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« 1. INTRODUCTION

Classical tesﬁ}theory models hased on the concept of true-
séore have been in use for most of the 20th century, but for
the last decade or so thﬁ?r shortcomings have become
increasingly apparent.. The principal shortcoming is that with
classical test theory the item parameters change with the
norming group. The development of latent trait theory has
resulfed from the search for a replacement. Lord and Novick
(1968) honestly reflect this state of affairs by rigorously
developing the various true-score models with their Strengths
and weaknesses and also specifying (primarily in the chapters
by Bifnbaum) the basis of the emerging latent trait
technology. This new technology has been'rathgr slow to catch

on for a variety of reasons; among which mathematical and
numerical problems in parameter\ estimation are probably the

@most important.

There has been, and remains, considerable debate about
the best single model to use for the scoring of tests. We
shall not enter this debate, but instead will stay within the
confines of the simplest model, the one—patameter'logistic
(usually called “"The Rasch Model"” after its originator [Rasch,
1960;1966]). 1f this simple model fits the data, there is oo
need for the more complex ones. The question of whether the
model fits the data or hot can be answered, partially at
least, with statistical goodness~of-fit tests. Even for this
simplest version, however, there are cerious problems of
parameteg estimation. The problems can be simply stated:
estimation methods that are statistically rigorous could not

be used for the kind of tests most likely to be scored with a

latert trait model (large—scale standardized tests with manyg

people taking them [like chec§AT} that are often quite

long). Short-cut methods and approximations have been devised

P S o e —

2 i J 1t are
which appear to work quite well (from simulations) bu

5 ; Wright
still notkstatis:ically rigorous (e.g., Fischer, 1974; Wrig
& Douglas, 1976; Wright & Mead, 1977).

All at once a variety of developments have occurred which
seem to have resolved this problem. These developments have

or are
not occurred at any one time, nor at any one place, n

they by any one person, Sut they are all here now and can

. .
profitably be taken advantage of. This paper reviews thes

EARCY

i how
developments and tries to catalog them with tespect to
each can be brought to bear on the problem of the estimation

derate to loug tests
of parameters of the Raggh ?odel for mo ue e
(40 to 90 items). In this paper we shall rep

approximation methods of Wright and his colleagues, thq» 

Y
if

developments of Fischer and Scheiblechner, the numerical

i at
break-through of Gustafsson, and the work on tests of fit tha

1l is
Andersen and Martin-Lof have done. Much gf this materia

not in the English language literature.
: The Rasch Model is a latent trait model of a very 51mP1e

item is a
nature: the probability of a correct answer to an ite

; i1icy h
function of the difficulty of that item and tﬁgwgbillu} of the

person. N

The model makes ths following assumptions:

B\ it. The test’ is then
(1) All items measure the same trait. T
y called homogeneous.

e

(2) The¢, item - characteristic curve, the function relati:g
%FJJprobabilicy of a correct answer to an item °
the underlying ability variable (the laten
trait), has a logistic form.

/
J

(3) Local stochastic independence of chitite::p;;;;e;;
] em
whether or not a person solves an p
ili the difficulty o
that person's ability and on
the isems, but not on which other items she or he

has previously solved).
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If these assumptions hold, the following properties are

obtained as well:

(a) The raw (number correct) sgcore is # sufficient .

statistic for the estimation of ability.

(b) The comparison of two people is fully descrited by
the difference in their abilities on the latent
ability dimension. This does not depend. on which
specific items were administered to them (item
independent person measurement).

(c) The estimation of item difficulties is independent
of the ability of the sample on which they were
calibrated (sample-free item calibration).

These last two properties qw,g/"’"'t:he model are very

important. In 1950 Gulliksen charact(?erized current ‘thinking

when he wrote, “A significant contribution to item analysis

theory would be the discovery of item parameters that remain

relatively stable as the item analysis group changed”

(p. 392). The Rasch model and lat,e/.nt trait based models in

general satisfy Gulliksen's require’/ment that the results of a

person do not depend either on which reference population thac

person belongs to, nor on the selection of a specific set of

items from the" homogeneous universe of items, 1{f the data fit
// {7 ;

i i
the model. This emphasizes the great potential importance of

~ the Rasch Model to ability testing, should it be found that

o Y test daté fit the model reasonably well.

1I. THE RASCH MODEL .FOR DICHOTOMOUS DATA

The response of person v to item 4 is denoted Avi' it
can take values 0 (incorrect) or 1 (correct},; The _probability

T

of a correct response according to the Rascﬁiﬁc;del is given by®

exp(gy - 6i) 21y
- £y, C)T (2.
PRy = 1 1Sy 80T T exp(g, - 54)

5,

h 8 Yy = k, is the irem parameter describing the
where = PR A |

difficuli'y of item i and ¢ NP B 1,...,n, is the abiiltz
parametie‘r‘ describing the ability of person v.m Both of thes
parameters are in the logistic metric and are teferred to is
measurement in “logits.™ An altermative, and frequer‘\t; y
useful, representation involves an exponential transformation

: = exp[-6 .]. Using this
yielding e'v =.exp( & v) an\d €y pl i

change in variable allows one to rewrite equation (2.1) as

li 8,3
ey o vy1 o,
P(Avi =1 l eV’ 1) - 1 + 0V£1‘
(2.2)

-~

i d is
where e ., is scaled in the opposite direction of ¢ {» an
i

3 " : " i.
usually interpréted as the "easiness of item

a more general case
The probabilicy of the response 2 . (a m

of equation [2.2)) can be written

6 ) = ________(GVEi)aVi 9

P(A e Y
y ( v 1+ %vey (2.3)

vi ~ “vi

or similarly
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1 + exp(g, - 5i) - (2.

Both of these fepresentations (2.3 and 2.4) will be usged in

the subsequent elaboratinn of the Rasch model.

I11. ESTIMATION PROCEDURES WITH RESPECT TO LONGISH TESTS

In this section of the paper we shall describe two
estimations procedures’. These are the Unconditional Maximum
Likelih'obd2 (UML) <and the Condirional Maximum Likelihood
(CML) methods. Until recently, only the UML could be
practically applied for longish tests (those with more than 30

or 40 items). This has changedvrecently with newer and more
N

\
sophisticated estimation schemesﬁ}better numerical methods,

and faster computers. In the past there were strong

theoretical reasons for preferring the CML method, but it has
\ .

not been feasible ro appl;‘it to longish testsg. Wright and~.}

his colleagues have corrected some of the difficulties of the

Two less commonly known estimation procedures, which have
been used for longish tests, should be mentioned (see
Fischer, 1970, 1974 for details): 3 "minimum»chi—square
method” (Fischer, 1670), a very fast algorithnm with
consistent estimators but for which the mathematical
statistical basis 1s incomplete:'Scheiblechnet's (1971)
conditional maxi{mum likelihood algorithm, whose computer
program can be used for a maximum of 50 items.

The term “Unconditional Maximum Likelihood" estimation isg
an ﬁnfortunate one in this application, since{;his is
dctually "JOINT Maximug Likelihoaod "
estimation. Unconditional estimation is when a part of the
Parameter space is integrated our by assuming a
distribution and integrating over 1t. Joint estimation is
when estimates are obtained for all parameters
simultaneously by maximizing the likelihood in all
directions at once. Nevertheless, to maintain congruence

with current usage, and so avoid confusion, we shall use
the term Unconditional. i

N
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UML, making it an acceptable method as far as bias is
concerned (Wright & Douglas, 1977b); Fischer, Gustafsso?,
Martin-Lof and others have advanced CML to the point where it
is practical for longish tests. We shail present both methods

. r
and will comment on the choice between them in & late ‘

section.
. ) : . 3 r e
The Unconditional Muximum Likelihood Estimation Procedu

(UML)

This method of estimating the item and ability parameters
of the Rasch Model simultareously was presented by Wright and
Panchapakesan(1969) and Fischer and Scheiblechner (1970). ?t
yields a solution that must be corrected for bias, but until

recently it was the only viable method for tests over 30-40

items.

The basic data m' trix from which estimation proceeds is
the matrix A having elements {avi}, which is, say persons by :
items. Summing across items yields the raw score for person v, i
dencted L Summing across persons yields the total number of
correct responses to item i, and is denoted Si' Under the
assumption of local stochastic independence the likelihood of
A is the sproduct of the probabilities of all the entries of

A. This is denotedasy A and is shown in equation (3.1):

r . S3
o, I
v ion

P ) 3.1)
vel q=1 1Py I;.[I;I(l*-evai) ERIN

Froﬁ this likelihooa function, it is immediately apparent

9 and
that only the marginal sums of A are represented [rV

‘ : “ . ner
$:]. Thus one need not take into account the "in
il ’

@

i rtain
structure” of A as yet, that is, which ;tems a Fe
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examinee has answered, nor which examinees answered g

particular item (thig will enter igq later on when the

Boodness-of~fit of the model is e€xamined). Raw Score (number

correct) is ga sufficient statistic for estimatin erson
———Z 2% 4 sufficient ————— ——— 22 ’mating person

by firse noting that the log of the likelihoo’a’ function

achieves jits maximum at the same place as the funétion, and

the\’\t’iy using the multivariate form of Newton-Raphson on the log

lik\lihood function. This is accomplished by calculating the

sufficient statistic for the person parameters, and in the -

gradient vectors with respect to each parameter, and the

Hesslan (matrix of second partials).

The details of the derivatiop of the estimation equations

is found inp Wright's work (e.g. Wright g Mead, 1977; Wright &
Stone, 1979), There is an inde:erminas?y in the model which
can be removed by impqs__{pg some sort o)/ normalization. oOQpe
way of normalizing is \t'oiéet an origin (say the difficulcy of
an item equals zero), or ser ga s%{éle (say the sunm of. all

difficulties e€quals unity). i

That maximum likelihood estimates are not consistent in

certain situatiomns has been known since 1948 (Neyman &
Scott). Thi\sj’:‘.\e\: the case for the Rasch Model when structural
Parameters ?\Eh\'e itenm difficulties) are estimated inp thé
presence‘!raf’ Ancidental parameters (the“person abilities). When
sample size ig increased the problem, of course, remains since
each neéw person brings a new incidental Parameter. 1f,
however, the estimation equating can be formulated in the item
parameters only, consistency and unbiasedne‘ss is assured

(Andersen. 1977). This can be done ig;‘there exists a minipal

2

Rasch model, raw Score is such an estimator.

ow s s B e I L N e ey
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Wright and Douglas(1977b) have shown bias to average

(over scores and items) k/(k-1). Applyifg this correction

factor to the difficulty estimates allows one to obtain
estimates that are, on average, unbiased and in simulalf.ions
seem to be similar to those obtained by the unbiased CML

method to be discussed next.

The following is an algorithm for the unconditional
estimation of item and Person parameters fronm Wright and

Douglas (1977b):

(1) Calculate s » theitotal number of correct responses
to item { and, nr the number of persons with raw
score r.

{2) Edit the dara to exclude zero or perfect scores for
both items and persons (i.e. rv = 0 or k and Si =
0 or n).

%
\

W
(3) Initialize a starting vector _tg_r as,

7 b o . log{r/{k-r)) for r = 1,... k-1, N
r . (3.2)

i

TUTLIad e e

(4) Initiglize a vector _cli, centered at d. = 0 as,

k ‘ . i
d-0=logll;.s.j_. -ZlogN"Si /k 1=1,...,k.
i -
S i S5

(3.3)

(5) Improve each estimate ii by applying equation 3.4

ﬂ P
r ko1 1 "
§4+1 .)J TSyt Z MePri -
AR dy- r {(i=1,....k)
k-1
. 4
- ool 00y B4

g A St AR L e et e
e Tt e At b e e s o i e R i o .t e ternsn o eapie

,Avi | f %§§ ) \
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until convergence 4t some reasonablea criterion,
say CRIT.
j+1 P
14,7~ ad | ¢ carr,
i i

where CRIT = g is a good value, and
J oL j j
pJ . lexp(b_ - dI /1 + exp{b_ - dJi}J
(6) Recenter the vector d. at d. = Q.

(7) Using the impreved vector d., apply egquation 3.5 rg
improve each br' - )

ri

&
r - Z pm,
i

W

o
3
-—

k 3
2
i

until convergence ar

\, :
m it
“ - Pr.;)

m+1

b7

L\ b | <icrrr /
RN m . Y
© where M . [exp{b? - di}]/[1+exp{bT - d ).

{8) Repeat steps (5) through (7) until successive
estimates of 34 become stable, thar is,

5 A+ 2
i :z:i (di di ]

4 i (9) Correct for bias

/k < (crITYZ,

by 2ultiplying each d, by (k-1)/x

p 5 (10) Calculace the br for those corrected d .,

i - —F

o : (11) Correct the bias by multiplying each b by
: 7 (k-Z)/(k-l) r

"

estimates of the standard
estimate frong the inverse

(12) calculare the. asymptoric
errors of difficulcy

apossible ways of obtaining the score L

i " i

=3
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Hessian (equation 3.§)),
-1/2
:E:F {anri[l Pri}} .

When the test score distribution ig symmetric and the

SE[d.] =
i (3.6)

tests are rather long, a very economical procedure for

approximating the UML wethod was devised by Cohen (1979).

The Conditional Maximum Likelihood Procedure (ML)

The following description of the conditional approach

follows closely that given by Gustafsson (1977).
o bl ~ o
Consider a given examinee“with the raw score rv;“
- .
torresponding to the person paramefer ev. The probability of
obtaining any raw score vector (Evi) given the person

parameter and the vector of item parameters is:

. a, . r a, .
k (e-vci) vi 0, vHai vi
P = T = “—]h‘*— .
Pila, o, ten= T 6 es (T+o,2.)
i=1 (3.7)

i
To be able to express thisg

probability as a conditional

probability of a given score r,» one must firstr know the

probability of;obtainiug score r, given ev._This latter
probability ig given by the sum of the probabilities of all
» that 15, the sum of

all terms described in (3.6) in which the vector a sums to

vi
r.

Any given score E on a set.of k items can be obtained in
(&) differentﬂuays$fh special notation is needed to express

elementary syimmetric function

this ina simple way. Define the

of order r in the parameters g, as:

i

«\:Z:;\
Vi
<

I

- ; . s M\».,,.“W,ﬁw»

s e b e o e e

E ey
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k ’
a .
wilegdi= B IT oV, (3.8)
Za s=r i=]

In the expansion of this sum of products, the summation is

made over those (#-) combinations in which

. a = Y. For
1 vl
simplicity, Yr

will be-used to denote the symmetric functien
of order r in the item parameters.

— 2
ite the probability of

and as:
v &

| k o)™ o
P{r‘fev,(ei)F Z I—I.-_VE_"___ L

=_-“-__- .
. . + .
Ia .= ois] l+9ve1 H (1 eve'l)
i i

This new notation allows ug to wr

obtaining the score T given ¢

; (3.9)

N
3

The condicional probability of obtain
with the total score 'rv, given the score

equations 3.7 through 3.9, yielding:

ing the vector 2,

rv is thus given by

I
a .

e. 9vi
Playgdloyeles  jop ™
P{(avi)[r,(ei)}= = o i

P{rlev:(e.‘)} Yl" (3.10)

Note that this conditional probability is not a function of
'ev, but only of the item parameters.

Using the assumption of conditional independence one can

now obtain the conditional likelihood of the data matrix A,

with elements {avi} for n persons yielding:

Q

4
N .

rasch Estimadion Puocedutos

.\;)\ k a
I | SR (3.11)
< n =1
As
, Y
v=} Ty

score r

Denoting n_ as the number of persons with raw 5y eni

r - this
(1,...,%k~1) and 5; as the score of item i (l,...,n

equation can be simplified to:

i=1 i. i=1
A = . =
n k-1 . n (3.12)
' Yp L v, r
v=1 v r=1

’ i ‘{=atcrs (CML) ecan
The Conditional Maximum Likelihood estimatzcrs ( S
fvzczion. To do
be derived from this conditional likelihood fu=z=c -
: i i wzh respect
this, take logs of both sides, differentiate wZz-h resp

e is vields
all the Efv and set them equal to zero. This

k-1 (i)
salogh s, E : Yol RS
- i=s, (3.13)
aEi E.i ’.=‘l YY'
//l i =h tial
4 1 i ‘tezcc-z the par
in whichv:‘the symbol Y(r-)l is used to de

. htz Fdzzivative is a
derivative of Y, vith respect to €+ Tnzz =< rs except
syommetric function of order.r-l in all carazetre " .

BTSRRI 4 set o
€ ;- From (3.13) one arrives at (3.14) w=icz are

nonlinear gquatiohs in the «e.

£
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k-1

S.= ne. (i) .

L E -'iiﬂ. (-1,...6), 3.4y
r=] YY‘

We can see that sin
ce t
he sum of the 54 equals thke syp of

] P
r

of equations to allow for j solution. Once again, this can pe

done iqya variety of ways, either by specifying ap origin or

by specifying a scale.

second order partial derivatives.# Fischer (1974) presents
three usefyl formulas for the compu
functions and their firse and

derivacivgs: (p. 242)

- i i
SRRURNE

(3.15)
b k

. (i)

r ifl £1Vr-1
and (p..250) G168
Yr(elon'icjet) = Yr(el‘.'.’et-l) + Ctyr_](el,..oyst_])
withOsrst,t=l,...,k . O <

. (3.17)

"
Equationsg (3.15) and (3.16) can be combined recursively to

give a Very eff!ci P ; o
ent algotlthm fo[ com utin the Yy o Ud the
g rk a

Yr_]. (Fischer, 18974, pp. 243—244;»Custafsson, 1977
?

[

2

g

0

N ]

Rasch tsiamation Preceduss 49
pp. 30-31). This algorithm is not numerically stable,
nowever, and it usually breaks down when there are more than

20 to 50 items.

Using (3.17) recursively it is, however, possible to
devise a numerically stable algorithm for computing the values
of the symmetric functions of all orders (Gustafsson, 1977,
PP. 31-31), and the derivatives can also be obtained if the
algorithm is applied with the parameter value set to zero for
the item or items with respect to which the differentiation is
made (Fischer, 1974, p. 250). This method allows computations
of the symmetric functions f;t very large sets of items, but
it has the drawback that the co&putations are quite cumbersome

\
and slow when there are ma@y items (more than 50 to 60, say).

However, as was shown by Gustafsson (in press {a)), it is
possible to devise an algorithm which is both fast and
accurate if (3.17) is used to compute the values of the
symmetric functions them§elves, and if (3.14) is used\fo
compute the values of the first derivatives. For those items
which have extreme parameter values the computations of the
first derivatives do break down, but since it is possible to
test for numerical accuracy, the derivatives with respect to
these items can be recomputed using (3.17) with the parameter

value set equal to zero for the item. ,

Having routines for computing the symmetric functions and
fheir derivatives it is a rather simple matter to solve
(3.14), using numerical procedures. One useful method is
Newton-Raphson's method (for the details, see Allerup &
Sorber, 1977; Andersén, 1972; Fischer, 1974; Wright & Douglas,
1977b). With this mechod only few iterations are needed, but

each iteratdon requires much computational work since the

VU second derivatives of the symmetric functions must be computed

and a (k-1)by(k-1) matrix must be inverted.

o
-
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Another useful method is based on a simple switching
between the right hand side and the left hand side of (3.13)
(Fischer, 1974, Gustafsson, 1977;

Martin-Lof, 1973; Wright &
Douglas, 1977a,b).

In this simple iterative method each
iteration requires relatively little computational work

,cbut.
on the other hand, convergenc

e is slow. However, convergence
may be speeded up through using the Aitken extrapolation
(Fischer, 1974, P

245; Fischer & Allerup, 1968; Gustafsson,
1277, p. 35),

Usually this extrapolation effects a very

considerable saving of iterations, and when it is applied sthis

simple method is in most cases much more effectcive than
Newton-Raphson's method.

It is impossible to give any generally valid guidelines
concerning the amount of cohpucer time needed to compute the
CML estimates, even for a given number of items, since that is

strongly affected by :ﬁe range of item parameters, and of

course also by which particular computer is used. However,

when there are no extreme item parameters, relatively little

computational work is needed if there is a moderate number of

items. For example, on an IBM 360/ 65, the item parameters in

imated within 3 to 4

and for a test with 60 items 15 to 10
seconds often s\gffice.3

a' test with 40 items can often be est
seconds of CPU~-time,

However, when there arg more than 80 to 100 items inp the

test a large amount of computational work is needed, which ig

due to the fact that the fastest method of computing the
derivatives of the symmetric functions is no longer available;

for most of the items the numerical breakdown occurs, which

“These estimates were obtained wit
written for the IBM 360/370.
on tape may be obtained at cos
Institute of Education,
2C Molndal, Sweden.

h a FORTRAN 1V program,
A copy of the program written
t from Jan-Eric Gustafsson,
University of Goteborg, Fack, 5-43}

u
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makes it necessary to use the much more cumbersome method

based on (3.17).

Estimating Abilicty

The estimation of person parameters {(ability) could be
tﬁought of as the dual of the estimation problem just so%ved
f;t the items. Thus we could set up a system of gquatlons
which parallel the item scheme (i.eixdgtermine a conditional
likelihood function on item score expressed only in person
parameters). This uo?}d then yield a set of equations:
e

1
iﬁ%—{(ﬁ—)—}— (v=1,...,0) e
TV 4y (o)) L= (3.18)

i=]

(from Fischer, /1974, p. 240). This/system of equations cgénot
be solved because it is noE possibﬂe to compute the symmetrii
functions in the ﬂv parameters. If we assume that t:e :::ae
situation holds, that is, chag the number of persons is :
in comparison with the number of items, we can treat the
estimates of the ftem parameters as fixed and,ggfimate the

PN T
“he et the
person parameters under this assumption. We tﬁ%& gej

N
equations shown in (3.19) to solve:

k
- Zerei (r:]’_,.fk"]).

. i=1]+9rei . (3.19)

\ ' )
ned in the
This is the same set of equations that were obtai .

i v has been
unconditional case, except that the subscript
he same
changed to 1, which is possible since persons having ¢
d -

{11t ations are
raw score are assigned the same ability. These equas

i
i
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efficiently solved using Newton~Raphson.

Recently Andersen and Madsen (1977) have presented
another approach to make inferences about the person
parameters. They define what they call the population
likelihood and show that ir is possible to estimate the
parameters of the distribution of person parametezs, assuming

a certain distribution function, such as the normal one.

This method has as yet only been used in illustrative
examples, but it shows great pronise for a wide range of

applications. Thus, it may be used to test the hypothesis

that the distribution of person parametérs is normal, and the

estimates of the mean and the variance of the latent
disCribu;ion would be estimates of the "true mean" and the
"true v#fiance." If the mean and the variance of the person
parameters estimated from (3.22) are computed for a group of
persons these would be estimates of the "observed mean" and
thg obse;ved variance." This, of course, makes possible a
direct method for estimating the reliability of the test for a
certain group of persons, i.e. through dividing the estimate
of the “true variance"” with the estimate of the "observed

variance.'

Information Function and Confidence Intervals

The asymptotic standard errors of the CML estimates of
the item parameters can be cdbtained from the inverse of the
Hessian, and if Newton-Raphson’s method is used to solve

(3.14) these 4re automatically obtained.
o

The standard errors for the estimates of the. parameters can -

be obtained from the Fisherian Information function. Thég

statistical information in the sample with réspect{to any
parameter ]I is defined as:

. ' 53
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1(n)- 02102y (3.20)
an

where A is the likelihood function (see equation 3.12).

4,
Birnbaum (in Lord & Novick, 1968, see Fischer,'l97

. . h
294 £f) has shown that the informatiom of item 1 wit

p- "
respect’ to the person parameter §  1S:
| EXP(EV'5i)
1.(¢. )= : .
A2, >
{1+exp(£v-6i)) (3.21)

7

. respect to the person
The information of a test [It] with resp

1
g is the sum of the information of each of the k
v

parameter
items: .
k i
exp(g £y i) .
(gy)= ]{]+exp(g -85 )} (3.22)

o
the
Similarly the information in the sample with respect to |

item parameters (Ip[ 61]) is:

n
exp(g,-8;)

1 (s.)= 2’ (3.23)
P Urexp(e, -6, ))

Ihe mMaximum 11kelih°0d estimates are asy"\ptOtiCally
; =33
normally distt‘ibuted With Standatd error equal to 1 .

Thus, confidence intervals arsund the item parameters can be
]
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constructed \Ywhen the . - . .. . ) . .
nWhen the nunber of axaninees ig large) in the For these tests the chi-square distribution has been relied

:

: usual way:

upon. The tests have, however, unknown asymptotic properties

) and sinulation studies indicate that even thousli the means of
H

| - f——— = the distribution match what is expected, the variances may

g * 8572 "1 (5.) Les. <5 1 (5.1 . ’

‘ T e TptY =0430;+4 Za p(°7) depart substantially (Mead, 1976).

? ’ . (3.24) On the basis of the CML approach it is, in contrast,

6 : . :

; possible to devise tests with known asymptotic properties.

g vhere za are the critical values obtained frop the normal There are several such goodness-of-fit tests available for the

distribution.

; Rasch model (Andersen, 1973; Hartin-Lof, 1973), each of which
When the test is a

is sensitive to different threats against the model
.~
N X say,30 or 40 items) ¢

t least of moderate length (more th
he asynm
sufficiently well for one

an

assunptions. :The tests are presented by Gustafsson, (Note 1y,
ptotic properties should hold =

. and for a fuller treatment of the goodness~of~fit problem than :
to make use of them in the !

: . 3 der is directed to this source.
determination of confidence can be afforded here, the reade :

*atervals around the person
parameters. These are:

Andersen’s Conditional Likelihood Ratio Test

: The logarithm of the conditional likelihood function was

é -z 's (€ )-1<€ e . 'qigw\ T used earlier and is:
vV a 't v - V"EV Zc‘ t\\:'f\z . - N
’ S ‘ : k-1
; ) (3.25) K S -
; loga= 2 s,;;,\logci- Z n. logy, .
v i=1 r=1 - (4.1)
0f course these confidence intervals apply only to a randomly | : ﬂ
chose ; ' \
"S€N person, and not tp 5 ®articular one “(see Lord & Novick, % : , .

1968, p. 512).

The task of the parameter ®stimation i¢ to maximize A in

(4.1). When this %Las been done, that is when the iten

T AR T - 2

parameters for the total sample have been estimated, one : ' : : "

!
i
H
!

inserts them in (4.1) and calculates the maximum of the log

likelihood function. This is denoted "t'
«+ Thus i

e If the model fits, it is expected that the same item
it to the

y

parameters should hold in all sub-groups of the person 3

- On the basig of the ML
(1969) and Mead (1976, Note 2

.
| i
A \ r:‘ | j

o sanple. Thus, one estimates the item parameters in all of the
approach Wright & Panchapakesan :

) ; \ k=1 score groups and the values of the log likelihood
)) havi\fons:ructed tests of fit, .

AL TR B . 1 i iam.

. function. These are then denoted Hr fr = l,eee,k=1]) and used
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to form the statistic:

(4.2)

This allows the test of fit¢ by using the Property that

~2log( 1) is asymptotically chi-square distributed
(k=1)(k-2) degrees of freedom.

with

Obviously this sort of test has limited application since

some 50-100 persons are needed within each score group.

Andersen also showed that the k-1 score gioups can be pooled

g nonoverlapping groups and the same statistic
formed for the g groups.

into, say,

The result is still distributed as

chi-square but now with (g-1)(k-1) degrees of freedom.

It is not necessary to divide fhe sample of persons into
Broups on the basis of their perfotmgnce--any disjoint

grouping of the sample can be used. But depefding on how the

frouping is done the test is sensitive go different violations

of the model assumptions. If the grouping is made according
to level of performance the test is sensitive to variations {n
the slopes of the ICC’s for the items.

If another grouping is
N
used, such as according to sex

» the test is sensitive to such
kinds of multidimensionality which show as ftem bias, that is,
that an item {ig Systematically too easy or difficult

Rroup of persons.

for a

Marein-Lof’s Chi-Square Test
2artin-lof’s

Martin-L&f (1973) has developed a chi-
overall :

group. The logic,of his test is as follows:

The number of individuals with raw score r is denoted "r'

Rason EA{mation Poeceduss

v tem i correct is
the number in the rth score group who get itew

i ‘rect answers
denoted n, . Thus, tlie observed proportion of corr
. " is n, /n_. The conditional
to item i within score group r i PRAL s
nsvers )

probability that a person with raw score r a e
’ s in/whic
correctly is equal to the number of response Yector ok )
al niamber o

item i is answered correctly divided by the tot )

that is,
response vectors which have a score of r,

€i'r-1
P{A =1 ]rs(e;))= m = v (4.3)
r

Thus, if the model fits, the relation

(1)
nir = Ein_'l
- , (4.4)
n Y .

Il

if
should‘hold for all score groups. Multiplying both SiZjZ;ZZ
this equation by n. we get an expression fg; the pi o
number of correct responses to each item for eac sc‘ s
group. If ;e define the vector of observed'frequefxcn.:f
qr"{nlr’an""'nkr}' and thg corresponding v;;::iest
predicted f;equencies (from 4.3) tr' the appropr

statistie is‘then:

k~1
. -1 -(t. )
1= :Ei {(qr}'(tr)} (I, (e (4.5)
v pa

3 3 3 1 oo - i trix Of
W h h p v variance—covariance ma
r . .
in hie the matrix,\\ 1s a -

A

o
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of the ICC’s may fai}l to’detec.t my

- Brouped into two disjdine sets.,

o

] ~for j=j
(4.6)

for i#j

The test statistic T ig asymptotically chi-square with
(k=1)(k=-2) degr/_ges of freedom. If some n. =0, the sumr;ation
in (4.5): must be restricted to those score groups that are
nonempty (say R of St)hem). If this is done,

freedom are then (k—l)(R—l).

the degrees of

..This test is sensitive to

variations in the slopes of the Icc’s and it ig asymptoticallv

equiv;&lent to the Andersen test, when the item parameters inp

the latter test are estimated within the score groups.

The Martin-Lof Test of Homogeneiry of Two Sets of ltems
—_— et omlof lest Zomogeneity of S 2= 0 ltems

The tests which are sensitive to variations in tha slopes

rxltidimens:ionality suc~h‘ that
different froups of items measure different Person parameters
However, Martin-L3f (1973) nas

presented a conditional likelihood rario test whi;_;h tests the

(Cus‘tafsson, Note 1),

hypothesis that two Aroups of items measure the same abilicy,

To compute the test it ig necessary

that the itens be
Let us say thac there are k

and. k2 items in the two sets, rcspectiveiy, and t}mc'k1+k7 =

k. FUrthermore, let N be the number of persons with raw
y 2

score r1 on the first set ‘and raw score r,

on the Qsecond set.

o

[E R,

When the item parametfers for the total set of k items are

estimated, a maximum of the logarithm of the conditional
likelihoog_} function is obtained (”t)’ and when the item

pargmeters are estimated for each. set separately, the

corresponding maxima Hl and }{2 are obtained. The following
test statistic can then be formed:
kl k2 k
. ) n'_ nr n
S 1 2 r t 14
= - + — tH, =, =N -
loga= -3 X "rr, 109 I N 10g - +H, -y -1,
ry=0 r_=Q r=0 )
1 2
. : (5.7

Martin-L3f (1973) hds shown that -2log(.l ) is approximately
chi-squate distributed with klk,)~1 degrees of freedom when n
tends toward infinity, - /’ 4

o

If the items are grouped according to leveli’)cr"r\"difficulty
this test is sensitive to variations‘? in levels of‘person
rléliy‘ability (cf. Lumsden, 1978). But the test can also be
applied with the items grouped according to two hypothesized
dimensions supposed to be running through the test_‘. In t}‘his
kind of application, the test of course investigatés ‘the
hypothesis thaLt tﬁe two groups c));'f items measures different

abilities.

V. SUMMARY AND DISCUSSION

Of the two estimation procedures discussed above in
detail, most researchers have been forced to use the
unconditional procedure when applyi'%g the Rasch model to testbs
of more than 20 to 30 items. An algorithm has now h;leen .
developed, which makes the conditio/;nal procedure a feas;‘;}ble

alternative to the unconditional method. , .

" A principal “advantage of the conditional procedure
appears to be the known asymptotic properties of the

estimates, which<allows the use of the goodr'\"ess-offfit tests
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cescribed earlier. We therefore recommend that as soon as a
thorough analysis of fit of the data to the model is judged

important, the conditional procedure, along with these tests,

should be used.

Another advantage of the ‘conditionral procedure is the
avaiiability of thea Andersen and. Madsen (1977) method for
estimating the paramete‘rs of the latent population
distribution, and for testing hypotheses about this
distribution. This methodology will most likely prove very
useful in those applications where inferences about groupsﬂof

persons are intended.

Extensive studies of differences between item
difficylties obtained through each .method have yet to be
done. Most likely, no important pz;actical differences between
the methods will be found. The unconditional method is in
rnost cases faster, so when cost is a serious issue there are
sometimes strong reasons to prefer this method rather than the
conditional one. This can be done profitably in cases when the

question of fit is of less importance, either because it can

’ confidently be assumed that the data fit the model, or because

the robustness of the model can be relied upon in the
solution of practical measurement problems. Furthermore, for
very long tests.(over 100 items, say) only the unconditional
method is feasible.

Developments on the Rasch model have been uﬁderway in
Europe and the United States for the past two decades.
However, mainly due to language problems European work has
been little known in the Unfited States. This paper was an

attempt to overcome this difficulty.
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