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It is quite clear that causal modeling has the potential to make important 

contributions to understanding the origins of criminality. In particular, 

multivariate latent variable analysis, expressed in such forms as simultaneous 

equations, path analysis, and covariance structure analysis, will provide 

important insights into the causal process underlying criminal behavior. 

These extremely versatile analytic techniques require varying amounts of 

theoretical specification by a researcher; with sufficient specification and an 

appropriate data base, a theoretically meaningful model can be derived, test-

ed, and revised iteratively. In the process, more exacting comparisons of 

two or more competing theoretical models of behavior can be made. As it is 

not possible to manipulate variables to evaluate causal influences in most 

criminal behavior research, and theory-testing is universally limited to non-

experimental, correlational efforts, the newer multivariate methods provide 

powerful analytic tools. 

By most standards, Joreskog's (Joreskog and Sorbom, 1978) full- infor-

mation maximum-likelihood LISREL model represents the state-of-the-art in 

such modeling procedures. While the LISREL model has gained acceptance 

and adherents in varied quarters, e.g., Bentler (1980), Bielby and Hauser 

(1977), Kenny (1979), there are competing modeling procedures such as 

two-stage least-squares (2SLS), three-stage least-squares (3SLS), and partial 

least-squares (PLS). Methods such as ordinary least-squares eOLS) , 2SLS, 

and 3SLS make some strong assumptions about the data (most notably, no 

measurement error) and occasionally require considerable ad hoc machinations 

in instances of overidentification, multicollinearity, etc., so as to obtain 

"best" parameter estimates. As few statistical tools are available for these 

least-squares methods, the researcher is forced to rely upon intuition, exper-

tise, and vague criteria of goodness-of-fit. 
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By contrast, the LISREL model offers some advantages over these least­

squares competitors, e. g., allowing for multiple indicators of latent variables, 

assessment of measurement error, simultaneous correction for attenuation, and 

a full-information maximum-likelihood solution. But it may not proiTide a 

completely satisfactory alternative. In addition to non-trivial computational 

costs, LISREL exacts assumptions of multivariate normality and larger sample 

sizes. While statistical tests for goodness-of-fit and hypothesis-testing are 

available in LISREL, it has been argued that they can be grossly affected by 

sample size and violations of distributional assumptions (Bentler & Bonett, in 

press; McGarvey & Graham, Note 1; Olsson, 1979). 

Wold's (1975) partial least-squares (PLS) has been presented as a alter­

native computational algorithm to LISREL. No distributional assumptions about 

manifest variables are required in PLS, and PLS can be used in single or 

multiple-indicator, recursive and non-recursive models (Jagpal & Hui, Note 

2). As the PLS estimation procedure involves a rapid, iterative ordinary 

least-squares algorithm, substantially less computational time and cost has 

been found for PLS as compared to LISREL. A non -trivial problem with PLS, 

however, is its unstated, ill-defined, and/or undefined loss function. While 

some unpublished efforts have been directed to a comparison of PLS and 

LISREL, no thorough comparison of the two methodologies has been pre-

sented. 

which is 

rithm. 

Such a comparison is important for many reasons, not the least of 

the potential computational savings associated with the PLS algo-

The purposes of the present, limited investigation, then, are as follows. 

Using a plausible, substantively meaningful conceptual model, the performance 

characteristics of the LISREL and the PLS algorithms were examined. In 

addition to the substantive interpretations which the results of each analysis 
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will provide, such performance criteria include: (a) stability of parameter 

estimates; (b) computational time; (c) sensitivity of estimates to non-normally 

distributed data; and (d) residual distribution characteristics. 

Substantive Model. Galliher and McCartney (1973) suggest that some of the 

variables most frequently studied as causes in delinquency research include: 

(a) social class of rearing environment; (b) educational attainment or school 

performance; (c) ethnicity; and (d) attitudes. 

While often observed, the strength of the negative SES-criminality rela­

tionship has recently been questioned (Tittle, Villemez, and Smith, 1978). 

And, although the relationship of socioeconomic status to later criminality has 

a prominent position in theoretical positions such as Cohen's (1955), empirical 

studies of this covariation in the United States are subject to the confounded 

effects of ethnicity and social class. To compensate, some have suggested 

within-race analysis (Willie, 1967). 

Another causal variable which historically has received varying degrees 

of attention in criminology is the concept of the "broken home" or "family 

status" (Wilkinson, 1974). While contradictory evidence has been obtained in 

testing the hypothesis, the home environment's impacts on juvenile delin­

quency form a critical part of theoretical statements such as those of Hirschi 

(1969) . 

Many elements can conceivablY generate intra-familial stress. While the 

press of personal economic and emotional needs may make the family envir()n­

ment more or less cohesive and affect the social bonds between parents and 

children, social issues outside the family may also impact on these inter­

personal relationships. In turn, these extra-familial social issues may affect 

the attachments, commitments, and beliefs (Hirschi, 1969) with which a child 

develops. Admittedly tenuous, this sort of "social strain" hypothesis may 
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provide a source of explanation for criminal behavior which is relatively 

orthogonal to the usually studied major influences, 

The related concepts of academic aptitude and educational attainment 

have been received with varying levels of interest and antagonism in cri­

minology (Hirschi and Hindelang, 1977), In many theories (e, g " Cloward & 

Ohlin, 1955; Cohen, 1955; Hirschi, 1969), the pursuit, receipt, and denial of 

academic rewards seem critical to the assimilation or rejection of middle-class 

virtues and standards, 

To many criminolOgists, however, the concept of inherited characteristics 

(particularly intelligence) leading to scholastic achievement or failure is view­

ed as theoretically anathematic (Polk.& Schafer, 1972). Objections. to such 

"traditional" criminological attitudes have stirred some controversy (Hirschi & 

Hindelang, 1977) and the issues merit continued empirical and theoretical 

investigation, 

In addition to these proposed causes of criminality, it might be that 

present, as opposed to rearing, social class is related to criminality, While 

this might be phrased in terms of lower SES leading to increased criminality 

either as a cathartic act, an equity restoration effort, or simply survival, it 

may also be that the consequences of criminality drastically limit social mobi­

lity, Alternatively, it might be argued that any covariation between present 

socioeconomic status and criminality is due to prior, common antecedents such 

as educational attainment, rearing social class, etc, 

While concepts such as parental social class, being raised in a "broken 

homel! , "social strain", educatl'onal attamm'. ent, d t' an curren socIoeconomic 

status do not exhaust the potential theoretical causes and correlates of 

criminality, there is every reason to believe that these constructs are of 

sufficient theoretical interest and import to merit further study. One poten-

-----------~--.----

5 

tial structural model which might explain the inter-relationships of these 

constructs is depicted in Figure 1. In brief, the constructs 

Insert Figure 1 about here 

parental socio-economic status, IIfamily status", and "social strain" are pre-

surned to impact directly upon educational attainment. The impacts of pa-

rental socio-economic status, "family status, I! and "social strain" on criminality 

and respondent's socioeconomic status are, according to this model, mediated 

by educational attainment, While an unknown amount of the covariation bet-

ween respondent's socioeconomic status and .. criminality is hypothesized as. due 

to their common antecedents, some residual covariation is assumed to exist, 

This description offers at least a skeletal operationalization of the model. 

While some subtle features require further explanation, we defer these issues 

until a later point in our discussion, 

Method 

Subjects, This study's samples were drawn from a true birth cohort, origi-

nally studied in an examination of criminality in XYY men (Witkin, Mednick, 

Schulsinger, Bakkestrom, Christiansen, Goodenough, Hirschhorn, Lundsteen, 

Owen, Philip, Rubin, & Stocking, 1976), This cohort consisted of all male 

children born during the interval 1 January, 1944 to 31 December, 1947 (N = 

31,436), whose mothers were Copenhagen, Denmark residents, 

As the purposes of the Witkin et al. (1976) study were substantively 

limited to the XYY chromosome issue, and Witkin et al. (1976) wished to 

maximize their chances of finding those with an XYY chromosomal pattern the 

most complete data (karyotyping, etc,) were compiled only for those equalling 

or exceeding 184 cm. in height. From these 4,578 taller subjects, complete 
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data for the present study could be found for 3,421 (75%). To effect a 

division in the sample for cross-validational tests, those subjects born on 

even-numbered days were assigned to sample A (N = 1,699 or 48%) while 

subjects born on odd-numbered days were assigned to sample B (1,772 or 

52%). 

Parental socio-economic status (JSESP). Using a scale based upon the 

efforts of Svalastoga (1959), the parental socioeconomic status was classified 

according to the father's occupation at the time of the respondent's birth 

(Psykologisk Institut Svalastoga Code). 

Family status (LHOME). This dichotomous variate was used to indicate 

whether the respondent _ was __ r.aised _in. the _standard. nuclear: family~ circum.": _ _ .. '_'"­

stances with both father and mother present (0 = No, 1 = Yes). 

Post-war interval (IWTIM2). To assess the impact of the "social strain" 

of war on later criminality, the length of time between subjects' date of birth 

and the date of German surrender (7 May, 1945) was compiled in days. 

(Subjects born prior to 7 May, 1945 were coded zero). As this definition 

yielded an extreme skew, the data was subjected to a logarithmic transfor­

mation, viz, 10*(Log 10 (X + 1». The implication tested here is that those 

born either during or immediately after hostilities were subject to greater 

"social strain," impaired attachments, social bonds, etc.) which would lead to 

greater impaired educational attainment and criminality in a later period. 

Educational Test Index (IBPP1). As a measure of aptitude and scJ;lo-

las tic achievement, the respondents' Borge Priens Prover scores (Rasch, 

1960) were obtained from the Danish army draft board's records. This test 

has been shown to have a correlation of .70 with a Danish version of the 

WAIS (Moffitt, Gabrielli, Mednick, & Schulsinger, Note 3). Because the test 

was administered after the respondents had completed their. schooling, and 

7 

because it is unclear to the authors to what extent this test measures either 

inherited aptitude or acquired knowledge, we feel safest in simply viewing it 

as a measure of educational performance. 

Amount of School (SCHOOL). Derived from two different measures, this 

variate assessed the respondents' number of years of schooling in two dif­

ferent ways: (a) number of years of school if no academic examinations were 

passed; and (b) approximate equivalence of academic level of successfully 

passed examinations. Thus, if a respondent had only nine years of formal 

education, but passed an examination appropriate for twelve years of school-

ing, he was given a score of twelve on this measure. 

Respondents' socioeconomic... statu.s ____ -_ .. Xh:;-ee .differenL._measures..._ .of. __ the 

respondents' socioeconomic status were gathered in the Witkin et al. (1976) 

study. One (ISES) was made on the subject as a young adult, prior to any 

personal interviews and attempted karyotyping. The other two measures 

(IHSES and IKSES) were asked as part of a later household interview. One 

(IHSES) corresponded exactly to the Psykologisk Institut Svalastoga Code in 

which the respondent's father was rated (JSESP). The other measure 

(IKSES), coded by K. O. Christiansen, was made according to Svalastoga's 

original scheme. The IKSES coding is not only in the reverse direction of all 

other SES measures used in this study, but it also is based upon different 

cutting points. (A high score on IKSES implies lower socioeconomic status). 

Criminality. Six measures of criminality were selected for this study. A 

logarithmic transformation of the number of arrests, i. e.) 10 *(Log 10 (X + 

1», was computed (NARRST2). A scale of age at first arrest (FIRSTARR) 

was constructed after an examination of the frequency distribution for this 

variate. These ages and their respective codes are: (a) ages 0 - 10, 1; (b) 

ages 11 - 14, 2; (c) age 15, 3; (d) age 16, 4; (e) age 17, 5; (f) age 18, 6; 

--
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(g) age 19, 7; (h) age 20, 8; (i) age 21,9; (j) age 22,10; (k) age 23,11; 

(1) ages 24 - 28, 12; (m) age 29 and never arrested, 13. 

The other four measures of criminality in the present study were ori-

ginally constructed by D. R. Owen in the Witkin, et al. (1976) study but 

were never used. For each of four sections of Danish penal code violations, 

Owens attempted to rank the severity of sanctions the violators received, 

either in terms of jail time or fines paid. The most severe of the sanctions 

which a respondent received for violations of the four sections of the Penal 

Code were recorded as the four sanction weights (SRWTl, SRWT2, SRWT3, 

SRWT4) which the present study will employ. Although K. O. Christiansen 

expressed doubts. about the .. comp.arability _0£_ s.anctions_ adnrinister:ed.for ~similar_ .... ,.~_ 

offenses in different regions of Denmark, we feel the multiple measures we 

are using to represent the criminality construct can offset some of this pro­

blem. The manner in which these weights were derived, however, leads to 

another possible test of LISREL and :PLS differences in parameter specification 

and estimation. 

Measurement Model Specification. While Figure 1 depicts the relation of 

measured ,rariables to latent variables (the measurement model), as well as the 

inter-relations of the unmeasured constructs (the structural model) a brief 

description of the measurement model seems in order. 

The constructs -- parental social class, being raised in a "broken home" 

and "social strain!! -- are represented here by the measures JSESP, LHOME 

and IWTIM2, respectively. The concept of !!educational attainment!! is opera­

tionalized as a factor on which the measures IBPPI and SCHOOL have the 

only non-zero loadings. Respondent's socioeconomic status is measured by 

the three Svalastoga-Psykologisk Institut measures, IHSES, IKSES, and ISES. 

Respondent's criminality is viewed as the factor which underlies the measures 

9 

NARRST2, FIRSTARR, SRWTl, SRWT2, SRWT3, and SRWT4. Because the 

four sanction weights were derived in a similar manner, and because such a 

parameterization seemed an important way of testing possible LISREL/PLS 

differences, it seemed appropriate to permit correlated residuals among the 

sanction weights. Having the two additional indicators of the criminality con­

struct will allow sufficient degrees of freedom to insure that minimally neces­

sary identification conditions are met. 

While such a measurement model is relatively straight-forwardly imple­

mented in LISREL IV, it is not so easily transmuted into PLS terms. 

Boardman, Hui, and Wold (in press) claim -- erroneously -- that the LISREL 

program does not permit corr.elated _errors ,....hu.t.-t..~at.-the.,.PLS_ . .alg.otithm_.do.es.~~ 

Furthermore, in Hui's (Note 4) PLSFP program documentation, it is unclear 

how such correlated residuals are to be specified for estimation. It should 

also be remarked that the residual covariation (or partial correlation) of the 

respondent's socioeconomic status and criminality constructs can not be very 

clearly parameterized in Hui's (Note 4) program. It remains, in short, un­

clear to the authors whether or not these terms are (a) estimable in Hui's 

(Note 4) PLSFP; (b) being estimated in Hui's (Note 4) PLSFP, but ignored; 

(c) absent in Hui's (Note 4) PLSFP computations. For present purposes, we 

will make assumptions (a) and (b). 

Results 

Descriptive Statistics. Summary statistical comparisons on each of the four­

teen measures are presented in Table 1. Inspection of these data 

---------------------------

Insert Table 1 About Here 

---------------------------

suggests two different conclusions: (a) none of the variates appear to be 

-
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normally distributed; and (b) sample A and sample B do not seem to differ 

greatly. By the Kolmogorov-Smirnov 12.-statistic, the probability of obtaining 

a D-statistic larger than that obtained for each variate is E < .01. It 

would thus to be difficult to claim that these data in anyway meet univariate, 

much less multivariate normal distributional assumptions. Multivariate analysis 

of variance corroborates the conclusion of no sample differences, Wilks' crite­

rion F (14,3406) = .77, p = .70. A n exception to this is the variate 

SRWT3. Of th.e 3,421 males in samples A and B, only 13 had a non-zero 

SRWT3 score; 10 of these thirteen were assigned to sample A. Sample A, 

then, has a slightly higher mean severity of sanction here (.004 vs. .001; 

Duncan's test, E..< ... 05). .other statistics_in.~Table 1, . .particularly.- the. kur-~~ ._, 

tosis and coefficient of variation , complement the conclusion that SRWT3 has a 

very peculiar distribution. 

While we cannot, of course, logically establish the equivalence of Samples 

A and B in this manner, it is difficult to argue that they differ very much 

either. 

Structural Model Analysis. As Joreskog (1978) and others have argued, most 

appropriate uses of the chi-square goodness-of-fit test in confirmatory cova­

riance structures analysis are model comparisons. To effect such a compa­

rison, and to provide an alternative goodness-of-fit index, Bentler & Bonett 

(in press) have proposed a series of general model comparisons and a 

(delta) statistic. Table 2 summarizes the LISREL results for four such mo-

dels. Note that no PLS statistics are provided becau.se no such general 

models have been developed for PLS. 

Insert Table 2 About Here 
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The first model listed for each sample is a so-called "null" model, which 

postulates no covariation whatsoever among the observed variates. The mag­

nitude of these chi-squares suggests that complete independence is not a very 

tenable hypothesis. Next, a test of the hypothesis of uncorrelated factors 

(Sample A, x2 = 2599.3174, 91 df., p < .0001, ~ = .784; Sample B, i = 
2517.1851, 91 df., p < .0001, ~ ::: .792) suggests two conclusions: (a) the 

variates chosen to represent the factors seem to be doing a reasonably good 

job; and (b) at least some of the factors are intercorrelated. 

The next listings in Table 2 are the goodness-of-fit indices associated 

with the hypothesized model (Figure 1). While the chi-square tests in both 

2 
samples suggest a rather poor fit, (Sample A, x· = 491. 0784, - 68df .. ~ p. < 

.0001; Sample B, i = 420.2346, 68 df., P < .0001), the respective Bentler­

Bonett ~s suggest that this conclusion may be more a function of sample size 

than quality of fit (Sample A, b,. = 959' 'V • , Sample B, ~ = .965). That sub-

stantial improvements upon the hypothesized structural model are limited is 

illustrated by the last of the goocL"less-of-fit tests listed in Table 2. The 

model tested here postulates an oblique factor model, which permits the con-

structs to covary freely. While the chi-squares have dropped significantly in 

both samples, the ~ coefficient in both samples has increased .004. To 

summarize, the hypothesized model may not be the only, nor necessarily even 

the best possible model for this data -- but it cannot be rejected as a com­

pletely unreasonable representation either. 

Parameter Estimates. Tables 3 and 4 present the maximum-likelihood para-

meters, their standard errors, the standardized maximum-likelihood estimates, 

the partial least-squares estimates, the partial least-squares estimates' stan­

dard errors, the partial least-squares/two-stage least-squares parameter 

estimates, and their standard errors for samples A and B. (It should be 
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noted here that the maximum-likelihood or LISREL estimates for the l,i 

. h B tl ' (1980) "RO notation; this matrix are presented in accord Wlt . en er s '"i\. 

makes the direction of their relatlOns compara e 0 ne
u 

. bl t t' ~. coefficients pro-

duced by PLS.) 

---------------------------------

Insert Tables 3 & 4 About Here 

---------------------------------
Substantive InterpretatlOn. . In addition to the previously stated conclusion 

about the adequacy of the measurement model, the coefficients in Tables 3 & 4 

lead to the following substantive inferences: (a) parents' SES seems to exert 

a positive, significant . influence... -on.--.e.ducational ...perf{)rman.ce..-Ce ... g..~;>-,,-in, _ the . 

sample A LISREL parameters, 1-'4,1 =. , .. _. , R 446 S E - 022) . (b) being raised in 

an environment with both parents present similarly has a positive, significant 

influence on educational performance (e.g., 13
4

,2 = .068; S.E. = .022); (c) 

date of birth in relation to date of German surrender does not appear to be 

significantly related to educational attainment (e.g., 13
4

,3 = -.039, S.E. = 

(d) later socioeconomic status is greatly influenced by educational .022); 

812 S E 018) · (e) lowered educational attain-attainment (e.g., 135 4 =. ; .. =. , , 

ment is signific~tIy associated With greater criminality (e. g., 13
6

,4 = -.399, 

S . E. = .024); (f) after con trolling for parents' SES, being raised in a rrbro­

ken home", rrsocial strain", and educational attainment, the partial correlation 

between criminality and socioeconomic' status is non-significant (in Sample A, 

001 S E = .014; in Sample B, tJ.I6 5 = .006; S.E. = .014). tjJ6,5 = -. ; .. , 
Estimate Stability. Inspection of these coefficients reveals a high degree of 

comparability among the LISREL and PLS estimates both Within samples and 

way of quantifying this between samples. As a not altogether appropriate 

impression, the comparable LISREL and PLS parameter estimates from Samples 

13 

A and B were correlated. The intercorrelations of these varying numbers of 

parameter estimates are given in Table 5 . 

---------------------------

Insert Table 5 About Here 

---------------------------

Inspection of Table 5 reinforces the impression that these parameters are 

highly similar, both Within and between samples. 

But inspection of Tables 3 and 4 leads to at least three other conclu-

sions. Firstly, despite slight differences in parameterization in the LISREL 

and PLS solutions, there are great many parameters that LISREL provides 

which PLS does not. Sp.ecifically..,_.th.es.e...~are .th.a. .measuremenL...er.ror..~1erms.,. A_ 

~e· Additionally, the tjJ4,4 - tjJ6,6 terms in PLS were hand-computed, as 

PLS provides only estimated ~ 2 
tl..cms for the endogenous constructs. 

Because PLS operates on the assumption of constructs having unit variance, 

the tjJ 4,4 - tjJ6, 6 terms were computed by subtracting the appropriate ~ 2 
from 1.0. 

Thirdly, the AU, 6 - 1..
14

,6 maximum-likelihood estimates are 

uniformly depressed relative to the comparable partial least-squares parameter 

estimates. While not examined here, it should be noted that when no corre-

lated residual terms w'ere included in the LISREL model, these maximum-like-

lihood estimates were similarly inflated. Other than this discrepancy, the 

parameter estimates do appear to be very similar. 

Computational Tiine. All computations were performed on an I. B . M. 3033 in 

an M.V.S. configuration. PLS computations were done in VS-APL, using 

rithm derived its parameter estimaLes relatively rapidly, averaging approxi-

Hui's (Note 4) PLSFP program. As expected, the partial least-squares algo-

mately .8 seconds of C. P . U. time. 
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Even with this problem of relatively modest magnitude, however, the 

LISREL algorithm took much longer to derive a solution. With appropriate 

LISREL ~ elements fixed at 1. 0 to set the latent variables' metrics, and 

all other free parameters starting at .1, LISREL required 4.87 seconds of 

C . P . U . time (initial loss function value = 43.2, final loss function value = 

.15). Instead of all possible output, requesting only minimal, default output 

cut LISREL's C.P. U. time in this case to 4.00 C.P. U. seconds. 

To examine the effects of more optimal starting values, the maximum­

likelihood parameter values obtained in Sample A were used as starting values 

in Sample B. This reduced C. P . U. time somewhat, to 3.45 C. P . U. seconds 

( . 't' 1 1 functl'on TTalue - 18 final la.ss.Junction . .:value =_.12). ..with the __ illl la oss _ __,v, .,.. __ . .., 

improved starting values, and only minimal output requested, LISREL's 

C . P . U . time in the Sample B solution was reduced to 2.53 C. P . U. seconds. 

It appears, then, that PLS can derive its estimates much faster than 

LISREL, regardless of starting values or requested output; the magnitude of 

this difference should probably increase greatly with models of greater magni­

tude and/or complexity. Secondarily, and not unexpectedly, good starting 

values can speed up LISREL's estimation. To some degree, a comparison of 

PLSFP and LISREL C. P . U. times is not completely appropriate. As PLSFP is 

an APL program, and LISREL is a FORTRAN program, obviously different 

compilers are invoked for computations. 

Sensitivity of Parameter Estimates to Non-Normality. As Tables 3, 4 and 5 all 

indicate, both the LISREL and PLS estimates appear rather stable despite the 

presence of clearly non-normal data. Exceptions to this stability are the 

maximum-likelihood and partial least-squares estimated factor loadings for the 

variate SRWT3 (viz., A13 6)' These estimates differ from zero in the two , 
PLS solutions and the Sample A LISREL solution. Note however that the 

j 
I 

:/ 
'j 
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Sample B LISREL estimate of this parameter neither differs significantly from 

zero, nor shares overlapping confidence intervals with the Sample A estima­

tes. It should be recalled here that this variate displayed a very peculiar 

univariate distribution, with an extremely large kurtosis relative to other 

variates in the model. It remains questionable as to whether this is the source 

of the observed differences. With this exception, the other parameter esti­

mates appear t,o be relatively robust. 

Residual Distribution Characteristics. Because the PLS loss function is so 

ill-defined relative to the LISREL or maximum-likelihood loss function, and 

because Hui's (Note 4) PLSFP program is apparently restricted to providing 

solu tions only in .. correlational, .metcic ,_,.the- _degr.ee..._tod:which.residual...cor.r_ela=.,._~_ ... ,," 

tions for these algor~thms and this model can be examined is rather limited. 

In addition, although Boardman, et. al. On press) provide a formula for a 

reproduced ~, or predicted covariance matrix, based upon the parameters 

which PLS computes, Hui's (Note 4) PLSFP program provides neither measu-

rement error estimates nor a reproduced ~. As a result, a correlational 

matrix of full rank cannot be reproduced from the obtained PLS estimates, 

without substituting a set of estimates based upon the assumption of unit 

variances in the observed variates. This makes either matrix-wise analysis of 

the reproduced correlations, or covariances, impossible in PLS; as a result, 

neither least-squares, generalized least-squares, nor maximum-lil<:elihood 

criteria can be adequately tested with just the PLS estimates provided in 

Hui's (Note 4) routine. 

Several steps were taken to compensate. First, the obtained PLS para­

meter estimates were substituted into the Boardman et. al. (in press) FOlmula 

6; while there are some slight notational differences, this formula is very 

comparable to the reproduced ~ formula which Joreskog & Sorbom (1978, p. 

5, Formula 4) provide. 
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To. denete their LISREL-like fennulatien, we label these repreduced ~s 

PLSL(A) and PLSL(B). Because we have derived an alternative repreduced 

fennula (see Appendix), the PLS estimates in Samples A and B were used 

to' cempute an additienal pair ef repreduced ~'s. Fer cenvenience, we label 

these PLS (A) and PLS (B). 

In additien to' these feur repreduced matrices, the analegeus rep reduced 

2:s frem LISREL--labeled LISREL (A) and LISREL (B)--were alSo. cemputed. 
~ 

The ebserved Sample A, Sample B, and the repreduced matrices are shewn in 

Tables 6, 7, 8, and 9. 

--------------------------------------------------
Insert Tables. a, .. 7.,...8 , . .and 9. about .her:e." .,., .. , 

--------------------------------------------------
In a series ef cemparisens, the ebserved Sample A and Sample B cerre­

latien matrices were subtracted frem these six repreduced matrices. Fer 

anether cemparative baseline, the Sample A cerrelatien matrix was also. sub­

tracted frem the Sample B cerrelatien matrix. The lewer triangular elements 

ef each ef the thirteen res1.dual cerrelatien matrices were written as a vecter 

ef 91 ebservatiens and subjected to' descriptive statistical analysis. Summary 

s~atistics fer these residual distributiens' characteristics are presented in 

Table 10. 

------------------------------

Insert Table 10 abeut here 

------------------------------
Because nene ef the first mements ef these distributiens differed signi­

ficantly frem zero., first mements are net previded. Instead, the findings 

have been rank-erdered en the basis ef the standard deviatien ef the resi­

duals within validatien and cress-validatien samples. All residual distribu-

'I 

I 

I 

\ 
I 
.1\ 

i\ 

\ 
\ 

\ 
'\ 
J 

1 
1 
j 

,\ 
:1 
':1 

I 
1 
I 
I 
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tiens were reughly single-peaked, with little skew and varying degrees ef 

kurtesis. Based upen these secend mements' reets, it is ef interest that the 

LISREL-repreduced ceefficients, beth in validatien and cress-validatien, seem 

to' de a better jeb ef fitting the ebserved cerrelatiens than either PLS fennu-

latien. 

As a further, mere apprepriate test ef the LISREL algerithm, the pestu-

lated structural me del parameters were estimated in a cevariance metric. As 

with the prier cemputatiens, the lewer triangular elements ef the five residual 

cevariance matrices--plus the feurteen diagenal elements-- were written as 105 

element vecters and subjected to' similar descriptive statistir.al analysis . 

The maximum-likeliheed.10.ss functien .Vias .. .alse -cemputed.for-.the .-cevar.i:::. -_. -. -

ance validatien medels and data, and fer the cevariance cress-validatien 

medels and data. As an additienal index ef fit, the Bentler-Benett ~ was alSo. 

cemputed. Finally, a maximum-likeliheed test fer equality ef cevariance 

matrices (Merrisen, 1976, p. 248, Eq. 3) was applied to' the ebserved ceva-

riance matrices frem Samples A and B. The summary statistics fer the ceva-

riance cemparisens are presented in Table 11. 

Insert Table 11 about here 

Turning to' the descriptive statistics first, it sheuld be neted that nene 

ef the first mements ef the residuals differed significantly frem zero.. The 

distributiens were again generally single-peaked, extremely leptekurtic, and 

centered en zero.. 

At least in cress-validatienal terms, Table 11 tends to' deflate cenclusiens 

ef adequacy ef fit. While the X2 and ~'s tests in the validatien samples are 

very high, and cencur with these ebtained in the cerrelatienal analysis (see 
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Table 2), the chi-squares and ~IS computed :in cross-validation have shrunken 

rather drastically. It is of interest to note, however, that the proposed 

structural model for Sample A predicts the Sample B covariance matrix (~ = 

.838) somewhat less well than the observed Sample A covariance matrix pre-

dicts the sample B covariance matrix (~ = .865). Similarly, the proposed 

structural model for Sample B predicts the Sample A covariance matrix (~ = 
.625) somewhat less well than does the observed B covariance matrix (~ = 

.661). 

DISCUSSION 

Substantive Model Implications. The results of these several tests support 

the conceptual viability- of ... the __ prop.osed- structuraL .modeL-1n.~ most.....regar.ds.-;.'-

with two notable exceptions. The concept of IIsocial strain
ll 

may have some 

intuitive appeal, but at least as operationalized here, it does not seem to 

contribute very much to educational attainment, criminality, or later socio-

economic status. Secondly, it is of some interest that the partial correlation 

between criminality and socioeconomic status (t\l6 5) is negligible. This argues , 
very strongly for determination of, and generating policy impacts upon, 

common antecedents such as educational attainment. 

Parental socioeconomic status does seem to play a major contributing role 

in the determination of educational attainment, and thus indirectly upon later 

socioeconomic status and criminality. Being raised in a IIbroken home
ll 

seems 

to contribute relatively less to these outcomes. 

Finally, while it may be unique either to the culture or the operationa-

lizations we have chosen, the very high proportion of variance accounted for 

:in respondent socioeconomic status (approximately 70%) is somewhat remark-

able. Comparable examinations in standard social mobility models in a recent 

U. S. -Mexico comparison were in the neighborhood of 20% to 30% (McGarvey, 

\ 
1 
'1 
,\ 
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\ 
'j 

\ 

\ 
'\ 
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Fairbanks, and Sukoneck, Note 5). 

performance remain unclear. 

The reasons for such relatively good 

seems 0 account for some 12% to 15% of the By contrast, the model t 

variance in criminality. Whil e this is certainly limited relative to the status 

attainment component described b a ove, it is not altogether unrealistic for 

similar sorts of structural models . ill criminology: 

Methodological Criteria. Despite patently obvious violations of multivariate 

normality distributional assumptions, both LI SREL and PLS seem to provide 

reasonable, replicable results. PLS seems to provide most of the important 

parameter estimates in considerably less computational time, but with some 

loss in both capabilities.of- complex. .. par:ameterization......aru:i . . ..In.....ter:ms of., fitting ~ 

the observed correlation matrix. How critical these absent parameters, less 

complete parameterization, and increased error components are, relative to 

computational cost advantages, will depend upon h t e particular structural 

model under consideration and user preferences. 

An area for further examination would involve developing a PLS-LISREL 

interface. In this manner, the PLS estimates could be used as relatively 

optimal starting values for the LISREL solution. Under a VSAPL computa-

tional configuration, such an interface could be established in fairly straight-

forward terms. 

The adequacy of PLS in certain cases where LISREL shows clear advan-

tages, such as parameter constraints, multiple-group analysis, and covariance 

metric analysis, is yet to be developed. Such developments, in conjunction 

interface, could permit expanded applications of both with a PLS-LISREL 

techniques. 

The LISREL algorithm, it seems, suffers most clearly ill comparison to 

PLS in computational costs. "If some option were available to the LISREL user 
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to permit a II rougher " , less precise solution, this would help--particularly in 

more exploratory applications. Presently, the only relevant option is to set 

the C. P . U. request at a minimal level; what we are proposing is that stopping 

criteria, or changes in the loss function be under more direct user control. 

This wi}l prevent several iterations of the algorithm with little or no loss 

function change. 

I 
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\ 

\ 

\ 
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5. 

21 

Reference Notes 

McGarvey, B. & Graham, J. W. A note on identification issues in 

LISREL. Unpublished manuscript, University of California, Los 

Angeles, 1980. 

Jagpal, H. S. & Hui, B. S. Consumer behavior models with unobserv-

abIes: Measurement reliability, internal consistency and theory 

validation. Proceedings of the American Marketing Association 

Annual Meeting, Chicago, Illinois, 1980. 

Moffitt, T. E., Gabrielli, W. F., Mednick, S. A., & Schulsinger, F. 

Socioeconomic, status "_. IQ. . .and _.delinquency:~_~~ lIn published .. manuscrip t,._ ~ 

University of Southern California, 1980. 

Hui, B. S. The computer program PLSFP. Unpublislled manuscript. 

Rutgers, The State University of New Jersey, 1979. 

McGarvey, B., Fairbanks, D. T., & Sukoneck, H. Status attainment in 

two national-origin groups: Use of a common structural model. 

Presented at the Southwestern Social Sciences Association Annual 

Meeting, Houston, Texas, 1980. 



22 

References 

Bentler, P. M. Multivariate analysis with latent variables: Causal modeling. 

Annual Review of Psychology, 1980, 31. 

Bentler, P. M & Bonett, D. G. Significance tests and goodness of fit in 

analysis of covariance structures. Psychological Bulletin, in press. 

Bielby, W. T. & Hauser, R. M. Structural equation P1odels. Annual Review 

of Sociology, 1977, ~, 137-161. 

Boardman, A. E., Hui, B. S., & Wold, H. The partial least squares-fix 

point method of estimating interdependent systems with latent variables. 

,9ommunications in Statistics, Theory and Methods, in press. 

Cloward, R .. & Dhlin, ... L_ .. Delinquenc~r,.andQp.portunity. .. ~ .. Glencoe.,.:-..Ill:inois.:.... ... loU·'."~: 

The Free Press, 1960. 

Cohen, A. K. Delinquen t boys: The culture of the gang. Glencoe, Illinois: 

The Free Press, 1955. 

Galliher, J. F. & McCartney, J. L. The influence of funding agencies on 

juvenile delinquency research. Social Problems, 1973, 21 (1), 77-89. 

Hirschi, T. Causes of delinquency. Berkeley, California: University of 

California Press, 1969. 

Hirschi, T. & Hindelang, M. J. Intelligence and delinquency: A revisionist 

review. American Sociological Review, 1977, 42, 571-587. 

Joreskog, K. G. Structural analysis of covariance and correlation matrices. 

Psychometrika, 1978, 43, 443-477. 

Joreskog, K. G. & Sorbom, D. LISREL IV Users Guide. Chicago, Illinois: 

National Educational Resources, 1978. 

Kenn y, D. A. Correlation and causality . New York: Wiley, 1979. 

Morrison, D . F . Multivariate statistical methods (2nd ed.). New York: 

McGraw-Hill, 1976. 

------ ,._- ------~--------~-

23 

Olsson, U. On th b 
e ro ustness of factor analysis agam' st 

crude classification 
of the observations. MI' 

_u-...:ti:...:.v-=a=-r;::ia:..:t:.:::e:..-=:B:-=e~h~a~v.=:io~r~al~~R~e~s~e~ar~c~h , 1979, 14, 485-500 . 
Polk, K. & Schaf€:r, W. E. Schools and 

Jersey: 
__ -=:;::-...=:=.::::::.......:::d::::e:=:lin~g~u~e::!n~c~y . Englewood Cliffs, New 

Prentice-Hall I 19 , nc., 72. 

Rasch, G. Probabilistic models for some . 
mtelligence and attainment. tests. 

Copenhagen: Da' hI' 
filS nstItute for Educational Research, 1960. 

Svalastoga, K. 

Tittle, C. R., 

Prestige, class and mobility. Copenhagen.' 
- Gylclendal, 1959. 

Villemez, W. J., & Smith, D. A. 
The myth of social class and 

criminality: An empirical assessment of the empirical evidence. American 
Sociological Review, 1978, 43, 643-656. 

Willie, C. V. The relative 
contribution .of family.-status-_and-economic . status 

to juvenile uelinque S· _.-,,- -~,~." •. -
ncy. oClal Problems, 196,7, 14 (3), 326-334. 

Wilkinson, K. The broken family and juvenile delin 
quency: Scientific ex-

planation or ideology? 
Social Problems, 1974:, 21 (3), 726-739. 

Witkin, HAM dn' . . , e lck, S A Schul' . . , smger, F. , Bakkestrom , E. , 
Christiansen, K 0 G d 

. ., 00 enough, D. R., Hirschhorn, K., Lundsteen 

C., Owen, D. G., Philip, J., Rubin, D. ' 
B ., & Stocking, M. XYY and 

XXY Criminality and aggression. men: 
SCience, 1976 193 , -' 547-555. 

Wold, H. Path models with latent variables: 
The NIP ALS approach. 

M. Blalock, A. Aganbegian, P. M. Borodkin , 
In H. 

R. Boudon, & V. Capecchi 

Seminar Press, 1975, pp. 
(Eds.), Quantitative Sociolog~. 

307-357. 
New York: 



r 24 ~I 

r 
Table 1 

Univariate Descriptive Statistics for LISREL - PLSFP Comparison 

Coefficient of 
Minima Maxima Mean Variance Skewness Kurtosis Variation 

Sample A B A B A-- B A B A B A B A B 

Variate 

JSESP 1 1 7 7 3.61 3.66 2.89 2.80 
, 
.2 .2 - .6 - .6 47.2 45.8 

LHOME 0 0 1 1 .89 .88 .10 .11 -2.4 -2.3 3.8 3.5 36.1 37.0 

IWTIM2 0 0 29.8 29.8 16.42 16. ','7 158.51 160.24 - .4 - .5 -l. 7 -l.6 76.7 75.5 

IBPPI 1 1 9 9 5.49 5.49 4.19 4.04 - .1 - .1 - .6 - .6 37.3 36.7 

SCHOOL 5 5 12 12 10.16 10.17 2.93 2.82 - .7 - .7 - .8 - .8 16.9 16.5 

IHSES 1 1 7 7 4.49 4.51 3.10 2.95 .1 .1 -l.0 - .9 39.2 38.1 

IKSES 3 3 9 9 6.11 6.08 l.09 l.09 - .5 - .5 - .0 - .2 17.1 17.2 

ISES 1 1 7 7 4.26 4.25 2.92 2.75 .3 .3 - .8 - .7 40.1 39.0 

NARRST2 0 0 15.9 13.2 l.34 l.27 5.83 5.38 2.1 2.0 4.8 3.7 180.0 183.1 

FIRSTARR 1 1 13 13 11.56 11.62 7.85 7.44 - 2.0 - 2.0 3.0 3.1 24.2 23.5 

SRWTl 0 0 .9 .9 .06 .05 .04 .03 3.3 3.4 9.2 10.4 330.8 338.8 

SRWT2 0 0 .8 .8 .02 .02 .01 .01 6.3 6.4 39.0 40.5 633.8 642.9 

SRWT3 0 0 .9 .6 .00 .00 .00 .00 14.0 24.6 198.3 611.4 1340.2 2442.5 

SRWT4 0 0 .9 .9 .04 .03 .02 .02 3.8 4.2 13.1 16.9 389.5 429.4 
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Table 3 

LISREL and PLSFP Estimates, Sample A 

PARAMETER M.L. M.L.S.E ST.M.L. PLS PLS S.E. PLS 2SLS PLS 2SLS S.E. 
Table 2 

All 1.000* 0.000 1.000 1.000 0.000 
Fit Indices for Hypothesized Covariance Structures 

, 

A 2 2 1.000* 0.000 1.000 1.000 0,000 

l 
, 

A 3 3 1.000* 0.000 1.000 1.000 0.000 
SamEle A SamEle B 

, 

:1 - A 4 4 1.000* 0.000 0.972 0.964 0.007 , 
2 2 :J 

0.884 0.017 0.860 Model L df E fj, L df E fj, 

'1 
A 5 4 0.952 0.008 -- , 

Null 12042.74 91 <.001 12088.60 91 <.001 A 6 5 1.000 0.000 0.945 0.955 0.007 
\ , 
l 

Orthogonal 2599.32 74 <.001 .78 2517.19 74 <.001 .74 1 A 7 5 -0.836 0.019 -0.790 -0.861 0.013 

1 
, 

Hypothesized 491.08 68 <.001 .96 420.23 68 <.001 .97 1 A 8 5 0.915 0.017 0.864 0.905 o.on 

1 
, 

Oblique 449.11 59 <.001 .96 375.88 59 <.001 .97 A 9 6 1.000 0.000 0.991 0.924 0.009 
1 , 
I 

oj 

AID 6 -0.871 0.018 -0.864 -0.865 0.012 ! 
I , 
! 

, ; 

An ,6 0.661 0.021 0.656 0.820 0.014 I 
·t 
I 

A12 6 0.345 0.024 0.342 0.452 0.022 I , 
I 

A13 6 0.288 0.024 0.286 0.023 :J 0.381 , 

A14 6 0.491 0.023 0.487 0.655 0.019 , 

r f3 4 1 0.446 0.022 0.459 0.446 0.022 0.446 0.022 , 

f3 4 2 0.068 0.022 0.070 0.061 0.022 0.061 0.022 , 

f3 4 3 -0.039 0.022 -0.040 -0.034 0.022 -0.034 0.022 , 

f3 5 4 0.812 0.018 0.836 0.777 0.016 0.883 0.050 , 

f3 6 4 -0.399 0.024 -0.391 -0.369 0.023 -0.379 0.054 , 

tjJ 1 1 1.000 0.035 1.000 1.000 1.000 , 

tjJ 2 2 1.000 0.035 1.000 1.000 1.000 
I 

, 
I 

tjJ 3 3 1.000 0.035 1.000 1.000 1.000 

I 
, 

tjJ 4 4 0.740 0.029 0.783 0.796 0.796 

I 
, 

I 
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Table 3 (cont'd.) Table 4 

LISREL and PLSFP Estimates, Sample A LISREL and PLSFP Estimates, Sample B 

PARAMETER M.L. M.L.S.E. ST.M.L. PLS PLS S.E. PLS 2SLS PLS 2SLS S.E. 
M.L.S.E. ST. M.L. PLS PLS S.E. PLS 2SLS PLS 2SLS S.E. 

Al 1 1.000* 0.000 

PARAMETER 1V1.L. 

1.000 1.000 0.000 
, 0.269 0.015 0.301 0.3~\6 0.841 

A2,2 1.000* 0.000 1.000 1.000 0.000 

tV5 5 , 

0.971 tV6 6 0.833 0.033 0.847 0.8134 

A3,3 1.000* 0.000 1.000 1.000 0.000 

, 

tV6 5 -0.001 0.014 -0.001 

A4 4 1.000* 0.000 0.956 0.958 0.007 
, 

, 
6 0.000* 0.000 

A5 4 0.888 0.018 0.849 0.945 0.008 

/';1 1 
, 

, 
0.000* 0.000 

l' 
A6 5 1.000 0.000 0.949 0.954 0.007 

6 

f 
/';2 2 

, 
, 

0.000* 0.000 

A7 5 -0.827 0.018 -0.785 -0.859 0.012 

6 
/';3,3 

, 6 0.055 0.010 
~ A8 5 0.910 0.016 0.863 0.907 0.010 

/';4,4 

1 
, 6 0.261 0.012 

A9 6 1.000 0.000 0.967 0.914 O.OlD 

/';5,5 
:J , 0.009 
1 

AID 6 -0.916 0.018 -0.885 

6 0.107 
I, 

-0.875 0.012 
1 

/';6,6 

!1 , 6 0.376 0.015 

:1 All 6 0.655 0.021 0.633 0.788 0.015 

/';7 7 
, 

, 
0.012 

A12 ,6 0.393 0.024 0.380 0.525 0.020 

6 0.254 
E:8 ,8 

6 0.017 0.014 

A13 ,6 0.058 0.025 0.056 0.135 0.024 

/';9,9 
0.014 

~I A14,6 0.475 0.023 0.459 0.646 

6 0.254 

0.018 

/';10,10 
, 1 6 0.570 0.021 
'I 134 ,1 0.406 0.021 0.424 0.403 0.022 0.403 0.022 

/';11,11 
,1 

:1 6 0.883 0.031 
;1 

134 2 0.085 0.021 0.089 0.086 0.022 0.086 0.022 

/';12,12 
, 6 0.918 0.032 

134 3 -0.018 0.021 -0.019 -0.013 0.022 -0.013 0.022 

/';13,13 

11 

, 6 0.763 0.027 

, 135 4 0.830 0.019 0.836 0.770 0.015 0.922 0.053 

/';14,14 
, 6 0.077 0.018 

! 136 4 -0.357 0.024 -0.353 -0.326 0.023 -0.317 0.057 

/';12,11 

i , 0.110 0.018 
" 

tV1 1 1.000 0.034 1.000 1.000 1.000 

6 

! 
/';13,11 

, 6 0.192 0.018 

tV2,2 1.000 0.034 1.000 1.000 1.000 

/';14,11 
6 0.085 0.022 

tV3 3 1.000 0.034 1.000 1.000 1.000 

/';13,12 
, 6 0.162 0.021 

tV4 ,4 0.743 0.029 0.812 0.830 0.830 

E:14 ,12 
6 0.061 0.021 

E: 14 ,13 

*Coefficient was fi..'!{ed at this value during estimation. 
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Table 4 (cont'd.) 

LISREL and PLSFP Estimates, Sample B 
Table 5 

PARAMETER M.L. M.L.S.E. ST. M. L . PLS PLS. S. E . PLS 2SLS PLS 2SLS S. E . Intercorrelations of LISREL and PLSFP Estimates, 

$5,5 

$6,6 

$6,5 

e 

e 

e 

B, 1 
.1., 

e2 ') 
,.:i 

e3 3 , 
e 
e4 ,4 

e 
e5 t:: 

'v 
e 
e6,6 

e 
e7 7 , 

e 
eS,8 

e 
e9 9 , 

e 
e10 ,10 

e 
eU ,l1 

e 
e12 ,12 

e . 
e13 ,13 

e 
e14 ,14 

e 
e12 ,11 

e 
e13 ,11 

e 
e14 ,11 

e 
e13 ,12 

e 
e14 ,12 

e 
e14 ,13 

0.271 0.015 0.301 

0.819 0.032 0.875 

0.008 0.014 0.008 

0.000* 0.000 

0.000* 0.000 

0.000* 0.000 

0.086 0.011 

0.280 0.013 

0.099 0.009 

0.385 0.015 

0.255 0.011 

0.065 0.014 

0.216 0.013 

0.599 0.021 

0.855 0.029 

0.997 0.034 

0.789 0.027 

0.100 0.018 

0.091 0.019 

0.148 0.017 

0.040 0.022 

0.204 0.020 

0.088 0.021 

*Coefficient was fixed at this value during estimation. 

0.408 

0.894 

0.856 

0.983 

! 

I 
:1 

;1 
1 
I 
\ 
J 

:1 

I 
:1 
;/ 
d 

ii 
11 
il 
r 

M.L.(A) 1.000 

ST.M.L.(A) .999 

PLS(A) .994 

PLS2SLS(A) .940 

M.L. (B) .996 

ST .M.L.(B) .995 

PLS(B) .991 

PLS2SLS(B) .936 

Samples A and B 

1.000 

.994 1.000 

.. 946 .962 1.000 

.995 .988 .938 1.000 

.996 .988 .944 .999 1.000 

.991 .995 .962 .993 .993 1.000 

.942 .959 .999 .935 .941 .960 1.000 
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JSESP 

LHOME 

IWTIM2 

IBPP1 

SCHOOL 

IHSES 

IKSES 

ISES 

NARRST2 

FIR STARR 

SRWT1 

SRWT2 

SRWT3 

SRWT4 

Sample A 

Sample B 
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Table 6 

PLSL(A) and PLSL(B) Reproduced Matrices 

,000 .000 .386 .381 .296 -.267 .281 -.120 .115 -.104 -.069 

.000 .000 .082 .081 .063 -.057 .060 -.026 .025 -.022 -.015 

.000 .000 -.012 -.012 -.010 .009 -.009 .004 -.004 .003 .002 

.430 .059 -.033 .905 .704 -.634 .669 -.285 .273 -.246 -.164 

.425 .058 -.032 .918 .694 -.625 .660 -.282 .270 -.243 -.162 

.331 .045 -.025 .715 .706 -.820 .866 -.219 .2lD -.189 -.126 

-.298 -.041 .023 -.645 -.637 -.822 -.780 .197 -.189 .170 .113 

.314 .043 -.024 .678 .669 .864 -.779 -.208 .199 -.179 -.120 

-.152 -.021 .012 -.329 -.325 -.253 .228 -.240 -.800 .720 .480 

.142 .019 -.011 .308 .304 .237 -.213 .224 -.799 -.690 -.460 

-.135 -.018 .0lD -.292 -.288 -.224 .202 -.213 .758 -.709 .414 

-.074 -.010 .006 -.161 -.159 -.124 .112 - .117 .418 -.391 .371 

-.063 -.009 .005 -.135 -.134 -.104 .094 -.099 .352 -.330 .312 .172 

-.108 -.015 .008 -.233 -.230 -.179 .162 -.170 .605 -.567 .537 .296 

DIAGONAL ELEMENTS 

1.000 1.000 1.000 .929 .906 .912 .741 .819 .854 .748 .672 .204 

1.000 1.000 1.000 .918 .893 .911 .739 .823 .836 .766 .621 .276 

Note: The reproduced correlations from Sample A are provided in the lower triangle, while 

the reproduced correlations from Sample B are provided in the upper triangle. 

--

-1 

-.018 -.085 

-.004 -.018 

.001 .003 

-.042 -.202 

-.042 -.199 

-.032 -.155 

.029 .139 

-.031 -.147 

.123 .591 

- .118 -.565 

.106 .509 

.071 .339 

.087 

.250 

.145 .429 

.018 .417 



r ~I 

r 32 

Table 7 

PLS(A) and PLS(B) Reproduced Matrices 
~--

JSESP -.007 .004 .39B .367 .352 -.279 .371 - .114 .130 -.114 -.026 -.018 -.069 

LHOME .038 .047 .085 .072 .064 - .071 .074 -.014 .042 -.017 -.019 .028 -.010 

IWTIM2 .064 .023 -.002 -.014 .015 .065 .018 -.008 -.016 -.013 .011 .009 .008 

IBPPJ .443 .074 -.001 ].195 .857 -.674 .885 -.377 .364 -.285 -.149 -.046 -.228 

SCHOOL .411 .074 -.008 1.252 .805 -.619 .840 -.339 .327 -.24'/' -.126 -.040 -.200 

IHSES .377 .066 .017 .862 .809 -.725 .829 -.246 .2,32 -.198 -.094 -.030 -.148 

IKSES -.293 -.063 .054 -.691 -.636 -.729 -.700 .195 -.185 .161 .078 .025 .119 

ISES .393 .057 .018 .909 .869 .829 -.707 -.269 .256 -.216 -.106 -.033 -.163 

NARRST2 -.153 -.032 -.009 -.436 -.397 -.275 .226' -.288 -.805 .719 .477 .127 .592 

FIRSTARR .174 .049 -.028 .416 .381 .251 -.207 .266 -.794 -.688 - .457 -.121 -.566 

SRWTl -.154 .010 .003 -.357 -.318 -.230 .191 -.240 .750 -.703 .410 .109 .507 

SRWT2 -.022 -.016 .021 -.138 -.120 -.070 .059 -.075 .411 -.385 .365 .072 .338 

SRWT3 -.045 .024 .004 - .115 -.096 -.072 .062 -.074 .346 -.323 .310 .172 .090 

SRWT4 -.088 -.037 -.042 -.235 -.203 -.151 .125 -.156 .591 -.552 .525 .290 .245 

DIAGONAL ELEMENTS 

Sample A 1.000 1.000 1.000 1.240 1.284 .843 .645 .826 .847 .748 .668 .206 .147 .419 

Sample B 1.000 1.000 1.000 1.194 1.213 .847 .638 .818 .841 .772 .618 .276 .020 .418 

Note: The reproduced correlations from Sample A are provided in the lower triangle, while 

the reproduced correlati.ons from Sample B are provided in the upper triangle. 
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Table 8 

LISREL(A) and LISREL(B) Reproduced Matrices 

.000 .000 .406 .360 .337 -.278 .306 -.145 .133 -.095 -.057 .000 .000 .085 .075 .070 -.058 .064 -.030 .028 -.020 .012 .000 .000 -.018 -.016 -.015 .012 -.014 .006 -.006 .004 .003 .446 .068 -.039 .812 .759 -.627 .691 -.326 .299 -.214 -.128 .395 .060 -.035 .836 .674 -.557 .613 -.29p .265 -.190 -.114 .362 .055 -.032 .768 .679 -.745 .820 -.263 .241 -.172 -.104 -.303 -.046 .027 -.642 -.568 -.746 -.677 .218 -.199 .142 .086 .332 .050 -.029 .702 .621 .816 -.683 -.239 .219 -.157 -.094 -.178 -.027 .016 -.377 -.333 -.307 .257 -.281 -.856 .612 .368 .155 .024 -.014 .328 .290 .267 -.224 .244 -.856 -.561 -.337 - .118 -.018 . OlD -.249 -.220 -.203 .170 -.186 .650 -.566 .341 -.061 -.009 .005 -.130 -.115 -.106 .089 -.097 .339 -.295 .301 -.051 -.008 .005 -.109 -.096 -.088 .074 -.081 .283 -.247 .298 .183 -.087 -.013 .008 -.185 -.164 -.151 .126 -.138 .483 -.421 .512 .329 

Note: The reproduced correlations from Sample A are provided in the lower triangle, While 

the reproduced correlations from Sample B are provided in the upper triangle. 
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Table 9 

Observed Correlation Matrices, Samples A and B 

-.007 .004 .398 .367 .357 -.284 .375 -.096 .113 -.099 

.038 .047 .084 .074 .031 -.038 .049 -.101 .126 -.091 

.064 .023 -.006 -.009 -.040 .122 -.028 -.041 .017 -.039 

.442 .080 -.006 .812 .739 -.590 .767 -.324 .313 -.255 

.412 .067 -.002 .836 .657 -.531 .658 -.273 .266 -.209 

.369 .094 -.032 .745 .660 -.774 .814 -.251 .229 -.218 

-.285 -.092 .104 -.615 -.537 -.780 -.617 .204 -.198 .181 

.387 .079 -.022 .779 .672 .811 -.615 -.265 .250 -.225 

-.141 -.121 - .011 -.378 -.313 -.296 .251 -.307 -.857 .608 

.163 .131 -.024 .359 .301 .265 -.236 .271 -.856 -.572 

-.143 - .071 .002 -.318 -.259 -.268 .234 -.242 .649 -.578 

-.016 -.061 .017 -.123 -.095 -.085 .075 -.085 .342 -.245 .301 

-.040 -.016 .004 - .111 -.082 -.086 .085 -.093 .287 -.187 .298 

-.079 ... 103 -.043 -.202 -.186 -.181 .167 -.168 .485 -.383 .512 

Note: The correlations from Sample A are provided in the lower triangle, while 

the correlations from Sample B are provided in the upper triangle. 

"\ 

-.016 - .016 -.056 

-.070 .015 -.072 

-.008 .004 -.016 

-.136 -.052 -.199 

-.104 -.020 -.167 

-.105 -.036 -.152 

.100 .022 .130 
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Table 10 

Univariate Statistics, Residual Correlations 

Standard 
Predicted Observed Minima Maxima Deviation Skewness Kurtosis 

LISREL(B) SB -.110 .071 .034 -.527 1.340 

LISREL(A) SA -.107 .094 .035 .124 .865 

PLSL(B) SB -.189 .139 .057 -.634 1.474 

PLSL(A) SA -.183 .120 .058 -.456 .818 

PLS(B) SB -.190 .383 .071 1.502 8.458 

PLS(A) SA -.169 .416 __ .073 _1. 837 10.208 

SA SB -.154 .229 .050 1.154 5.106 

LISREL(A) SB -.214 .225 .056 .453 4.463 

LISREL(B) SA -.233 .138 .061 -.637 1.487 

PLSL(B) SA -.214 .138 .072 -.586 .242 
J 
I 

PLS(B) SA -.212 .359 .079 .536 a..451 j 
-I 

I PLSL(A) SB -.296 .295 .080 .172 3.340 
j 

PLS(A) SB -.290 .440 .095 . 947 4.752 . ri 
'j 

,j 
!l 
~ 
H 
\j 
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Table 11 

Univariate Statistics and Fit Indices, Residual Covariances 

Standard 

x2 Predicted Observed Minima Maxima Deviation Skewness Kurtosis f1 -
LISREL(A) SA -1. 372 .818 .222 ··3.108 19.213 491.088 .959 
LISREL(B) SB -1.450 1.406 .230 -.359 29.001 420.301 .965 

SA SB -1. 742 1.298 .298 -2.102 19.481 1627.27 .865 

SB SA 4078.70 .661 
LISREL(B) SA -1. 372 1. 742 .297 .643 17.110 4510.51 .625 
LISREL(A) SB -1.742 1.692 .328 -.996 15.898 1953.32 .838 
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Figure 1 

Path Model for Relati.ons Among Parents' SES, Family Status, Social Strain, 

Education, Respondent's SES and Crirr:.inality. 
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Appendix I 

Obtaining Estimates of Measured Variable Correlations 

PLS is essentially a method for estimating the parameters of the 

measurement model (i. e., "outer relations") portion of a latent variable 

causal model, while taking into account the underlying structural rela-

tionships among causally related latent variables. Once these "outer 

relations" have been estimated, any of a number of structural equation 

estimation techniques may be used to obtain parameter estimates of the 

structural relationships among latent variables. 

Unfortunately the PLS implementation used for our analyses did not 

provide estimates_ ~oL,-- ..the ....,~meas.ured·:......and:. -.r.esiduaL.variable;~ ..conrelation "!":'-'i';: 

matrices, which are typically very useful in assessing the overall good-

ness of fit of a given structural model to empirical data. This appendix 

will briefly present the necessary equations for generating such 

estimates. 

Estimated Correlations From the Measurement Model 

A'R A = COV yy LL 
(1) 

(2) 

(3) 

(4) 

(5) 

_1 
D = DIAG(COV

LL
) ~ 

DA'RyyAD = RLL 

R AD = F yy s 
-1 

:p = FsRLL 

(6a) Ryy = F pRLL F p' 

" -1 -1 -1 
(6b) Ryy = FsRLLRLLRLLFs' = FsRLLFs' 

(7) REE = Ryy Ryy 

Definition of Symbols 

Ryy - is a correlation matrix among the m measured variables 

(mXm) (MV's) of the model. 
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A - is a weighting matrix for generating a set of k latent 

(mxk) 

COV
LL 

(kXk) 

D 

(kxk) 

variables (LV's) as linear composites of the MV's. 

- is a covariance matrix amo~'lg the k LV's of the modeL 

- is a diagonal scaling matrix used to standardize the 

k LV's to unit variance. 

- is the latent variable correlation matrix. 

- is the cross-correlation matrix between MV's and LV's. 

In factor analytic terms, it is known as the factor 

structure matrix. 

- is the path coefficient matrix of regression weights for 

estiil1ating each MV from its respective LV. In factor 

analytic terms, it is known as the factor pattern 

matrix. 

- is the estimated MV correlation matrix generated from 

estimates of the model's outer structural relationships, 

- is the residual correlation matrix. 
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The Generating Equations 

The unmodified PL8 algorithm provides final estimates of the ele­

ments of the weighting matrix A for generating LV's as linear compo­

sites of the MV's. Given this weighting matrix, the LV covariance 

matrix may be generated as indicated in equation 1, while equations 2 

and 3 illustrate how LV correlations may be obtained by defining a 

scaling matrix D as the inverse square root of the diagonal elements of 

the latent variable covariance matrix (COV LL) . 

Equation 4, on the other hand, provides the formula for obtaining 

the MV /LV cross correlation matrix F s (also called the factor structure 

matrix), .while eq.uation ...5.,..prDvides~the _welL ~;.,..fo.rmula...,for_...o.btaining,=;v.;:"_,,",,, .. 

the matrix of MV /LV regression coefficients (F p) from estimates of F s' 

Equations 6a and 6b illustrate alternative computational formulae 
A 

for obtaining estimates of the MV correlation matrix (Ryy) depending on 

whether one has a matrix of MV /LV correlations (F s) or MV /LV re­

gressions (F p)' Equation 7, on the other hand, simply indicates that 

estimates of the residual correlation matrix (REE) may be obtained by 
A 

subtracting R from the original correlation matrix. yy 

To summarize then, the full computational sequence for obtaining 

R would typically consist of the following equations: yy 

(1) A'R A = COVLL yy -~ 
(2) D = DLAG (COVLL ) 

(3) DA'RyyAD = RLL 

(4) RyyAD = F s 
-1 

(6b) Ryy = F sRLLF ~' 

(7) REE = Ryy - Ryy 
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Estimated Correlations From a Full MV /LV Structural Model 

Once an appropriate measurement model has been obtained by the 

PL8 algOrithm, two-stage least squares (28L8) parameter estimates of 

the hypothesized structural relationships among latent variables are 

routinely generated by utilizing the covariance information contained in 

the LV correlation matrix (RLL). The following equations may then be 

utilized to produce estimates of the MV correlations from a given set of 

LV structural parameter estimates: 

(8) L = [~i~] 

(9) 

(11) 28L8 (LV Structural model) 

(12) ~ = ~r er - B ) -1 + ~ (I B) -1 = 
o 0 

£P + ~ (I - B )-1 
o 

where P = rer - B )-1 
o 

(13) '¥ = COV(~, 0 = 

B'C~~B - ~f~~£r _ 
rIC fB + r'cpr 

~~ 

W~here J3 = ~(I A ,A 

A C ~ c 
(14) R = -A-'l'l-i--!J~_ 

LL C f I cp 
~£ I 

(15) R = F R -IF t 

yy s LL s 

for standardized 
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Definition of Symbols 

L 

r 

qxq 

Nxp 

pxp 

- represents the actual matrix of latent variables which 

has been partitioned into two subsets: (1) The set 

of endogenous variables represented by rJ which is 

N x p, and (2) the set of exogenous predetermined 

variables represented by the N x q matrix ~, with 

N being equal to the number of observations and with 

k = p + q, the number of endogenous and exogenous 

variables respectively. 

- is the .matrix :oi. . .s.tr..uctunaL ... panameteJ?s ... ....n.ep-r.esenti.ng;.;:.:;::",A:..:i,. -

hypothesized causal relationships among the' endoge- ,. 

nous latent variables of rJ· 

- is the matrix of structural parameters representing 

hypothesized causal influences of the exogenous latent 

variables (the ~'s) on the rJ' s . 

- represent structural estimates of B 0 and r 

respectively. 

- is the matrix of p disturbance terms which represent 

the "errors in equations" for estimating the rJ's from 

the given latent variable structural equations. 

- is the matrix of covariance among the ~'s. 

-----------~.----~ .. -.' 
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rJ, IJI, RLL - are estimates of the endogenous variables, the ~ co­

variance matrix, and the standardized LV covariance 

(i. e. correlation) matrix respectively. 

The Generating Equations 

Equation 8 indicates a partitioning of the latent variables into 

two sets depending on whether they are (1) the ultimate causal sources 

in the model under consideration (i. e ., the "exogenous" ~'s) or (2) the 

mediating and/or dependent variables in the model (i. e., the "endo­

genous" rJ's). Equation 9 indicates a similar partitioning of the latent 

variable covariance matrix RLL . It is important to note, however, that 

this LV covariance ·matrix....J.s.......t.he,.;,S.ame,.~collariance.. mat:r.i.x.:.ob:tained ... ;du~.in-g.;.:."-'='-OI,-4:04·'il.l" 

the previous measurement- model estimation phase described in- . the" last -

section. 

Equation 10 illustrates 1:1'10 equivalent forms of the general latent 

variable structural equation model. Equation 11, on the other hand, 

simply indicates that, given this particular model, we used the two­

stage least squares estimates of the structural parameter matrices B 0 

and r" The PL8 algorit.bm also provides Fixed Point parameter estimates. 

However, for our particular model these estimates were identical to the 

28L8 estimates, and thus, the 28L8 estimates were used during further 

analysis. 

For completeness, equation 12 has been included in order to de­

scribe the reduced form "equation for estimating the endogenous LV's 

from both the exogenous LV's (~'s) and the structural equation distur­

bance terms (s's). Equation 14, however, is the .. equation- that. we._ 

actually used for generating an estimate (RLL) of the LV covariance 

matrix RLL from estimates of the LV structural parameters. Equation 
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13, on the other hand, provides a formula for obtaining estimates of the 

disburbance covariance matrix (If'), which is necessary in order to 

perform the calculations indicated in equation 14. This formula for If' 

was suggested by Fox (1979). 

Equation 15 is the latent variable structural equation version of 

equation 6b. The only difference between the two is that RLL is re-
A 

placed by RLL which is dependent on the estimated structural parameter 
.... A 

matrices Band r. Once R has been generated, the residual corre-
o yy A 

lation matrix, REE , may be obtained by subtracting Ryy from Ryy as in 

equation 7. 

structural estimates of R would typically consist of the following yy 

equations: 

(9) RLL = 

(11) t~;i = 2SLS (LV Structural model) 

(13) '¥ = B'CllllB - B'Cll.;r - r'Cll.;'B + 

= 
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