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/1 REVIW OF ESTIMATION PROCEDURES FOR THE RASCH HODEL 
~ITH AN EYE TOWARD LONGISH TESTS 

Howard Wainer and Anne Morgan 
The Bureau of Social Science Research, Inc. 

and 

Jan-Eric Gustafs'Son 
Institute of Education 
University of Goteborg 

"Longtemps, je me suis couch6. cie bonne haure." 
(Proust,1913;p. 3) 

" 

Ke.y wo.'td~: ?Mcil Mode.f., COYlcU..t-i.OIla..t Ef...tUncttiOIl, EIVtope.ar1 
Vc.ve1opmen.t6 

ABSTRACT 

Two estimation procedures for the Rasch Model are reviewuci 

in detail. particularly with respect to new developments that 

make the ~ore statisticallYorigorous Conditional Maximum 
o 

Likelihood estimation practical {ror use With longish tests. 
/r.' 

Emphas,is of the review is on European developments which Iffe 
II C': 

not well known in the English writing world. 
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f I. INTRODUCTION 
II 

Classical test theory models hased on the concept of true-

score have been in use for most of the 20th century. but for 

the last decade or so th}tr shortcomings have become 

increas1ngly apparent. The principal shortcoming is that with 

classical test theory the item parameters change with the 

norming group. The development of latent trait theory has 

resulted from the search for a replacement. Lord and Novick 

(1968) honestly reflect this state of affairs by rigorously 

developing the various true-score models with their strengths 

and weaknesses and also specifying (primarily 1n the chapters 

by Birnbaum) the basis of the emerging latent trait 

technology. This new technology has been· rather slow to catch 

on for a variety of reasons; among which mathe~atical and 

numerical problems iii paramete~\estimation are probably the 
most important. 

There has been, and remains, considerable debate about 

the best single model to use for the scoring of tests. We 

shall not enter this debate, but instead will stay Within the 

confines of the simplest model, the one-parameter logistic 

(usually called -The Rasch Model" after its originator (Rasch, 

1960;1966). If this Simple model fits the data. there is ~p 
need for the more complex ones. The question of whether the 

model fits the data or not can be answered, partially at 

least, with statistical goodness-of-fit tests. Even for this 

simplest verSion, however, there are ~erious pr~blcms of 
".' 

parameter estimation. The problems can be Simply stated: 

estimation methods that are statistically rigorous could not 

be used for the kind of tests most likely to be scored with a 

latept trait model (l~rge-:-scale standardized tests ""ith many 

people taking them [like the ,:.~AT) that are often quit.e 

long). Short-cut methods and apprOXimations have been devised 

I 
I 
I 

'I 
\; 

(from simuJation~) but arc which appear to work quit!' we] 1 

Fischer. 1974; Wright still not statistically rigorous (e.g., 

& Douglas, 1976; Wright & ~ead, 1977). 

. ty of developments have occurred which All at once a varle 

h · problem. These developments have seem ~Q have resolved t 15 

. nor at anyone place, not occurred at anyone tlme, nor are 

~hey by anyone person. ~ut they are all h,re now and can 

f This paper reviews these profitably be taken advantage 0 • 

1 them with respect to how developments and tries to cata og 

each ·can be brought to bear on the pro em 0 bl f the estimation 

h M d I for moderate to long tests of parameters of the Ra!E. ~o c 

we shall report the (40 to 90 items). In this.paper 

imat ion methods of Wright and his colleagues. th~;\' approx . 1 
developments of Fischer and Scheiblechner, the numerlca 

f and the work on break-through of Gusta sson, tests of f':'t th'at 

Andersen and Hartin-Lof have done. Much of this material is 

not in the English language literature. 

is a latent trait model of a very simple The Rasch Model 

-- --- ---. of a correct answer to an i tern is a nature: the probabillty 

of that item and tl),'1l,~bility of the function of the difficulty 

person. 

The model makes th~ following assumptions: 

trait. The test" is then 0(1) All items measure the same 
~ \ called homog~.~eous. 

(2) 

(3) 

The;, i t(,lm'charac ter is tic curve, the function relatJng 
th~r probability of a correct answer 
tbe underlying ability variable 
trait), has a logistiC form. 

to an item to 
(the latent 

Local stochastic independence of th~ ite~s e~~:e ~~ 
whether or not a person solves an tern ep f 

' ability and on the difficulty 0 that person s 1 he or he 
the items. but not on which other terns s 
has previously solved). 
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If these assumptions hold, the following propert iea n re 
obtained as well: 

(a) The raw (number correct) score is co sufficic:nt 
statistic for the estimation of ability. 

(b) The comparison of two people is fully descriced by 
the difference in their abilities on the latent 
ability dimension. This does not depend on ~hich 
specific items were administered to them (item 
independent person measurement). 

(c) The estimation of item difficulties is independent 
of the ability of the sample on which they were 
calibrated (sample-free item calibration). 

These last two properties o£~he model are very 
\7~'. 

important. In 1950 Gulliksen charact(~rized current thinking 

when he wrote, "A significant contribution to item analysis 

theory would be the rliscovery of item para~eters that remain 

relatively stable as the item analYSis group changed" 

(p. 392). The Rasch m9del and late.nt trait based lUodels in 
/1 

general satisfy Gulliksen' s requir;ment that the resul ts of a 

person do not depend e1ther on which reference population that 

person belonzs to, nor on the selection of a specific set of 

items from thi homogeneous universe of items, if the data fit 
" the model. This emphasizes the great potential importance of 

the Rasch Model to ability testing, should it be found that 

te3t data fit the model reasonably well. 

II. THE RASCH MODEL FOR DICHOTOMOUS DATA 

The response of person v to item I is denoted A
vi

' it 

can take values 0 (incorrect) or 1 (correct~~ .• ;-c Th~;J.'c~ob.1bility 
\' - ~,..--'-:::>-

of a correct response according. to the Rascht..:~~del is given by' 

'~.t ,,~,~...::'A-U''''~ _____ ~- '0>0>. 

exp(!iv - 6;) 
1 I (2. J ) 

" " 

where 6 i' i '" the item parameter describing the 1 •••. ,k, is 

difficulty of item i and t; v' v = 

paramet'er describing the ability of 

1 •••. ,n, is the ability 

person v. Both of these 

" f red to as in the logistic metric and are re er parameters are ly 

i ··logits ... · An alternative, and frequent measurement n 
exponential transforma~ion usefui, representation involves an 

Ii .. exp( E; v) and e: l' = exp[- 6 iJ· Using this yielding e v ) 
on~ to rewrite equation (2.1 as change in variable allows 

= 1 I 

in the opposite direction of where e:. i is scaled 

as t he "easiness" of item i. usually interpr~ked 

(2.2) 

1 and is 
U i' 

{a more general case The probability of the response avi 
of equation [2.2!~ can be written 

or similarly 

(r 

\) 

«(ly e:; )aVi 

1 + ev E:; 

() 

(2.3) 
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exp[ay;k y - 0;)1 

1 + exp(~y - 0;) (2.4) 

Both of these representations (2.3 and 2.4) will be u6ed in 

the subsequent elaboratinn of the Rasch model. 

III. ESTIMATION PROCEDURES WITH RESPECT TO LONGISli TESTS 

In this. section of the paper we shall describe two 
1 , 

estimations procedures These are the Unconditional Maximum 

Likelih"ood
2 

(UML) 'and the Conditional Haximum Likelihood 

(CML) methods. Until recently, only the UML could be 

practically applied for longish tests (those with more than 30 

or 40 items). This has changed recently with newer and more 
<::::i-) 

sophisticated estimation schemes~~bet ter numerical me th.:>ds, 
".-::::-::----") 

and faster computers. In the past there were strong 

theoretical reasons for preferring the GML method, but it has 
'\, 

not been feasible to apply it to longish tests. Wright and',~, 
his colleagues have corrected some of the difficulties of ,the 

1 
Two less commonly known estimation procedures, which havp 
been used for ~ongish tests, should be mentioned (see 
Fischer, 1970, 1974 .for details): a "minimum-chi-square 
method" (Fischer, 1970), a very fast algorithm with 
consistent estimators but for which the mathematical 
statistic~l basis is incomplete: Scheiblechner's (1971) 
conditional maximum likelihood algorithm, whose computer 
program can be used for a maximum of 50 items. 

2 The term "Unconditional Maximum Likelihood" estimation is 
an ~nfortunate one in this application, since ~his is 
actually "JOINT Maximum Likeli"hoOd" 
estimation. Unconditional estimation is when a part of the 
parameter space is integrated out by assuming a 
distribution and integrating over it. Joint estimation is 
When estimates are obtained for all parameters 
simultaneously by maximizing the likelihood in all 
directions at once. Nevertheless, to maintain congruence 
with current usage, and so avoid confuSion, we shall use 
the te rm Uncond i t ional . /.1 

o 

.II 

U~L. making it an acceptable met 0 aa h d far as bias is 

concerned (Wright & Douglas, 1 ; lSC • 977b) F " her Gustafsson, 

l,1;artin-Lof and others have advanced CHL to the point where it 

is practical for longish tests. We ~haIl present 

and will comment on the choice between them 

section. 

both methods 

in a'later 

M'Xl"mum Likelihood Estimation Procedure The Unconditional ~ 

This method of estimating the item and ability parameters 

of the Rasch Model simultarleously was presented by Wright and 

k (1969) and Fischer and Scheiblechner (1970). It Panchapa"esan . 

yields a solution that must be corrected for bias, but untll 

t over 30-40 recently it was the only viable method for tes s 

items. 

The basic data ~ trix from which estimation proceeds is 

the matrix A having elements {B vi }' which is, say persons by 

items. Summing across items yields the raw score for person v, 

Persons yields the total number of denoted r • Summing across 

correct r:sponses to item i, and is denoted si' Under the 

assumption of local 

A is the 'product or 
stochastic independence the likelihood of 

the probabilities of all the entries of 

and is shown in equation (3.1): A. This is denoted by A 

n k a . II r II Si (8 c.) Vl 1;:' 8y v 
i J II II V I" V , 

fI = ------
1+8ve; rrThl+6vC; ) (3.1) v=l ;=1 

v ; 

From this likelihood function, it is immediately apparent 

f A are represented [r v and that only the marginal sums 0 

need Il'Ot take into s d. Th us, 0.(1 e account the "inner 

items a certain "of A as yet, that is, ,which structure 
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examinee has answered, nor which examinees answered a 

particular item (this will enter in later on When the 

goodness-at-fit of the model is examined). ~ _~~ (number 

correct) !!. ~ sufficient statistic !!!.E:' estimatit1~. person 

:1 parameters and ~ ~ ~ ~ sufficient statistic ~ ~ 
parameters. 

The likelihood function can be maximized in the usual ~ay 
by first noting that the log of the likelih06d function 

achieves its maximum at the, same place as the funttion, and 

thEir using the multivariate form of Newtol'!-Raphson on the log 

lik~lihoOd function. This is accomplished by calculating the 

gradi~nt vectors with respect to each parameter, and the 
Hessian (matrix of second partials). 

The details of the derivation of the estimation equations 

is found in Wright's work (e.g. Wright & Mead, 1977; Wright & 

Stone, 1979). There is an indetermina~(y in the model \"hich 

can be removed by impos.!ng some sort 01./ normalization. One 
\ .'. 

way of normaliZing is t'o"'set an orlg~::l (say the difficulty of 
Ii an item equals zero), or set a s9/lle (say the Sum of. all 

difficulties equals unity). I,! 

That maximum likelihood estimates are net conSistent in 

certain situations has been known since 1948 (Neym~n & 

Scott). This'l,s the case for the Rasch Model when structural '>"'''-'''\ 
parameters (t)j'e item difficulties) are estimated in the 

presenc~ of incidental parameters (the"person abIlities). When if 

sample size is increased the problem, of course, remains since 

each new person brings a new incidental parameter. If, 

howeV:er, the estimation equating can be formulated in the item 

parameters only, consistency and unbiasedness Is ~,sured 
(Andersen, 1977). This can be done ib>there eXists a minimal 

sufficient statistic for the person parameters, and in the 

Rasch model, raw SCore is such an estimator. 

\1, 

I 

Ra.6 c./z EJ~tiJ"'C~.:UOil P.'toc.e.du.~ ~~ 
43 

Wright and Douglas(1977b) have shown bias to average 

(over scores and items) k/(k-l). Applyifig this correction 

factor to the difficulty estimates allows one to obtain 

estimates that are, on average, unbiased a~d in simulations 

seem to be shHlar to those :obtained by the unbiased CML 
method to be discussed next. 

The following is an algorithm for the unconditional 

estimation of item and person parameters from Wright and 
Douglas (1977b): 

J'::I 

(1) Calculate s the total number of correct responses 
to item li~nd n the number of persons with raw ' r· score r. 

(2) 

(3) 

(4) 

d.O 
1 

EdIt the data to exclude zero or perfect scores for 
both items and persons (Le. rv 0 or k and sl = o 6r n). 

\~ Initialize a starting Vector ~r as, 

b 0 
r log[r/(k-r)] for r 1, '" ,k-I. 

Initi~lize a vector d., centered at 
-1 d. =. 

(3.2) 

l, .... k. ! 
(3.3) I !i 

(5) Improve each estimate ii by applying equation 3.4 

,1<:-1 

-Sf + E j 

dj +1 d~-
nrP,.; 

r (f e 1 ..... 1:) f 
k-1 

5''' j n p". 
~ r rl 

r 
(1 - P~i) 0.4) 

.,1 \ 

" () 

0' 

0;:: II 
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until convergence ac Some reasonable cricerion, 

say CRIT. 

I d . j+ 1 - d j I < 
1 i CRIT, 

where CRIT 
.01 is a good value, and 

[exp{b - d
j
.}J/[l + exp{b

r 
- d j .}] . r 1 1 

(6) Recenter the vector d, at d. ,. O. 
-.1. 

(7) Using the improved vector ~i' apply equation 3.5 ~o 
improve each b . 

bm+l 
r 

k 

r - L 
l: \" 

- "pm" (1 L-J rl 
i 

r 

(~1, ... ,k-1) 

until convergence at 

where pm 
• ri 

Ibm +1 - bm I <~CRIT r r , 

(exp{b
m 

- d.}J/[i~exp{bm 

(3.3) 

r 1 r 

(8) Repeat step(i. (5) through (7) until suq:essive 
estimates of !i become stable, that is, 

~, [d.l +! - d
i

(]2 /k 2 ~1 1 < (GRIT) • 

(9) Correct for bias by :nultiplying each di by (k-l)/k 
(10) Calculate the b for those corrected d .. -r. 

-1 
(11 ) Correct the bias by multiply.ing each b by (k-2)/(k-l) r 

(12) Calculate the as'ytlptotic estimates of the standa:-d 
errors of difficulty estimate from the inv~:-se 

HeSSian (equation 3.6), 

;1 

" 

';5 

(3.6) 

When the test score distribution i~ symmetric and the 

tests are rgther long, a very economical procedure for 

ap~roximating the UML method was devised by Cohen (1979~ 

The Conditional Haximum Likelihood Procedure (f,I1L ) 

The following description of the conditional approach 

follows 'closely that given by Gustafsson (1977). 

" Consider a given examinee~with the raw s~ore rv' ( 

corresponding to the person parameter 8
v 

The probability of 

obtaining any raw Score vector (a .) given the person 
-V_1 

parameter and c·he vector of item parameti:!rs is: 

k 

P{(avi)ISv'(~i)}= ~ 
;=1 II(l+e s.) V , 

(3.7) 

To be able to express this probability as a conditional 

probability of.a given score r
v

' one must first know the 

probability of obtaining score rv given Bv' This latter 

probability Is given by the sum of the probabiliti~s of all 

pOSSible ways of obtaining the score r , that r., the sum of 
v 

all terms described in (3.6) in which the veci;or a
v

! sums to 
r. 

( ~) 
Any given score \1 on a set. of k items can be o'btained in . )) 

different ways .~:OA special notation is needed to express 

Jhis iP..\.3 simple way. Define s.he eleDlentart sYlllmetric ~~ 
!!! ~ ! in the parameters Ei as: 

<1 

1 
'I 
j 
j 
1 

, 
t 
I 
I 
i 
t 
" 

." 

,if 
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I , 
I , 
Ii 
t 

Y {(E')}= r 1 

Ie 

~ IT 
ra ·=r ;=1 i Vl 

(3.8) 

In the expansion of 

made over those (~) 

simplicity, Yr will 

this sum of products, the summation is 

combinations in which ~. a i = r. For 
1 v 

be used to denote the symme,tric func tion 
of order r in the item parameters. 

This new notation allows us to write the probability of 
obtaining the score r given 

\\ 

a and v 

(3.9) 

The conditional probability of obtaining the vector a i 

-v with the total scorer I given the score r is thus given by 
v 0 v 

equations 3.7 through 3.9 , yielding: 

P{(avil!av·(E;)} = 

P{r!ev·{Ei)} 

Ie n 
;=1 

(3.10) 

Note that this conditional probability is not a function of 
avo but only of the item parameters. 

Using the assumption of conditional independence one can 

now Obtain the conditional likelihood of the "data matrix A, 

with elements {avi } for n pe~sons yielding: 

I 

, .. 
'1 ' 

Ie a . 
n n C; V1 

(3.11) n '-1 A. 

'v-l Yr y 

with raw score r Denoting nr as the number of persons 

score of item i (1, ••• ,n-l) this (1 1 ... , k-1) and s, as the 
1 ' 

equation can be simplified to: 

k k 
5 i IT 5; IT C; E' 

;=1 1 ;=1 
II = = k-1 (3.12) [In " nr Yr II Yr v=l v r=l 

t {-a-~r5 (CML) can The Conditional Maximum Likelihood cs ~~ ~_ 

be derived froiD this conditional 1 ikel i ho"oc ::;=c:: ion. T,o do 

this, take logs of. both sides I different ia te .... :.:h r.espect to 

all the i I E and set them equal to zero. This y:'elcs 

.. ~ \ (i=I, ..• "., 
(3.13) 

j) 
/f 

'in which ,', the symbol is used to ~e=c=e :hc partial 

derivative of y with respect to 
r 

symmetric function of order,r-l 

e: i' From (3.13),one arrives at 

nonlinear equations in the E
i

• 

T' J. ":"'-":ative is a E
i

. n_" ___ _ 

i 1 , -a-a:::e::ers except n a • ~ _ . 

(3.14) ·,;:::'c;:, are 11 set of 

:! 

c 

() 

/\ 
v 
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k-1 
5 i = 2: n Eoy(i) 

r 1 1"-1 (i-1,o.o,k). 

r=1 Yr 
We can see that sl'nce h 

t e sum of the s 1 . ~ i equa s the sum of the nr~ we must 1 
mpOse some further constraint on 

the system of equations to all~~ for ali 
so ut on. Once again, this can be 

done i'lia variety of ways, 

by specjfying a scale. 
either by specifyin. an origin or 

The great probl~m 0 1 i 
In so v ng the system of nonlinear 

equations in (3 14) h 
• as been the accurate and rapid 

computation of the 
symmetric functioos and their first and 

second order partial derivatives. h Fischer (1974) 
presents three useful formula s for the 

computation of the symmetric 
functions and their first 

derivativ,s: (p. 242) and second order p3rtial 

y = c.r(i) + ye i ) 
r 1 r-1 r 

k 
ryr= r 

i =1 
E (i) 
iYr-l 

(3015) 

and (p.250) (3.16) 

Yr(e:1'''',E: t } = Y (E: E:) + ( 
r l' •.. , ~-l E: t Y r- 1 E: 1 ' ••• , E: t-l ) 

with 0 s r S t, t =l, •.. ,k . 

fJ (3017) 
Equations (3,15) and (3.16) Can be combined 

give a very efficient algorithm recursively to 
for computing the y \) and the 

(Fischer, 1974, pp. 243-244; Gustafsso~ Y
(i) 
r-1' 

)1 .' 1977, 

. " 

. c 

(i 

pp. 30-31). This algorithm is not numerically stable, 

nowever, and it usually breaks do~n when there are more than 

20 to 50 items. 

Using (3.17) recursively it is, however, possible to 

devise a numerically stable algorithm for computing the values 

of the symmetric functions of all orders (Gustafsson, 1977, 

pp. 31-31), and the derivatives can also be obt~1ned if the 

algorithm is applied with the parameter value set to zero for 

the i~em or ite~s with respect to which the differentiation is 

made (Fischer, 1974, p. 250). This method allows computations 
\. 

of the symmetric functions for very large sets of items, but 

it has the drawback that the com~ltations are quite cumbersome 
1\ 

and slow when there are mad;r items (more than SO to 60, say). 

However, as was shown by Gustafsson (in press {a}), it is 

Possible to devise an algorithm which is both fast and 

accurate if (3.17) is used to compute the values of the 

symmetric functions them~elves, and if (3.14) is uscd to 

compute the values of the first derivatives. For those items 

which have extreme parameter values the computations of the 

first derivatives do break down, but since it is possible to 

test for numerical accuracy, the derivatives with respect to 

these ite~s can be recomputed using (3.17) with the parameter 

value set equal to zero f6r the item •. 

Having routines for computing the symmetric functions and 

their derivatives it is a rather simple matter to solve 

(3~14), using'numerical procedures. One useful method is 

Newtofl-Raphson's method (f~i\r' the details, see Allerup & 

Sorber, 1977; Andersen, 1972; Fischer, 1974; Wright & Douglas, 
1977b) • With this method only few iterations arc needed, but 

each iterat~on requires much computational work since the 

second derivatives of the symmetric functions must be computed 

and a (k-l)by(k-l) matrix must be inverted • 
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Another useful method is based on a simple SWitching 

between the right hand side and the left hand side of (3.13) 

(Fischer, 1974, Gustafsson. 19i7; Hartin-Lof, 1973; Wright (, 

Douglas, 1977a,b). In this simple iterative method each 

iteration requires relatively little comput~tional work, but. 

on the other hand, convergence is slow. However, convergence 

may be speeded up through using the Aitken extrapolation 

(Fischer, 1974, p. 245; Fjscher & Allerup, 1968; Gustafsson, 

1977, p. 35). Usually this extrapolation effects a very 

considerable saving of iterations, and when i~ is applied ~his 
simple method is in most cases much more effective than 
Newton-Raphson's method. 

It is impossible to give any generally valid guidelines 

concerning the amount of computer time needed to compute the 

CNL estimates, even for a given number of items, since that is 

strongly affected by the range of item parameters, and of 

course also by which particular computer is used. However, 

when there are no extreme item parameters, relatively little 

computational work is needed if there is a moderate number of 

items~ For example, on an IBM 360/ 65, the item parameters in 

a' test with 40 items can Often be e3timated within 3 to 4 

sec9nds of CPU-time, and for a test with 60 items 15 to 10 
3 seconds often ~~ffice. 

However, when there are more than 80 to 100 Items in the 

test a large amount of computational work is needed, which is 

due to the fact that the fastest method of computing the 

derivatives of the symmetric functions is no longer available; 

~ for most of the items the numerical breakdown occurs. which 

3These estimates ~ere obtained with a FORTRAN IV program, 
written for the IBM 360/370. A cORY of the program written 

" on tape may be obtained at cost f~bm Jan-Eric Gustafsson, 
Illst.~tute of ~\ducatlon, University of Gotc,borg. Fack, S-43 t? 
20 Holndal,,5weden. " 
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to use the much more cumbprsome method makes it necessary 

based on (3.17). 

Estimating Ability 

Parameters (ability) could be The estimation of person 

f h estimation problem just solved ~hcught of as the dual 0 t e 

Thus we. could set up a system of equations for the items. 

scheme (i.e'.,determine a conditional which parallel the item 

i score expressed only in person likelihood function on tem 

ld h yield a set of equations: parameters). This wou t en 

r = 
V 

(v= 1 • ' .. , n) 
t3 .18) 

P • 240). This system of equations cannot (from Fischer • .1974, 

be solved because it is not possib;~e to compute the symme'tric 

- th t the usual in the " parameters. If we assume a functions u 

situation holds, th~t is, th'\\t the number of persons is large 

b\ f items we can treat the in comparison with the num ~r 0 , 

D ters as fixed and estimate the estimates of the item parame . . r >r;Cc'"" 
Person parameters under this assumption. We ~h\~ gef the 

, ) 
equations shown in (3.19) to solve: ~<':::::--:->/ 

(r=l ..... k-1). 

(3.19) 

\ i that were obtained in th~ This is the same set of equat ons 

he subscript v has been unconditional case, except that t 

"Ilich is possible since persons having the same changed to 1:, w 

ability. These equations are raw score are assigned the s~me 

. JI 

I, 

1/ 
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efficiently solved using Newton-Raphson. 

Recently Andersen an~ Madsen (1977) have presentFd 

another approach to make inferences about the person 

parameters. They define what they call the population 

likelihood and show that it is possible to estimate the 

parameters of the distribution oE person parameters, assuming 

a certain distribution function, such as the normal one. 

This method has as yet only been used in illustrative 

examples, but it shows great pronise for a wide range of 

applications. Thus, it may be used to test the hypothesis 

that the distribution of person p3rameters is normal, and the 

estimates of the mean and the variance of the latent 

distribution would be estimates of the "tru~ mean" and the 

"true variance." If the mean and the variance of the person 

p,arameters estimated from (3.22) are computed for a group of 

pers,!,ns these would be estimates of the "observed mean'" and 

th~ "observed variance." This, of course, makes possible a 

direct method for estimating the reliability of the test for a 

certain group of persons, i.e. through dividing the estimate 

of the "true variance" with the estimate of the "bbserved 
variance." 

Information Function ~~ Confidence Intervals 

The asymptotic standard errors of the CHL estimates of 

the item parameters can be oDtained from the in,verse ,~f the 

HeSSian, and if Newton-Raphson's method is used to solve 

(3.14) these ii"1"e automatically obtained. 

The standard ~rrors for the esti~ates of the, parameters can, 

be obtained from the !i'isheL'i.an Information function. Th(;, 
statistical information in the sample wi th respect',to any 
parameter IT is defined as: 

where II 

al0911 )2} I(n)= [{(--
an 

h d func tion (see equation 3.12). is the likeli 00 
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(3.20) 

1968, see Fischer, 1974, Birnbaum (in Lord & Novick, 
information of item i with p. 294 ff) has shown that the 

respec~ to the person parameter f; is: 
v 

(3.21) 

test {Itl with respect to the person The information of a 
sum of the information of each of the k parameter f;v is the 

items: 

(3.22 ) 

in the sample with respect to the Similarly the information 

item parameters {Ip{ Oil} is: 

(3.23) 

The maximum likelihood estimates are asymptotically 
_l-

I 2 
normally distributed with standard error equal to 

•,rbund the item parameters can be Thus, confidence intervals 

-, 
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constructed "~,when th(' lltlnber of 
p.xaminC!~s is 

Ilsuill way: 

(3.24 ) 

where 7. a th 
a re e critical values obtained from the normal 

distribution. 

'''hen the test is at least of moderate length (more than 
say,30 or 40 items) the 

asymptotic properties should hold 
sufficiently well for . 

one to make use of them in the 
deternination of confidence . 

J>tervals around the person 
parameters. These are: 

0.25 ) 

Of course these confidence intervals apply only to a 
randomly ch~sen person, and not to a ~articular one "(see 

1968. p. 512). Lord (, Novick. 

.!Y.=.. TESTING G06bNESS OF FIT --
The Rasch model is a very st{on~ model viih rather 

stringent aSsumptions. The 
desi~able Consequences of these 

if the assumpt ions hold. Thus it 
to have sensitive tests t; determine fit to the 

assumptions are only viaBle 

l:;l/ crucial 

t:!;<ii~! . 

On the basis of the l:~IL appr(b~ch 
(! 969) and Head (1976, 

I ':;5 

For these tests the chi-square distribution has been relied 

upon. The tests have, however·, unkno\,-n asymptotic properties 

and siaulation studies indicate that evon thou~h the means of 

tho distribution match what is expected, the variances may 

depart substantially (?Iel'.ld, ! 976). 

On the basis of the CML approach it is, in contrast, 

possible to devise tests with known ~symptotic properties. 

There are several such goodness-of-fit tests available for the 

Rasch model (Andersen, 1973; llartin-L;;:, 1973), eael?: of ~Ihich 
is sensitive to different threats against the model ... 
assumptions. 'The tests are presented by CustaEsson, (Note 1). -and for a fuller treatment of the goodness-of-fit problem than 

can be afforded here. the reader is directed to this source. 

Andersen's £,-mditional Likelihood ~ ~ 

The logarithm of th~ conditional likelihood function was 
used earlier and is: 

k k-1 

10gA= ~ 
i=l 

() (4.1) 

~ s.log c .-v,', 1 
\\ 

'II 

nr logy r . 
r=l 

'\ 
\\, 

The task of the parameter estimation is to ma:-:imize 1\ in 
(4.1). When this ~ms been done, that is when the item 

parametcr~. for the total sample have been estimated, one 

inserts them in (4.1) and calculates the maximum dE the log 

likelihood function. This is denoted lit. 

If the model fits. it is expected that the same item 

parameters should hold in afl sub-~roups of the person 

sar.1ple. Thus, one estimates_the item parameters in all of the 

k-l score groups and the values of the log likelihood 

function. These are then d<~noted II [r';;! I ••• ,k-I] and used 
r 

---------

.--' '" ~. 
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to form the statistic: 

k-l 

10g>,= H
t 

2] 
r=l 

H ' r 

(4.2) 

T!1is allows the test of fit by using the property that 

-210g ( ;I. ) is asymptotically chi-square cis tributed ;.;i th 
(k-l)(k-2) degrees of freedom. 

Obviously this sort of test has limited application since 

some 50-100 persons are needed w'it!1in each s·core group. 

Andersen also showed that the k-l score g~OUps can be pooled 

into, say. g nonoverlapping groups and the same statistic 

formed for the g groups. The result is still distributed as 

chi-square but now with (g-l)(k-l) degrees of freedom. 

It is not necessary to diVide the sample of persons into 

groups on the basis of their perform~nce--any diSjoint 

grouping of the sample can be used. But depe\;'~1ng on how- the 

groupitg is done the test 1s sensitive Co different Violations 

of the model assumptions. If the grouping is made according 

to level of performance the test is sensitive to variations in 

the slopes of the ICC·s for th~ items. If another groupin. is 
\~0 used, such as according to sex. the test is sensitive to such 

ki.nds o.f multidimensionality which show- as item bias. that is. 

that an item is systematically too easy or difficult for a 
group of persons. 

Hartin-Loi's Chi-Square ~ 

Martin-LSf (1973) has developed a chi~square test for 

overall «oodness of fit based upon the fit within each score 

group, The logic of his test is as follows: 

The number of individuals with raw SCore r is denoted 

1\ 

h get item i correct is the number in the rth score group 101 0 

denoted n
ir

• . f correct answers Thus tHe observed proportl.on 0 

, '/n • The conditional to item i within score group r 1S n ir r 

raw score r answers item i probability that a person with 

correctly is equal to t e nu. h mber of response vectors i~uwhich 

1 divided by the total ntmbe~ of item i is answered correct y 

score of r, that is, response vectors which have a 

P{A ,=llr. (£,')}= ""vi= Vl 

Thus. if the model fits, the relation 

(4.3) 

(4.4) 

ii 
should hold for all both sidescH score groups. Multiplying 

expression fpr the predicted 

each item for each score 

this equation by nr we get an 

number of correct responses to 

group. , of observed frequencies If we define the vector 

, { n J and the 
\r • n 1r ·n2r ••••• kr • 

corresponding vectar of 

predicted frequencies (from 403) the appropriate test 

statistic is then: 

k-l 
T= ~ {(qr)-(tr)}"{((Vr))}-l{(qr)-(tr )} 

r=l (4.5) 

in which t·he matrilcVr is a variance-covariance matrix of 

',? '--~·-~-'·-"-"-~~--------~"'""'~~--'""""-"-""'~!iR_1 ... , _____ . ,.jir1 ... """"' .... _ •• I1II."'"ilf., .... ""IIIiU_'iI ........ __ ;.. .... __ ........ , _~ ___ :-___ _ 
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order ~-by-k I~ith eler.tents 

Ii ( ; ) 
nrE:iYr_l 

'Yr 
(i ,j ) 

nr E ; E:jYr _2 

.. ', 
• ~ ~ : : .' 4 j 

.,for i=j 
(4.6) 

for i;!j 

The test statistic T is asymptotically chi-square with 

(k-I)(k-2) deg~1'!es of freedom. If SOT:le nr 0, the summation 

in (4.5) must be restricted to those score groups that are 

nonempty (say R of ,them) • If this is done, the de!~rees of )) 

freedom are then (k-I)(R-I). Thi~ test is sensiti~e to 

variations in the slopes of the 1cc's and it is asymptotically 

equivalent to the Andersen test, when the item par~meters in 

the latter test are estimated within the score groups. 
it' 

~ Martin-Lof ~ E! Homogeneity E! ~ ~ of ~ 

The tests which are sensinve to variations in th~,slopes 
''-~-' of the ICC's may fail to detect maltidimensionality such that 

different groups of items ~easure different person parameters 
(Gustafsson, Note 1). 

However, Martin-L;f (1973) has 
presented a conditional likelihood ratio test whi~h tests the' 

hypothesis that two groups of items measure the same ability. 

To compute the teSt it is necessary that the items be 
grouped into two disjd'int sets. 

Let us say that thC'l-e are k 
1 and k2 items in the two sets, respectiveiy, ancl thile k

1
+k

2 
.. 

k. Furthermore, let n be the number of persons wi th ril .. ' 
o r 1 r 2 

score r 1 on the first set and ral. score r?_ on the second set. 
() 

o 

l.Jhen the item parameters for the total set of k items are 

estimated, a maximum of the logarithm of the conditional 

likelihood function is obtained (ll't)' 'and I.,hen the item 

par<1,met_ers are estimated for each set separately, the 

corresponding maxima "1 and H2 are obtained. 

test statistic can then be formed: 

kl k2 k 

10g:\= . -~ ~ 
r =0 r =0 1 2 

The following 

(4.7) 
lfartin-Lof (973) h~s shown that :-2logC). ) is appro~:imately 
chi-squate distributed with k

1
k

2
-1 degrees of fr~edom when n 

tends toward infinity. 

If the items are grouped according to levelod?difficulty 

this test is sensitive to variations in leveJ$ of person 

rlHi~bility (cf. Lumsden, 1978). But the test can also be 

applied with the items grouped according to tHO hypothesized 

dimensions supposed to be running through the test: In this 

kind of application, the test of course investigates the 

hypotheSis that the two groups 6~ items measures different 
II ' !I 

abilities. 

v. SUMHARY AND DISCUSSION 

Of the two estimation procedures discussed above in 

detail; most researchers have been forced to use the 

unconditional procedure when applylitg the Rasch model to tests 

af mote than 20 to 30 items. An algorithm has now been 

developed, which makes the conditionill procedure a feast,bl(: 

alternative to the unconditional method. 

A prinCipal/advantage of the conditional procedure 

appears to be the known asymptotic properties of the 

estimates, which,Jallows lihe use of the gooclriess-af-fi.t tests 

if 

Ci 

Q (), 

Ii 
1/ 

o 
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~cscribcd earlier. We therefore recommend that as soo~ as a 

thorough analysis of fit of the data to the model is judged 

important,"the conditional procedure, along with these tests, 

should be used. 

Another advantage of the conditional procedure is the 

availability of th~ Andersen and Madsen (1977) method for 

estimating the parameters of the latent population 

distribution, and for testing hypotheses about this 

distribution. This methodology will most likely prove v;ry 

useful in those applications where inferences about groups of 

persons are intended. 

Extensive studies of differences between item 

difficvlties obtained through each ~ethod have yet to be 

done. Most likely, no important practical differences between ... 
the methods will be found. The unconditional method is in 

most cases faster, so when cost is a serious issue there are 

sometimes strong reasons to prefer this method rather than the 

conditional one. This can be done profitably in cases when the 

question of fit is of less importance, either because it can 

confidently be assumed that the data fit the model, or because 

the robustness of the model can be relied upon in the 

solution of practical measurement problems. Furthermore, for 

very long tests (over 100 items, say) only the unconditional 

method is feasible. 

Developments on the Rasch model have been underway in 

Europe and the United States for the past two decades. 

However, mainly due to language pro'il'lems European work has 

be,en little known in the United States. This paper was an 

attempt to overcome this difficulty. 

'-
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