suppose certain estimates w and 1T of the reduced-form

parameters are given. Then, using them, we rewrite (3.27) as

(3.28) T = ﬁy + JB + (; -7) - (ﬁ -y .

Amemiya proposed applying LS and GLS estimation to (3.28). From Amemiya's
result [1978], one can infer that Amemiya's GLS applied to Heckman's model N
yields more efficienﬁ estimates than Heckman's simultaneous-equations
two-step estimator discussad above, Amemiya [1982] shows the superio;ity
of the Amemiya GLS estimator\fo the WLS version of the Lee-M;ddala-Trost

estimator in a general simultaneous-equations Tobit model.

5.. Other Examples: Shishko and Rostker [1976] used Heckman's

. ©
model to explain the wage and hours worked in a second job. They estimated
the wage equation (3.22) by least squares (yielding inconsistent estimates)
and estimated the hours equation (3.25) by the Tobit MLE after replacing

Wi by its least squares predictor. This estimation procedure is notd o (ﬁ%

P
i
e

recommended. N ’

, éobérts,Maddala, and Enholm t;978]festimated two types of simultaneous-
equations Tobit models to explain how utility rates are determined. One ' O
of their models has a reduced form which is eséentially Type 3 Tobit and
the other is a simple extension of Type 3.

The structural equations of their first model are - ' V 0

-k ¥ =
(3.29) o Y3y T ¥piBp v up;

IR

o (3.32) ygi‘> R, ,

-65-

o¥ = * : «
Y33 T YV5y * X33B3 t Uz

where ygi is the rate requested by the i-th utility firm, ygi* is the
rate granted for the i-th firm, Xps

capital and the last rate granted minus the current rate being earned,

includes the embedded cost of

. and x3i includes only the last variable mentioned. It is assumed that

* * 3
Y35 and y3i are observedxog;y if

4

(3.31) ¥} = zja ¢+ v,>0 ,

where ziﬁ include‘the earnings characteristics of the i-th firm. (Vvi

is assumed to be unity.) The variable y{ mAy be regarded as an index

sy o

RN

- affecting a firm's decision as to whether or not it requests a rate

increase. The above model can be labelled as P(yl < 0). P(yl > 0, ¥ps y3)

invmy short-hand notation and therefore is a simple generalization of

Type 3. The authors' estimation method is that of Lee;‘Maddala; and

Trost [1978] and can be described as follows: (1) Estimate ‘a by the

probit MLE. (2) Estimate B, by Heckman's two-step method. (3) Replace

y;i in the right-hand side of (3.30) by ysi obtained in step (2) and

estimate vy and 83 by the least squares applied to.(3.30) after adding

the hazard rate term E(u 0).

*
31l¥fs > ” |
The second model of Roberts, et. al. is the same as the first

model except that (3.31) is replaced by

AN

D3
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where Ri refers to the current rd?p being earned. aﬁ independent
variable. Thus, this model is e?gé;tially Type 3. (It would be exactly
Type 3 if R, = 0.) The estimation method is as follows: (1) Estimate
B, by the Tobit MLE. (2) Repeat (3) as described in the preceding
paragraph.

. Nakamura, Nakamura, and Cullen [1979]'estimaﬁedﬁeSSéntially the

same model as Heckman [1974] usiné Canadian data on married women. They

used the WLS version of Heckman's simultineoufg-équations two-step estimator;

a more elaborate version of the preceding model incorporating.inpome tax,
leading to a complex nonlinear‘hours eguation:

Hausman and Wise [1976, 15%7, and’l979] used Type 3 aﬁd its
generalizations to’ analyze the”labor supply of pa:ﬁicipants in the Negaﬁive
Income Tax (NIT) experimentsfdbTheir:models are truncatedvmodgls since
they usea observations on only those who participated in the experiments.

The first model of Hausman and Wise [1977] is a minor variation of the

Standard Tobit model where earnings Y follow

.

- 2w ;
= V¥ 3 * * n, ry
(3.33) Y, =Y ir Y¥<IL, , Yin N(xis, a ) ,

[

: " - i
where L., is a (known) poverty level which qualifies the i~th person to

'participate in the NIT program. It varies systématically with fémily

size. The model is estimated by LS and MLE. ;(fhe”LS estimates were

alwa&s found t¢ be smaller in absolute value; c&nﬁirming greene's‘result
given in Section II.C.2.) In the sécond msdel qfithe same érticle, earnings
are split igto wage and hours as Y = We H, lqadiég'to the same equétions

il

that is, they applie&yWLS to (3.26). Nakamura and Nakamura [1981] estimated {”LK

.

i

o

bt e
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tions are split into the
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7

as Heckman's (3.22) and (3.23) except that the conditioning event ié

(3.34) log‘Wi + log Hi < lqg Li‘ ;G

instead of Heckman's (3.24).
Type 3 and belongs to the same type of models as the first model of
N

Roberts, Maddala, and Enholm [1978], which I discuséﬁd earlier, except
N

Thué;‘thiSQEQQgi‘is a simple extension of

for the fact that the model of Hausman“and Wise is a tgﬁncated one. The
: : Ny

model of Hausman and Wise [1979] also belongs to this type.\*The model

of their [1976] article is .an extension of (3.33), where earninés_obéerva—

pre-experiment (subscript 1) and experiment .
! R & .

(subscript 2) periods as

(3.35) Y. =Y* and Y. = Y,

1 - Y 21 T ¥y I Y3y <Ly

1i i
Thus, the model is essentially TypeR?,lexcept for a minor variation

P
due to the fact thet L; varies witﬁ\hgﬁy

5y

o

e
=

e A S T

B BT

B

R



3

i

D. Type k: P(y <0, y.). P(y., ¥,)
1 3 1 2
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where £ (e »*) 'is the joint density of v

is the joint density of yIi and ygi. Heckman's two-step method

and ygi and f,(+,-)

B 1. Definition and Estimation: The Type 4 Tobit model is defined j;z; for this model is similar to the method for the preceding model. However,
i3 - , i E i .
as follows: ﬁf § one must deal with three conditional expectation equation in the
? present model. The equation for Y3; will be slightly different from
f. Y11 11 1 ull ! the other twc because the variable is positive when yI is nonpositive.
| 'z
Y31 = *piBp + uy . Ve obtain
:‘:\:\‘-\ ::
v = B u,. |
31 31 37 3i !
* =
’ : f (3.38)  Elyylvd; ¢ 0 = xyp, - 51397 Al *]381/9,)
i i >0 ) I 2 |
(3.36) &y, = R »
v 1i 0 if yi' <0 ! i . I will dlscuss three examples of the Type 4 Tobit model below
) i £ , ;
ikﬁ\ . 0 | ﬁ Kenny, Lee, Maadéléi and Trost [1979], Nelson and Olson [1978], and
\I i
\ Y21 T vi; e 1 '
) .. = [ ; E»x . Tomes [1981]. 1Inthe first two models, _the y* equatlons are written
2 o if  y* <0 . | } N
1i = ‘ ; as simultaneous equatlons llke Heckman's model [l97h] for which the
[ygi it oy c0 . reduced-form equatlons take the form of (3.36). Tomes' model has a slight
Vas: = ,
L 3i 0 if yfi >0 , i=1,2,.0.n , : } twist. The estimation of the structural ‘parameters of such models can be

W ' ’ ~ 51?' handled in much the same way as the estlmatlon of Heckman's model [1974]:

where {uli"u2i’ u3i} are i.i.d. drawings from a trivariate normal that 1s, by either Heckman's simultanecus-equations two-step method (and
distribution. Ve

This model differs from Type 3 defined by (3.17) only by the (

its pee-Maddala-Trost‘@xtensiog) or by Amemiya's LS and GLS, both of which

I discussed i Section C above.
U (5 . O

addition of Y3 Wthh is observed only if y#, $ 0. The estimation In fact, these two estimation methods can easily accomodate the

. 1li
\\

0 of;thls modeﬁ is not 51gn1f1cantly dlfferent from that of Type 3. The- following very general“simultaneous-equa¥ions Tobit model :
likelihood funcélon can be written as L‘o i O Ty AR o
(3 39)/ \‘r'yg =B'x, +u 1=1.0,... o
0 - : | \
(3.37) g l;f3(yfi’ y%i)dyfi 'g f2(yli’ yzi) (R ) llc where the elements .of the vector y* contain the folloy&ng three types’
i o ¢ "=
(“g' v of variables: (1) always completﬂly observable, (2) sometimes completely
6 ‘ o c ' '
€ n zi\ 14
!
o)

R KT it R . =3 - . . et e, s s
MR it i e o\ : X @ : T g e
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observable and sometimes observed to lie in intervals (like yii > 0),
and (3) always observed to lie in intervals. Note thaf the variable
classified as C in Table 3.2 belongs to Class (2) above, and the»
variable classified as B belongs to Class (3). The models of Heckman
[1974], Kenny, Lee, Maddala, and Trost [1979], and Nelson and Olson

[1978], as well as a few more models I will discuss under Type 5 such

as Heckman [1978], are all special cases of the model (3.39).

2. Kenney, Lee, Maddala, and Trost [1979]: These authors

tried to explain earnings differentials between those who went to college
and those who did not. I will explain their model using the’variables
appearing in (3.36). 1In their model, yi refers to the desired years of
college education, ys the earnings of those who go to college, and y§
the earnings of those who do not go to college. A small degree of
simultaneity is introduced into the model by letting y{ appear in the
right-hand side of the yg equation. The authors used the MLE. They
note that the MLE iterations did not converge when started from the LS
estimates, but did converge very fast when started from Heckman's two-

step estimates (simultaneous-equations version).

3. Nelson and Olson [1978]: The empirical model actually

estimated by these authors is more general than Type U4 and is a general
5]
simultaneous-equations Tobit model (3.39). The Nelson-Olson empirical

model involves the following four elements of the vector y*:

yI: Time spent on vocational school training, completely
observed if y%} > 0, and otherwise, observed to lie in

the interval (-m,'O].

/

¥4

-
¥i; > 0.

~T1-

vygz Time spent on college education, o¢bserved to’lie in
one of the three intervals (=, 0], (0, 1], and
(1, =).

ygz Wage, always completely cbserved.

¥yt Hours worked, always completely observed.

These variables are related to each other by simultaneous equations.

However, they merely estimate each reduced-form equation separately by

variogs eppropriate methods and obtain the estimates of the structural
parameters from the estimates of the reduced-form parémeters in an
arbitrary way.

The model ﬁhicthelson and Olson analyzes theoretically in more

a

detail is the following twg%équation model:

. 0 * = 1]

(3.40) Y13 = Yo¥py * Xjgoq * V4
and

. o = * '

(3.41) Yoi = Yo¥11 * Xp390 * Vo3 o

where Yoq is alwaysfobsérved and yii is observed to be Y13 if
This model may be used, for example, if one is interested in
explaining only y; and y§ in the Nelson-Olson empirical model. The
likeliﬁood function of this model may be characterized by
P(yl < 0, y2)-'25y1, y2), and theréfofé, the model is’a special case
of Type k. ln ”

Nelson Enq\o;son proposed estimating the strPctura;\parameters of

{

this model by the following sequential method: (1) Estima%e the parameters

Eal
" o

4
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of the reduced-form equation for yI by the Tobit MLE and that for

yz by LS. (2) Replace Yo; 1in the right-hand side of (3.40) by its

LS predictor obtained in step (1) above and estimate the parameters of
(3.40) by the Tobit MLE. (3) Repiace yIi intthe right-hand side of
(3.41) by its predictor obtained in step (1) and estimate the parameters
of (3.41) by Ls. Amemiya [1979] obtained the asymptotic variance-
covariance matrix of the Nelso-Olson estimator and showed that the
Amemiya GLS (see Section IIT.C.h) based on the same reduced-form estimates

is asymptotically more efficient.

4. Tomes [1981]: Though it is not stated explicitly,

Tomes' model can be defined by

L J 1
(3.42) Y13 T Yp¥py * X8y tu,
. = '
(3.43) Yoy T Yo¥pg * X548, +u,,
and
¥* 1 *
" 3 ¥ ;> 0
(30 ) Yli - 0 .f . < O
RS E AP

where yl.' is the inheritance and y2 is the recipient's income. Note
that this model differs from Nelson's model deflned by (3.40) and (3.41)
only in that ¥ ;> Dot yl , appears in the rlght-hand side of (3.43).
Assuming Yle <1 for the logical consistency of the model (as in

Amemiya [1974] and mentioned in Section IIT.A), we may rewrite (3.42) as

-T3=

_ -1
(3.45) vh = (1 - Ylye) [Yl(xéisz + uZi) +x).8, +u,.]

1i
; and (3.43) as

| y;l): (l-Yle
(3.46) Yoy

5 .
y(o)' 1.B,5 + 1 it y*
2ai - *2iP2 21 1l

-1 ' * *
Y vy (xg 8y + ) * 38y +uy ] ir 13 > O

&

Thus, the likelihood function of the model is

2

0
_ (o)
(3.47) = g _‘Lf(yll’ Yoy ) av}; gf(yn’ Yoi

which is the same as (3.37).

E. Type 5: P(yl < 0, yz)' P(Yl > 0, Yz)

l. Definition and Estimation: The Type 5 Tobit model is

€ obtained from the Type 4 model (3.36) by omlttlng the equation for yl
One merely observes the sign of yl Thus, the mode;.ls defined by
i
(:
$

B



—Th=

— |
( Vi = *afy ey
Y35 = %p3Bp + Upy

¥E; = %3383 *+ ugy

(3.48) ¢ [yzi if yIi >0
Voi = F oy <
0 if y}; £ 0

V31

i Oy :0
[o it y§, >0 , i=12,...,n ,

S

i.i awi ivatiate normal
where {uli’ Uy s uBi} are i.i.d drawings from a tri
distribution.

The likelihood function of the model is

0 @
k . g *
4 (3.49) L=1 | £, (v¥;s 3y ) dv¥y ni £f2 (y%:» Vo )av¥ s
X 0 = [
\ i i i is model is somewhat
where f3 and f2 are as éeflned 1n‘(3.37). Since this mode

simpler than Typé 4, the estimation methods I discussed in the preceding ‘
section appl& to this model a fortiori. bHence, I will immediately go into

the discussion of applieations.

2. Lee [1978] and ILee and Trost [1978]: 1In Lee's model

it rate’ i-th worker
* ts the logarithm of the wage rate of the i :
[1978], ¥3; represen g : e
‘in case he or she Joins:the union and ygi represents the same in case
he or she”does not jdin the union. Whether or not the worker joins the

union is determined by the sign of the v§riable

O

¢ |

e PN SN

separately to the yg and the y3

. efficient as the MLE.

~T5-

3 ooy e '
(3.50) vi; = ¥%; - 31 tzj kv, .

Since we observe .only yg. if the worker Joins the union ang y§ if

the worker does not, the logarithm of the observed wage, denoted: Yy

is defined by

Dy 3 #*
i Y21 M ¥ 0
(3.51) y; = l
* i *
Y3 AT vy s0

Lee assumes that x and x

5 3 (the independent variables in the y2

and yg equatlons) include the individual characteristics of firms

and workers such as regional location, city size, education, experience,-

race, sex, and health, whereas z includes certain other individual

characteristics and variables which represent the monetary and non-monetary

costs of becoming a union member., Since y{ is unobserved except for

the sign, the variance of y{ can be assumed to be unity without loss

of generality.
Lee estimated hlS model by Heckman's two-step method applled

equations. In Lee's model, simultaneity

exists only in the yI equation and hence is ignored in the application

of Heckmen's two-step method. Amemiya's IS or GLS, which accounts for

th%msimultaneity, will of course work for this model as well and the latter Co

will yield more efficient estlmates, though, of course, not as fuily‘

The model of Lee and Trost [1978] is 1dent1cal to Lee S model’ abbve ' E

o
except that yl + Is defined simply as zla + v; and does not depend

»
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Another possible application of the model 1s to the same problem

(&

on the difference y;i - ygi as in Lee's model. Thus, there is no ;

‘ to which Lee's article was addressed (though Lee's model seems more
simultaneity in the Lee-Trost model. In their model, yi and y§l : suitable for this problem). Then, Yo3 would represent the i-th worker's
" ‘ . i 1 . . 4
represent annual expenditure on +the housing owned and rented respectively, ¢ 1 wage (or earnings) for both union and nonunion workers, and yii would
x, and xq include the age, race, sex of the family head, family size, v | i represent the i-th worker's propensity to join a union. As I will discuss
income, city size, distance from center of city, and the relative price % later in subsection 4, such an application was made by Schmidt and Strauss
index of housing, while 2z includes all the independent variables above { § é - [1976] using a special case of Heckman's model.
except the last. In estimation, Heckman's two-step estimates were E §  When one solves (3.52) and (3.53) for yii’ the solution should
, ] A
obtained and then used to start the Newton-Raphson iteration. g not depend upon wi, for that would clearly lead to logical inconsistencies.
. T
i . Therefore, one must assume .
3. Heckman [1978]: Heckman's model is a simultaneous }
equations model consisting of two: equations g (3}55) Y152 + 61 =0.
‘ § i :
# = ‘ ' ' + . . -36; * ‘
(3.52) Y11 T Y1Yoi + xlisl‘+ 619y ¥ U3 ; in order for Heckman'®s model to be logically consistent.ggl Using the
& ”
: above constraint, the reduced-form equations (though strictly speaking
and ] ,
not a reduced form because of the presence of wi) of the model can be
%] ’
- written as
= * ' ,
(3.53) Yoi = Yo¥Iy * *2iBo * O™ Y Y2y o v
3.56 * = xln. + vV,
h e observe p'e X and w. defined by (3.56) Y11 T XM i
where w Yoi» *1i° "oi’ i
€§ %
"4 and
. . * N
1 if ¥is >0
(3.54) - v, = , : = .
i 0 irf “yii <0 . (3.57) Yoi 62wi R, V.
: {ﬁ ]
There are no empirical results in this article, but’ the same model is where one can assume Vv,., =1 without loss of generality. Thus
. . . s . P Heckman's model is a special cage of e withc uétfa constant shift -
estimated by Heckman [1976], in which yj, represents the average income B . cxman P _cage of Type 5 J
: . o , » : . ' ' car i * (i.e.. yv* =x' vk = & ' + N
of black people in the i-th state, yii the unobservable sentiment ‘toward O between, y5 eand y3 (i.e., Y5; = XiTo + Vo, and y3. 85 + X317, v21)

o . . e i . . = ey s g —
blacks in the i-th state, and LA = 1 if an antidiscrimination law is . Moreove%, if 62 0, it is a special case of Type 5 where y3 y3

&

instituted in the i-th state.

T Y I i TR S T SR TR S
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Let us compare Heckman's reduced-form model defined by (3.56)
and (3.57) with Lee's model. Heckman's (3.56) is essentlally the same

as Lee's (3.50). Lee's (3.51) can be rewritten as

(3.58) vy = wy(xh, 8o * U, )4-(1 - W, )(x31 3+ Uy )

xéis3‘+ LI A (x' B+ Uy - xéiB3 u3i) .

By‘compafing (3.57) and (3.58), we readily see that Heckman's reduced-form
model is a special case of Lee's model in which the coefficignt\mnltiplied
by LA is a constant. |

Heckman proposed a sequential method of estimation for the structural
parameters, which can be regarded as an eitension of Heckman's simultaneous-
equations two-step estimation discussed in Section III.C.3. His method

consists of the following steps: (1) Estimate LEY ' by applying the

probit MLE to (3.56). Denote the estimator =. and define F, = F(xinl).

1

(2) Insert (3.56) into (3.53), replace ™, with 7, and w, with F,,

and then estimate Yos 82, and 8§, by least squares applied to (3.53).
(3) Solve (3.52) for Yp;» eliminate y¥ by (3.56), and then apply least

by w., and LA

squares to the resulting equatiqn after replacing = 1

" . -1 -1 -1
by Fi to estimate Yl s Yy Bl, and Yy 61.

1

Amemixa [1978] derived the asymptotic fériance-covariance matrix
of Heckman's estimator defined above and showed that Amemiya's GﬁS (defined
in Section IIT.C.4) applied toc the model yields an asymptotically more
efficient estimator in the spéciaiwcaseybf 61 = 62 = 0. As pointedA;ut

o

e

(v

{(:

o
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by Lee [1981], however, Amemiya's GLS can be also applied to the model

with nonzero §'s as follows: (1) Estimate T, by the probit MLE
™, applied to (3.56). (2) Estimate &, and T, by applying the

instrumental variables method to (3.57) using %i 'as the instrument

A

for wi. Denote these estimators as 62 and ;2. (3) Derive the

estimates of the struct 4

structural parameters Yl’ Bl, 61, Yoo 82, and 62
from Ty1s Ty, and 62 using the relationship between the reduced-form
parameters and the structural parameters as well as the constraint (3.55)

in the manner described in Section IIT.C.4. The resulting estimator can

be shown to be asymptotically more efficient than Heckman's.

k. Schmidt and Strauss [1976] and Related Papers: Schmidt

and Strauss [1976] studied the effect of unions on earnlngs and earnings

on unions by the following model:

(3:59) 2oy =1lyy) = lixgey + vz,
where a[kx)\=(51 + e‘x)_l, and |

2
(3.60) £lyp;lwy) = mlxip, + YoWis 6°) .

In this model, w, = 1 if the i-th worker is a union member, Yp; Tepresents
the i-th worker's earnings, and X; includes education, experience, race,
sex, and regional dummies.

@4

Equation (3.60) can be written as.a regression equation like (3.57),

but, unlike (3.57), LA is independent of the error term of the regression




because (3.60) describes a conditional distribution.
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From (3.59) and

(3.60) one can derive the marginal distribution of w, as -

1 -2 2)

(3.61) P(Wi=fl)=°[(xisl + 0-272::]!.82 + 270 Yo

In the process of obtaining the above result, it becomes -apparent that

one must have

) 2

(3.62) oY, = Yo

in order for.the model to be logically cosisistent because, unless (3.62)
holds, Yos will appear in the argument of g[ in the right<hand side of
(3.61). 2/ yote that (3.61) can be written in the form of {3.56) with
Vas following a logistic distribution. Hence, we conclude that the

4 .
Schmidt-Strauss model is essentially a special case of Heckman's model
in which vli

simplifies the estimation:

and vy; are independent.

4

assuming that x_

This independence considerably
does not contain a constant
term, the MLE of all the parameters can be obtained by applying LS to .
(3.60) and the logit MLE to (3.61) separately.

Warren and Strauss [1979] used the same model as above to study
=1 if the i-th

a related but different 'problem. In their study,»

state has right-to-work legislation and y2i represents the proportlon

of nonargicultural employement that is unionized.

- was also'ignored in this”study.

Schmldt [1978] considered thc same union and earnlngs problem using

e =]

a model which is a slight generallzatlon of the Schmldt-Strauss model.

It can be interpreted as Heckman's model in which (3.57) is generallzed as

S8

RS

The, constraint (3.62) -

. bt Sttt A1 e e s < b s s et 5 e M e

o~

o

e it g e

fﬁw

&4

‘ Strauss or Warren and Strauss, assumes 1ndependence between v

‘average of tariffs within the i-th industry, and X,

81~

=W, zZla + x!n, + v

(3.63) Vo3 i %4 i"2 T V2 ¢

i

Note that this equation is between (3.57) and (3.58) in its degree of
generality concerning the term multiplied by Wi While it is more
general than Heckman's model in this sense, it is more restrictive than

Heckman's in the more significant sense that Schmldt llke Schmidt and

13 and v2i.

Another example of the Schmldt—érrauss model is the model of
Ray [1981], in which w, = 1 if nontariff barriers existed in th:;iiyp
industry (U.S, four-digit manufacturing industry), Yo3 regresents an
includes various

Y

industry characicristies.

5. Disequilibrium Mbdels: Disequilibrium modeis'eonstitute

an extensive area of rese arch, in which numerous papers have been wrltten.
The lastest bibliography complled by Quandt [1982] contains 93 economic~

theoretic references and 121 econometrlc references concerning disequilibrium

models. Some of the earlyveconometrlc models are surveyed by Maddala

and Nelson [197&]. See, also, Hartley {i976]dfor a connection ‘between

a disequilibrium model and the Standard Tobit model. Here I will only

{

7

mention two basic models first discussed in theé pioneering work of Fair

and Jaffee [1972].
The simplest disequilibrium model of Fair and Jaffee is a special

case of the Type 5 model (3 h8) R@n which y2 is the quantlty demanded

in the 1-th perlod, Y3

i -0

y1i = y3i - y2i' Thus, the actual quantlty sold whlch a researcher

T AR

. . . i e W . e
W : B | i - —

is the quantlty supplzed in the i-th perlod and’ o
[ .
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observes, is the minimnm of supply and demand. The fact’bhat/ﬁhe

)

variance-covariance matrix of (yl, y2, y3 is only of rank 2 because

of the linear relatlonshlp above:dogs not essentially change the nature

2

of the model because the likelihood function (3.49) involves only

bivariate densities.

& - e

I

' Another model considered by Fair and Jéffee‘adds_a price -equation

to the above zas
“\ - ¥* - * : i

wheré Yus denotes a change in the price at the i-th period. The likelihood g

function of this model can be written asgg/ ‘ ;/¢;57ﬁ‘
2
L
0
= ¥ % .
(3.65) =1 J £330 vas | wy) £ (g awdy
- .
()
0

. ‘; ;a»'ai .
I1I £, 03 vl ) Flyygdavyy - ¢
The form of the llkellhood functlon does not change 1f cne adds a normal

error term to the rlght~hand side of (3.64). In e1+her case, the model €

\

‘may be schematically cnaracterlzed by ' ; ‘ . f bb L oe

9

B W K P Y ‘ . ’

(3.66) P('.Y'l <0, Y3, yh).P(yl > 0, y23 y_l*) 2.
- N o - {"”3 v
P ) . = . . )} ‘ ()

which is a/simple generalization of the Type 5 model.
O ! i .

€
‘)/ i i i
4 ) ):} {‘\ |
) NGR
!; [} - << i

Pt

~83-

7y

P
;
o’

6. Multivariate Generalizations:
I ’

b
generalization of Typre 5, I mean a model in whlch v¥. and y¥
2i 3i

By a multivariate

in
(3. h8) are vectors, whereas yI

7 £

observed ag before.

is a scalar variable whose sign is
Therefore, the Fair-Jaffee model with llkellhood
functlon characterized by (3.66) is an example of this type of model.

In Lee! (
ee's model [1977J the,_r* yyequat1on is split into two

~

SIS XN

equations P Y e -~
/( // /‘ l/ 1
(461" e U J
. " O35 = %5 8y+ u,
and .
| /o

= )
21 T ﬁQA s

« SN
where C%. and T#* o
. 24 T3; denote the cost and the time incurred by the i-th

e . A
person traveiling by a private~mode of transportation and, similarly
?

the cost and the time of travelling by a public mode are specified as

o

(3.69) & * -
- 031 % X383+ uy
and

= 14
31 C "31%3 v vy -

\

Lee assumes that (*. . ‘i ) . ‘ <
S tha C2i and T2i are observed if the i-th person uses a
_private mode * # k ‘ ; )
8 Lt>\,e and C3i and T3i are observed if he or she uses a public
mode. A private mode is u i * ~ 0 O
pr ﬂ mode 1s used if ¥i; > G, wherer»yfii is“given by . . .
'\\\ ' L g B ) )
: ,.\\ 0 . - o
A *
’ N g




(1) Apply the probit MLE to (3.71).
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¥ = gt > %
(3.71)  y¥; =sls, + 52 3+ 8318 Su(c - 03;) + ey

Lee estimated his model by the following sequential procedure:
(2) Apply 1S to each of the four
equations (3.67) through-(3.70) after adding to the right-hand side of
each the estimated hazard from step (1). (3) Predict the dependent
variables of the four equations (3.67) through (3.70) using the estimates
obtained in step (2) abcve, insert the predictors into (3.71) and apply
the probit MLE again.. (4) Calculate the MLE by iteration starting from
the estimates obtained at the end of the. step (3).

Willis and Rosen [1979] studied earnings differentials between

those who went to college and those who did not using a more elaborate

model than that of Kenn?, Lee, Maddala, and Trost {19797, which I discussed

in Section III.D.2. In the model of Kenny, et al. yfi (the desired years
7 ’

of college education, whose sign determines whether one attends college)

is specified not to depend directly on ys and yg (the earnings of
fhe college-goer and the non~-college-goer respectlvely) The first
\V

inclination of a rebearcher might be to hypothesize yl y21 y3l

However,/ his would be an oversimplification because the decision to go
to college should depend on th%jdifference in expected life time earnings
rather than current earnings._ége :

Willis and Rosen so%ved this problem by developlng i% ingenious d
theory of the maxlm-zatlon of discounted, expected llf -tlme‘earnings,

which’ led to the follow1ng model:

CI¥ =

(3.72) %5

f
%51 By + Uy

L]

[

(:

05

ﬁhe"nOn-college-goer, and Ri

“we have considered\so'far in Section E, the sign of yfi

~85.

(3.73) b,Ggi = zéiaz * v,

(3.74) 131 = %3385 + ug

(3.75) Gk, = 23,83 * v,

and

(3.76) | R, = siyd+;ﬁi , i=1,2,....n ,

where ISi and dgi denote the initial earnidgs and the growth rate

of edrnings for the college-goer, Igi and Ggi denote the same for

denotes*the discount rate. It is assumed

‘that the i-th person goes to college if y{i > 0 vhere

- * »* ¥* 3 *
(3.77) y¥, = log I%; - log % + 8, + 68,k + 8, G4, + 63R.

3

and that the variables with sdbscript 2 are observed if y* > 0, those

with subscript 3 are observed if v, < 0, and R

A

is never observed.
.l

Thus, the model is formally identical to Lee's model [1977]. The estima-
tion method of Willis and Rosen used only the first two steps of Lee's
method given above.

Borjas and Rosen [1980] used the same model as WllllS and Rosen to5;

;‘study the earnings differential between those who changed Jobs and those

who did not within & certain period of observation.

In all the modelsk

T. Multi-response Generalizations:

determined two

o

[
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basic categories of obéervations, such as union members versus non-union
members, states with an anti-discrimination law versus those without,
or college-goers versus non-college govers. By a multi-response.generaliza-
tion of Type 5, I mean a model in which observations are classified into
more than two categories. I will devote most of this section to a dis-
cussion of Duncan [I980], who seems to be the first pefson to present a
“full discussion of estimation methods applicable to this type of model.
Duncan presents a model of Joint determination of the location of
a firm and its input-output vectors. A firm chooses the location for
which profits are maximized, and only the input-output vector for the
Wchosen location is observed. Let si(k) be the profit of the i-th firm
when it chooses location k, i = 1,2,...,n and -k = 1,2,...,K, and
let yi(k) be the input-output vector for the i-th firm at the k-th loca-
tion. To siﬁélify the analysis, I will subsequently. assume yi(k) is

a scalar, for a generalization to the vector case is straightforward. Tt

is assumed that

i ' - !
(3.78) si(k) = X0 B+, \
and
g _ (2)
(3.79) ¥ (kj =25 B+v,
where xgi) and xgi) are vector functions of the input-output prices

1}

and economic theory dictates that the same B appears in both équations.gé/

It is as?umed‘that (uil’ Ugpseers Wy Vigo Vipseers ng) is an i.i.4.

i

&4

-
i

Aot e A Ak A 7

]
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L
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’
|
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drawing from a 2K-variate normal distribution. Suppose si(ki) > si(j)
for any J #,ki. Then, a researcher observes yi(ki) but does not
observe yi(J) for J # ki. , -

For the subsequent discussion it is useful to define K binary

variables for each i by

1 if i-th firm chooses k-th location

(3.80) wi(k) =

0 otherwise
and define the vedtor v, = [wi(l), wi(2),..., wi(K)]'. Also define
Py = P(wi(k) = 1) and the vector P, = <P11’ Pipseres PiK)'.
There are many ways to write the likelihood function of the model

but perhaps the most illuminating way is to write it as

(3.8 L= oslyle) viley) =2lr,
where ki is the actual location the i-th firm was observed to choose.

The estimation method ‘proposed by Duncan can be outlined as follows:
(1) Estimate the g that characterize f in (3.81) above by nonlinear
WLS. (2) Estimate the B that charscterize P in (3.81) above by the
multi-response probit MLE using the nonlineaf WLS iteration. (3) Choose
the optimum linear combination of the two estimates of B obtained in steps
(1) and (2). I will explain these steps in more detail below.

In order to descriée step (1) explicitly, we must evaluate
uy = Ely (k) |w, (k;) = 1] ana ci = V[yi(ki)lwi(ki) = ij as functions
of - B and the variancesand.covariaqges of the error terms of equations

(3.78) and (3.79). These conditional moments can be obtained as follows.

oty
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Define zi(j) = si(ki) - si(J) and the (X - 1)-vector
z, = ['zi(l),..., zi(ki -1), zi(ki + 1),..‘., z:i(K)]'. To simplify the
notation, write zi as 2z omitting the subseript. Similarly, write

. . ' -1
yi(ki) as y. Also, define R = E(y - Ey)(z - Ez)'. [E(z ~ Ez)(z - Ez)']
‘ 2/

and Q =Vy - RE(y - Ey)(z - Ez). Then, we obtain<~

(3.82) ui=E(,ylz > 0) =Ey+RE(zlz> 0) - REz
and

’ I
(3.83) c§=V(yIZ> 0) = RV (z|z > o)g/""arq

Vi
v

' The conditional menents of 2z appea%iﬁg in the formulae above can be

/ ,
found in Amemiya [19T4, p. 1002] as%&ell as in Duncan [1980, p. 850].

I B
Finaily, I can describe the nonlinear WLS iteration of step (1) above
as follows: Estimate of by inserting the initial estimates (for example,

s e e . 2

those obtained by minimizing [yi(ki) -»pi] )

- of the parameters into

.. 22 .
the right-hand side of (3.83)-=call it o;. Minimize

(3.84) ) o7y, (x;) - 02 | ;

i
with respect to the parameters that appear in the right<hand side of
(3.82). Use these estimates to evaluate the right-hand side of (3.83)
Repeat the process, to yield new

. 2
again to get another estimate of 0.

estimates‘of B.
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Now, consider step (2). Define

’

(3.85) £y = E(wi - Pi)(w-i - Pi)' =D - P.P!

where Di is the KxK diagongl matrix whose k-th diagonal element is

Pik' Tc perform the nonlinear WLS iteration, first, estimate Zi by

" inserting the initial estimates of the parameters into the right-hand side

of (3.85) (denote the estimate thus obtained as Zi) 2nd, second, minimigze

(3.86) CARS SLDRECHES S
i B

where the minus sign in the superscript denotes a generalized inverse,
with respect to the parameters that characterize Pi’ and repeat the

process until the estimates converge.

Finally, regarding step (3) above, if we denote the two estimates

of B obtained by step (1) and (2) vy Bl and 82 respectively ang

B

/
their respective asymptotic variance-covariance matricesgz/ by Vl

Vé, the optimal linear cémbination of the two estimates is given by
- “1,=1 1+ -1 -1yl 1~ e )
(Vi + v ) VB +(Vi * V5 ) v, B, ‘Thls final estimator is

W

,andﬁ

asymptotically not fully efficient, however. To see this,{%uppose the
regression coefficients of (3.78) and (3.79) differ: call Lhem 8, and
Bo: say. Then, by a result of Amemiya [1976], we know that él is an
asymptotically efficient estimator of Bl' However, as I hgﬁe indicated

in Section II.c.4, é2 is not. So a weighted average of the two could

not be asymptotically efficient.

2
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Dubin and McFadden [1980] used a similar model to Duncan's in
their study of the joint determination of the choice of electr¥?
appliances and the consumption of electricity. In their model, Si(k)
may be interpreted as the utility of the i-th famiiy when they use
the k-th portfolio of appliances, and yi(k) as the consumption of

electricity for the i-th person holding the k-th portfolio. The

estimation method is essentially similar to Duncan's. The main difference

is that Dubin and McFadden assume that the error terms of (3.78) and

(3.79) are distributed as Type I extreme value distribution and hence

the P part of (3.81) is multinomial logit. (Cf. Amemiya [1981, p. 1516]).
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Footnotes

The model is called truncated if the observations outside the

‘Specified range are totally lost and censored if one can at

least observe the éxogenous variables.

ition will be given later.

See Kaibfleisch‘and Prentice [1980] and Miller [1981].

See Bartholomew [1973],

Singer and Spilerman (19761, 'ruma,

Hannan, and Groeneveld (19791, Lancaster [1979], Tuma and

Robins [1980], and Flinn and Heckman {1982].

In the Tobit model one needs to distinguish the vectors and

matrices of positive observations from the vectors end matrices

of all the observations.

under the latter,

Let log L(6) be a logarithmic likelihood function of a parameter

vector 8 in general,

32 log L/3036' isg negative definite over the whole barameter

space. Let 0 be the MLE. Then, by a Taylor expansion we have

I will do so by putting the symbol

Then, global concavity means that

. s 1u ~ 8% L -
~ log L(8) = log L(8) +5(0 - 8)1 2208 2 (g _g)

2639!

where we have used the fact that - 9 log L/86 evaluated at 6

is zero by definition of the MLE, and 32 Iog L/3638"' ig

évaluated at a point between 6 ang .. Therefore, global

concavity implies log L(@) < log L(8) - for any 6 # 0.

A more precise defini-

4
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More precisely, 4 means in this particﬁlar case that vn

times both sides of the equation have the same limit distribution.
A(+) is known as the hazard‘raﬁe and its reciprocal is known

as Mills' ratio. Tobin [1958] giveé a figure which shows that

A2 (z) can be closely approximated by a linear function of 2z

for -1< z< 5. Johnson and Kotz [19T70, p. 278f.] give various

expansions of Mills’ ratio.
See footnote k.
This was suggested by Wales and Woodland [1980].

To the best of my knowledge, this fesult was first obtained by

Stapleton and Young [1981].

See Amemiya [1981a]. Hﬁffiey [1976b] proved the asymptotic
normality of ;N and ;NW and that they aré asymptotically

not as efficient as the MLE.

The asymptotié}equijalence of ;N and ; was proved by Stapleton
and Young [1981].

We have by (2.55) o8

n[H(s|e,) - Hle,0,)] = B, - los [x(y*|o)/x(r*[e))]

- where I have omitted the conditioning variable 2z to simplify

notation and E

g~ means that the expectation is taken on the

1 L ” , ,
assumption that the density of y¥* is k(y*lel). But, by Jensen's

inequality (see Rao [1973, p. 149)]

B, log [k(y*|0)/k(y*|6,)] ¢ log B, [x(y*|o)/x(y*[e )] .
1 1 .
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Thus, (2.57) follows from the above results and by noting
log By [k(y*|6)/k(y*|e )] = 1og [k (y*[6)ay* =0 .
1
For an alternative account, see Hartley [1976c].

For a more elaborate derivation of the reservation wage model

based on search theory, see Gronau [19T4].

Gronau specifies that the independent variables in the W

equation\include woman's age and éducation, family income, number
of children, and husband's age and education whereas the independent
variables in the W0 equation include only woman's age and
edﬁcation. Hoﬁever, Gronau readily admits to the arbitrariliness
of the specification and the possibility that all the variables
are included in both. |
This’may not be a realistic assumption since common independent
variables, which are excluded from the set of regressors, may

be included in both u, and V- The assumption is not necessary
if one uses either the MLE or Heékman’§ two-step estimator. It
should be noted that the independence of uy and A does not
imply the independence of w,, and u,, in (3.1), so that

1i

Gronau's ‘model is not as simple as the model considered in Sectlon

RS

B.2 above. Also note that this assumption maké’s all the parameters

identifiable even if no element of « ié set equal to zero.

Though Heckman's model [1974] is a simultaneous-equations model,

a

Heckman's two-step estimator studied by Wales and Woodland is

' essentially a reduced-form estimator which I have discussed in the

=5 \\‘\;\,,

"

et - SN B R e S . ek RS R R TR

e



e e T g e om0
| . ’ S AT I e v oo o e
| e R ——— .
| = - T e
7
2
. i
B el '
i
‘ o
"
g '
W
9
¢
if O |
[{= e )
B
-
N ¢ )
oo ‘
S
A Bt
= & : ’
| b3
i
" .. - ‘ ”
i . ‘ - |
| ] %
i
2
/ ' o
5
o
b [ y “
a " > ¢
' v oy /
i3 13 =
: i :
" N, BT
@& . ‘ k" 5
‘ (!
o 2
\ . e . : i B
9 \ v t
. s Y
« L Q @ e
1 ( ‘ 1:1
™
1) :
' - N «© =
N . : W :
- T
; f o N I
u ‘ ' o
p ¥ :
. A o “
N o : ’
y ! ' B
. o Y 8 N
I ‘ B
\\ ;\1 . . . s iy




7

£

- =95~
) _91‘_ . C/
P . - i ) - et
- - e N
‘ . : . . References b ,
present section, rather than the structural equation version s ”
I will discuss in the next subsection. ) ) . ,, Adams, J.D. [1980], "Personal Wealth Transfers," Quarterly Jourpal of
' = K e JZeonomics, Vol. 95, 159-1T9.

"\\\:« & . ‘ \—-—— Ve ime =g

Amemiya, T. [1973], "Regression Analy51s when the Dependent Variable
Is Truncated Normal," Econometrica, Vol. L1, 997-1016

19. Actuali}, Heckman uses log Wr,,and iog WO. The independent

variables R include husband's wage, asset income, prices, 6 L

and‘individual characteristics add z include housewife's * Amemiya, T. [19Tla], "A Note on a Fair and Jaffee Model ". Econometrica,

Vol. h2 759-762

schooling and experience.

(
- L . . . Amemiya, T. [19T4b], "Multivariate Regression and Simultaneous Equation
20. Constraints like (3.51) are often necessary in simultaneous equa- Models when the Dependent Variables Are Truncated Normal "
2 ' Econometrlca, Vol. k2, 999-1012. -

tions model involving binary or truncated variables, as was first
i i I\l

Amemiya, T. [1976], "The Maximum Likelihood, the Minimum Chi-Square
and the Nonlinear Weighteéd Leasted-Squares in the General Qualitative
Response Models," Journal of the American Statistical Assoclatlon,
. Vol. T1, 34T-351.

noted by Amemiya [19Tlb]. For an interesting unified approach to

this problem, see Goui‘ierouxo Laffont, and Mbnfort [1980].

2l. ;Thls constraint was overlooked by Schmidt and Strauss [1976] and , . - Amemiya, T. [1978], "The Estimation of a Simultaneous Equatlon Generallzed

Problt Model," Econwmetrlca, Vol. 46, 1193-1205.

was noted by Olsen [1978b] ~ ‘ s ’ 3
» - , ' Amemiys. T.w[l979] "The Estimation of a Simultaneous-Equation Tobit />
22. A more explicit expression for the likelihood function was obtained , Model," International Economic Review, Vol. 20, 169-181. 7
‘ . o / 2, i
by Amemiya [19Thal, who pointed out the incorrectness of the / Amemiya, T. [1981a], "Nonlinear Regression Models," Technical Report

No. 330, Institute for Mathematical Studies in the Social Sciences,

llkellhood functlon orlglnally glven by Fair and Jaffee. anford University.

23. (3.78) is the maximized profit function and (3.79) is an 1nput Amemlya,QT. [1981b], "Qualitative Response Models: A Survey," Journal

of Economic Literature, Vol. 19, 1483-1536.

) S ) . . . -

demand or output supply Tunetion obtained by dlfferentlatlng (3 78)°

Amemiya, T. [1982], "a Comparlsonfgf the Amemiya GLS and the Lee-Mnddala-
“Trost G2SLS in a Simultaneous-Equétions Tobit Modep," Mimeo. ,
Rhodes Assoc1ates. A

with respect to the own input or _output prlce (Hotelling's 1emma) M C

ﬁ .
For convenlence only one input or output has been assumed so

(1) (2) AAmemlya, T. and M. Boskin [197h], "Regression Analysis when the Dependent

StrICtlY speaklng X0 and x, ik are scalars. Variable Is Truncated Lognormal, with an Application to the
. Determinants of the Duration of Welfare Dependency," Interhational
2k, These two equatlons correspond to the two equations in the proposi- 5 - . Economic Review, Vol. 15, 485-496.
& 3 N
kS
tion on p. 851 of Duncan [198°] Ituseems that Duncan 1nadvertently ' Arabmazar, A. and P. Schmidt [1981], "An Investlgatlon of the Robustness
/) < of the Tcbit Estimator to Non-Normallty, Memeo., Mlchlgan State
omitted the last term from (3. 82) Unlversity.
~ 4
25. | These matrices can be obtalned by a standard procedure S%e,,for - ol , Ashenfelter, 0. and J. Ham. [1979], "Educatlon, Unemployment, and Earnlngs "
e L : o Journal of Political Economy, Vol. 8T, §99-5116.
exe?ple, Amemiya [1981] The matrlces nuss be evaluated at some , < - .
o S &

A =, X

consistent esﬁimates; either Bl or 32 will dec.

7 /!

e e r————
; o S




-96-

Bartholomew, D.J;‘[l973], tochastic Models for Social Processes, .
2nd Ed., John Wiley & Sons, Inc., New York,
¢ & 5
Borjas, G.J. and S. Rosen [1980], "Income Prospects and Job Mobility
of Young Men," Research in Labor Economics, Vol. 3, 159-181. o

Cragg, J.G. [1971], "Some Statistical Models for Limited Dgpendent"
Variables with Application to the Demand for Dgrable Goods,
Econometrica, Vol. 39, 829-84lk. ” -

Dagenais, M.G. [1969], "A Threshold Regression Model," Econometrica, 4
Vol. 37, 193-203. | .

Dagenais, M.G. [1975], "Application of a Threshold Regression Model to
Household Purchases of Automobiles," Review of Economics and
Statisties, Vol. 57, 275-285.

Dempster, A.P., N.M. Laird, and D.B. Rubin [1977], "Maximum Likelihood
from Incomplete Data via the EM Algorithm," Journal ?f Roygl
Statistical Society, Series B, Vol. 39, 1-38 (with discussion).

Dubin, J.A. and D. McFadden [1980], "An EconGmetric Analysis of Residentisl
Electric Appliance Holdings and Consumption," Mimeo., MIT.

Dudley, L. and C. Montmarquette [1976], "A Model of the Supply of
Bilateral Foreign Aid," American Economic Review, Vol. 66,
132-1&2 - ’ i

i
il

Duncan, G.M. [1980], "Formulation and Statistical Analysis o? the Mixed,
" Continuous/Discrete Dependent Variable Model in Classical
Production Theory," Econometrica, Vol. 48, 839-852.

Fair, R.C. [1978], "A Theory cof Extramarital Affairs," Journal of Political
Economy, Vol. 86,“h5—61. : -

Fair, R.C. and D.M. Jaffee {1972], "Methods of Estimation for Markets
in Disequilibrium," Econometrica, Vol. 40, 497-51k.

Flinn,”C.J. and J.J. Heckman [1982], "Models for the Analysis of Labor
Force Dynamics," Working Paper No. 857, NBER.

Goldberger, A.S. [196L4], Econometric Theory, John Wiley & Sons, Inc., New York.

Goldberger, A.S. [1980], "Abnormal Selection Bias," SSRI Workshop Series
No. 8006, University of Wisconsin. :

Goldberger, A.S. [1981], "Linear Regression After Sel%ction," Journal of
Econometrics, Vol. 15, 357-366.

3

o

.
Ny [
N \
L” ((i

I U A e B R A e s e § -
i \) A
.

A

5 ‘ W \

al

(3

3

&4

&

TRy

L)

o

N P T I S

&

Shin i s

)

I S TS S A St B SR b g e

9T-

Geurieroux, C., J.J. Laffont, and A. Monfort [1980], "Coherency Conditions
in Simultaneous Linear Equation Models with Endogeneous Switching
Regimes," Econometrica, Vol. 48, 675-695.

Greene, W.H. [1981], "On the Asymptotic Bias of the Ordinary Least Squares
Estimator of the Tobit Model," Econometrica, Vol. h9, 505-513.

Gronau, R. [1973], "The Effects of Children on the Houseéife's Value of
Time;" Journal of Political Economy, Vol. 81, 5168-5199.

Gronau, R. [19T4], "WgéePCOmparisons-ea Seiéctivity Bias," Journal of
Political Economy, Vol. 62, 1119-11L3. ‘

Hartley, H:0, [1958], "Maximum Likelihood Estimation from Incomplete
Data," Biometries, Vol. 14, 1T74-19k.

Hartley, M.J. [1976a], The Estimation of Markets in Disequilibrium:
ghe gixed Supply Case," International Economic Review, Vol. 17,
87-699. . "

Hartley, M.J. [1976b], "Estimation of the TS%it Model by Nonlinear Least
Squares Methods," Discussion Paper No. 373, SUNY at Buffalo.

Hartley, M.J. [1976c], "The Tobit and Probit Models: Maximum Likelihood
Estimation by Ordinary Leg§%quuares," Discussion Paper No. 3Tk,

SUNY at Buffalo.

-

Hausman, J.A. [1978], "Specification ﬁests in Econometrics," Econometrica,
Vol. 46, 1251-1271.

“ Hausman,, J.A. ;hd”D.A. Wise [1976], "The Evaluation of Results from x
The New Jersey Iacome Maintenance Experiment,"

Truncated Samples:
Annals of Economic and Social Measuremert, Vol. 5, L21-kis,

Hausman, J.A. and D.A. Wise [197T], "Social Experimentation, Truncated
Distritutions, arnd Efficient Estimation," Econometrica, Vol. 45,
919-938 . N '

h
A

Hausman, J.A. and D.A. Wise [1979], "Attf&&jon Bias in Experimental and
Panel Data: The Gary Income Maint;hancevExperiment," Econometrica,
Vol. 47, 455-473.

Heckman, J.J. (19741, "Shadow Prices, Mdrket Wages, and Labor Supply,"
Econometrica; Vol. 42, 679-693." : : ,

e
o

Heckman, J.J. [1976], "The Common Structure of Statistical Models of

Truncation, Sample Selection and Limited Dependent Variables and
a Simple Estimator for Such Models;" Annals of Economic and Social
Measurement, Vol. 5, 475-492. 2

N

AR T T e




-98- ~99-

\\\

Lee, L.F. [1978], "Unionism and Wage Rates: A.Simultaneous Equations
: Model with Qualitative and Limited Dependent Variables,"
International Economic Review, V1. 19, 415-433.

Heckman, J.J. [1978], "Immmy Endogeneous Variables in a Simultaneous 1 ,
Equation System,' Econometrica, Vol. 46, 931-960 o g

Heckman, J.J. [1979], "Sample Selection Bias as a Specification Error,”

Econometrica, Vol. h-{ 153_161. S o 3 } Lee, L.F., G.S., Maddala, and R.P. Trost [1980], "Asymp‘totic Covariance
‘ ! ﬁ\ Matrices of Two-Stage Probit and Two-Stage Tobit Methods for
Heckman, J.J. and T.E. MaCurdy [1980], "A Life Cycle Model of Female .Labor ‘ Simultaneous Equations Models with Selectivity," Economatrica,
Supply," Rev1ew of Economic Studies, Vol. 47, 47-Th. ; Vol. 48, 491-503.
Huang, D.S. [l96h] "Discrete Stock Adjustment: The Case of Demand for . J Lee, L.F., and R.P. Trost [1978], "Estimation of Some Limited Dependent
Automobllps," Tnternational Economic Review, Vol. 5, 46-62. r . Variable Models with Application te Housing Demand," Journal of

./, . i Econometrics, Vol. 8, 357-382. e e

Hurd, M. [1979], "Estimation in Truncated Samples when There is : i | o
Heteroscedasticity,"™ Journal of Econometrics, Vol. 11, 2L7-258. : : > Maddala, G.S. [19TTal, "Identificetion and Estimation Problems in Limited

Dependent Variable Models" in National Resources, Uncertainty and

Jhonson, N.L. and S. Kotz [1970], Continuous Univariate Distributions 1, ¥ ’ General Equilibrium Systems, A.S. Blinder and P. Friedman, eds.
i Academic Press, New York, 219-239.

Houghton Mifflin, Boston. . ¢ i'ﬁ
Judge, N.L., W.E. Griffiths, R.C. Hill, and T.C. Lee [1980], Theory and | Maddala, G.S. [197Tb], "Self-Selectivity Problems in Econometric Models,"
Practice of Econometrics, John Wiley & Sons, Inc., New York. L : in Applications of Statisties, F.R. Krishniah, ed., North Holland
i VA ‘ k Pub. Co., Amsterdam, 351-306.
Kalbfleish, J.G. and R.L. Prentice [1980], The Statistical Analysis of = : ' )
Failure Time Data, John Wiley & Sons, Inc., New York. - - Maddala, G.S. [197Tc], Econometrics, MeGraw-Hill, New York.
— , =
Keeley, M.C., P.K. Robins, R.G. Spiegelman, and R.W. West [1978], "The ' ! . Maddala, G.S. [1980], "Disequilibrium, Self-Selection and ‘Switching Models,"
Estimation of Labor Supply Models Using Experimental Data," : Social Science Working Paper 303, Cal. Institute of Tech.
American Economic Review, Vol. 68, 873-887. » o ’ : g (To appear in Handbook of Econometrics, Z. Griliches and M.D.
A | : Intrilligator, eds., North-Holland Pub. Co., Amsterdem.)
Kenny, L.W., L.F. Lee, G.S. Maddala, and R.P. Trost [1979], "Returns to ” - . o
College Education: An Investigation of Self-Selection Bias Based - i Maddala, G.S. and F.D. Nelson [19Th], "Maximum Likelihood Methods for
on the Project Talent Data," International Economic Review, s Models of Markets in DlSGQU1librlum," Econometrica, Vol. 42,
Vol. 20, T75-789. L 1013-1030.
Kiefer, N.M. and G.R. Neumann [1979], "An Empirical Job-Search Model, : \ - Miller, R. [1981], Survival Analysis, John Wiley & Sons, Inc., New York.
with a Test of the Constant Reservation-Wage Hypothe51s," Journal o ~ . ‘
of Political Economy, Vol. 8T, 89-10T. * Nakamura, A. and, M. Nakamura [1981], "A Comparison of the Labor Force
4 Behav1or of Married Women in the United States and Canada, with
Kiefer, N.M. and G.R. Neumann [1981], "Individual Effects in a Nonlinear Sp.cial Attention to the Impact of Income Taxes," Econometr1ca,
Model: Explicit Treatmént of Heterogeneity in the Empirical V°l- 49, 451-489.
Job-Search Model," Econometrlca, Vol. 49, 965-979.
‘ Nakamura, M., A. Nakamura, and'D. Cullen [1979], "Job Opportunities,
Kotlikoff, L.J. [1979], "Testing the Theory of Social Security and Life i the Offered Wage, and the Labor Supply of Married Women,"
Cycle Accumulatlon," American Economic Review, Vol. 69, 396-410. American Economic Review, Vol. 69, T87-805.
£ o '
Lancaster, T. [1979] "Econometric Methods for the Duration of Unemployement," Nelson, F.D. [197T], "Censored Regression Models with Unobserved,
Econometrica, Vol. 47, 939-956. . ' Sgochgstlc Censoring Thresholds," Journal of Econometrlcs, Vol 6,
| ‘ . ‘ 309-327 '
o . . . ﬁ
Lee, L.F. [1977], "Estimation of a Modal Ghoice Model for the Work Journey (i

Nelipn, F.D. [1981], "A Test for Misspecification in the Censored Normal
" Model," Econometrica, Vol. 49, 1317-1329.

\)

with Incomplete Observations," Mimeo., Department of Economics,
University of Minnesota.

)

et . . T U R .~




-100--

Nelson, F.D. and L. Olson.[l978], ¢Specification and Estimati?n of a
Simultaneous-~Equation Model with Limited Dependent Variables,
International Economic Review, Vol. 19, 695-709. , ) N

Olsen, R.J. [1978a], "Note on the Uniqueness of the Maximum Likelihood
Estimator fcr the Tobit Model," Econometrica, Vol. 46, 1211-1215.

Olsen, R.J. [1978b], "Comment on 'The Effect of Unions on Earnings and
Earnings on Unions: A Mixed Logit Approach,'" Interngtlonal
Economic Review, Vol. 19, 259-261. :

Powell, J.L. [1981], "Least Absolute Deviations Estimation for Censored
and Truncated Regression Models," Technical Report No. 356{‘IMSSS,
Stanford University. o 8

Quandt, R.E. [1982], "Bibliography .of, Quantity Rationing and Disequilibrium

Models," Department of Economics, Princeton University.

Rao,.C.R. [19T73], Linear Statistical Inference and Its Application, 2nd
Edition, John Wiley and Sons, Inc., New York.

Ray, E.J. [1981], "The Determinants of Tariff and Nontariff Trade Restric-
tions in the United States," Journal of Political Econdmy, Vol. 89,
105-121. ’

Reece, W.S.. [1979], "Charitable Contributions: The New Evidence on House-
hold Behavior," American Economic Review, Vol. 69, 142-151.

Roberts, R.B., G.S. Maddala, and G. Enholm [1978], "Determinant§ of the
Requested Rate of Return and the Rate of Return Granted in a Formal
Regulatory Process," Bell Journal of Economics, Vol. 9, 611-621.

Robinson, P.M., [1982], "On the Asymptotic Properties of Estimators of
Models Containiﬁg Limited Dependent Variables,"‘Econgmetrlca,
Vol. 50, 27-41. o (S

Y

Rosenzweig, M.R. [1980], "Neoclassical Theory and the Optimizing Peasant:

An Econometric Analysis of Market Family Labor Supply in a Developing

Country," Quarterly Journal of Economics, Vol. 94, 31-55.

Rosett, R.N. [1959], "A Statistical Model of Friction in Ecqnomics,“
' Econometrica, Vol. 27, 263-267.

Rosett, R.N. and F.D. Nelson [1975], "Estimation of the Two-Limit Probit
Regression Model," Econometrica, Vol. 43, 141-146.

Ruud, P.A. [1982], "A Score Test of Consistency," Mimeo., University of
California, Berkeley.

00 R T A

O

'; : ~Measurement, Vol. 5, 44T-LTk.

-101-

Schmee, J. and G.J. Hahn [1979], "a Simple Method for Regression Analysis
with Censored Data," Technometrics, Vol. 21, L417-L432.

Schmidt, P. and R.P. Strauss (19761, "The Effect of Unions on Earnings

and Earnings on Union: A Mixed Approach," International Economic
Review, Vol. 17, 20k-212. )

N

; Shishko, R. and B. Rostker [1976], "The Economics of Maltiple Job Holding,"
1 American Economié Review, Vol. 66, 298-308.

’ Singer, B and S. Spilerman [197671; "Some Methodological Issues in the
= Analysis of Longitudinal Surveys," Annals of Economic and Social

i B

Stapleton, D.C. and D.J. Young [1981], "Censored Normal Regression with
Measurement Error on the Dependent Variable," Discussion Paper
: No. 81-30, Department of Economics, University of British Columbia.

' Stephenson, §.P. and J.F. McDonald [1979], "Disaggregation of Income
f Maintenance Impacts on Family Earnings," Review of Economics and
. Statistics, Vol. 61, 354-360.

3

!

Tobin, J. [;958], "Estimation of Relationships for Limited Dependent
2 ~ Vdriables," Econometrica, Vol. 26, 24-36.

Tomes, N. [1981], "The Family, Inheritance, and the Intergenerational

Transmission of Inequality," Journal of Political Economy, Vol. 89,
928-958. ;

Tuma, N.B., M.T. Hannan, and L.P. Groeneveld [1979],*ﬁbynamic Analysis of
Event Histories," American Journal of Sociology, Vol. 84, 820-85k.

Tuma, N.B. and P.K. ‘Robins [1980], "a Dynamic Model of Employment Behavior:
An Application to the Seattle and Denver Income Maintenance Experi-
ments," Econometrica, Vol. 48, 1031-1052.

Weles, T.J. and A.D. Woodland [1980], "Sample Selectivity and the Estimation
of Labor Supply Functions," International Economic Review, Vol. 21,

437-468. T
| ‘\\ ,
f ;; Warren, R.S., and R.P. St;ﬁuss (19791, "A Mixed Logit Model of the Relation-
jir ship between Unionization and Right~to~Work Legislation," Journal of

Political Economy, Vol. 87, 648-655,

G R R R R 0 ot e ey e 64 L

Westin, R.B. and P.W. Gillen [1978], "Parking Location and Transit Demand ,"
Journal of FEconometrics, Vol. 8, 75-101.

/ 3 Wiggins, 8.N. [1981], "Product Quality Regulation and New Drug Introductions:
Z B

Some New Evidence from the 197C's," Review of Economics and Statistics,
Vol. 63, 615-619. ‘ ’

19}

R P A




-102- S

Willis, R.J. and S. Rosen [1979], "Education.and Self-Selection,"
Journal of Political Fconmomy," Vol. 87, ST-S36.

Witte, A.D. [1980], "Estimating the Economic Model of Crime with Individual
Data," Quarterly Journal of Econcmics, Vol. 94, 57-8k4.

Wu, D.M. [1965], "An Fmpirical Analysis of Household Durable Goods
Expenditure," Econometrica, Vol. 33, 761-780.

Addendum

Lee, L.¥. []981], "Simultaneous Equations Models with Discrete and
Censored Variables,”" in Manski, C.F. and D. McFadden, eds.,
Structured Analysis of Discrete Data with Econometric Applications,
MIT Press, Cambridge, Mass.

&

r

s

R

oy

VA -

A




-
R RN
R
i X . Bt e o DL T
I :
i @ ) ! L
ey, .
s Fo
o o " °
5 s N I
i -
. AN
P
: i ‘ -
ES )
o o
N h 13} “
I h i
i ? K&
i . ’
(4
o
<,
L i :
\
W ) -
{ B o Py
/ ‘ .
v ’ ] e u
. ]
I 41.\‘ s
iR}
" ?
w o
2 N ’ :
y
o ey
a
“
- 0
be 3 .
e 0
N - vr
ST : o
L2 « 4 7; N
. S 2 N
« 2 “
P I -
a B -,
) . = «
f L5 . i ; ;
l{ [ .. . 4
e ]
e &
3 o R ) §\§
P . o N '
. ¢ oy
. : - ” g %
“ i N a [) o R
. I
o
o ] 0 . I
7 , ° " *
. , ' ¢ s
’ . " B i W LR SO . . .
. b FER . e s et e A o e e L e b it o L b
. ) o o @
L _ - wl 4 '
\ kS ) ’ f)
. +
N o . S o
. N ; . : B
- = . 5
I -
. \ o [Z2 .
d P T g
- & ) =3 e - Lid
o o . .
“ " . [ \ .
. R ’ g T
P . = 4 v
. - k ’" " = ks
5 . I . . - * 4
. ] . . ¢ *
- W " : . ‘ o . i §
: . [ 15 o . = :
‘ hd ' ¢ ! . - o
4 0 . .y Toe - o ; R
. . n = o o P, % :
s " . P / .
. S N = N f . N
. o Q\ 4 o
o Q ;






