If you have issues viewing or accessing this file contact us at NCJRS.gov.

TJRAFFIC SAFETY DEMONSTRATION PROGRAM MODELING SYSTEM VOLUME III: "Citizens Band Radio Model

N. A. David
S. I. Gass
R. H. Cronin
R. E. Denny

SRI International
333 Ravenswood Avenue
Menlo Park, California 94025

Contract No. DOT HS-6-01401
Contract Amt. $\$ 49,967$

February 1979 FINAL REPORT

This document is available to the U.S. public through the Springfield, Virginia 22161

Prepared For
U.S. DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Washington, D.C. 20590

PREPARED FOR THE DEPARTMENT OF TRANSPORTATION, NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION UNDER CONTRACT NO. DOT-HS-6-01401. THE OPINIONS, FINDINGS, AND CONCLUSIONS EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHORS AND NOT NECESSARILY THOSE OF THE NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION.

Form DOT F 1700.7 (8-72) Reproduction of form and completed page is authorized

METRIC CONVERSION FACTOAS

CONTENTS

I INTRODUCTION 1
II MODEL DESCRIPTION 5
A. Accidents 6

1. The Simulation 6
2. Communication Links. 9
3. Output Material. 11
B. Simulation of Non-accident Events 17
4. Fixed Events 17
5. Moving Events. 19
III INTERACTIVE USE OF THE MODEL 21
A. Accessing the CB Simulation Mode1 21
B. Data Input Required for Accident Simulation 21
6. Base Parameters. 22
7. Accident Parameters. 27
8. Additional User-Supplied Information 28
C. Citizens Band Output Tables for Accidents 29
9. Average Times 30
10. Minimum Times. 31
11. Distribution of Times 32
12. Table of Parameters 32
D. Final Options in CB Simulation 33
E. Variation for Fixed, Non-Accident Events 34
13. CB Parameters 35
14. Citizen Parameters 35
15. Highway Patrol Parameters 36
16. Additional User-Supplied Information 36
F. Citizens Band Output Tables for Fixed, Non-Accident Events 36
17. Average Time 37
18. Minimum Time 38
19. Distribution of Times 38
20. Table of Parameters 39
G. Variation for Moving, Non-Accident Events 40
21. CB Parameters 41
22. Citizen Parameters 41
23. Highway Patrol Parameters 42
24. Speeder Parameters 42
25. Additional User-Supplied Information 43
H. Citizens Band Output Tables for Moving, Non-Accident Events 43
26. Average Times 43
27. Minimum Times 45
28. Apprehension Rate Table 45
29. Distribution of Times 46
30. Table of Parameters 46
I. Logoff Procedure 48
IV MATHEMATICAL ASSUMPTIONS AND PROGRAM DESCRIPTIONS 49
A. Simulation of an Accident (Subroutine ACCSIM) 49
31. The Roadway, Location of an Accident 50
32. Location of HP Units 50
33. Location of Other Vehicles. 52
34. Identification of Reporting Vehicles 53
35. Conmunication Links 55
B. Simulation of a Fixed Event (Subroutine EVTSIM) 62
36. The Roadway, Location of a Fixed Event 63
37. Location of IIP Units. 63
38. Location of Other Vehicles. 63
39. Identification of Reporting Vehicles 63
40. Communication Links 65
C. Simulation of a Moving Event (Subroutine SPDSIM) 68
41. The Roadway, Location of a Speeder 68
42. Location of HP Units. 69
43. Location of Other Vehicles. 69
44. Conmunication Links 70
D. Computation of Results (Subroutine CBSTAT) 73
V CONVERGENCE PROPERTIES OF THE SIMULATION 75
LIST OF SYMBOLS 83
LIST OF FIGURES
Figure 1 POSITIONING OF VEHICLES ON THE TWO-DIRECTION HIGHWAY FOR ONE ITERATION 7
Figure 2 LOCATION OF ACCIDENT ON ROADWAY 51
Figure 3 VEHICLES THAT MAY OBSERVE AN ACCIDENT 54
Figure 4 DERIVATION OF $\overrightarrow{\mathrm{S}}_{\mathrm{CB}}(\mathrm{t}) \stackrel{\stackrel{\rightharpoonup}{\mathrm{S}}}{\mathrm{CB}}(\mathrm{t})$ 61
LIST OF TABLES
Table 1 COMMUNICATION LINK SYMBOLS AND DESCRIPTIONS 10
Table 2 SUMMARY OF CITIZENS BAND RADIO OUTPUT 12
Table 3 EXAMPLE AVERAGE TIMES FOR THE EXPERIMENTAL AREA 13
Table 4 EXAMPLE AVERAGE TIMES FOR THE CONTROL AREA 13
Table 5 PARAMETERS FOR EXAMPLE 14
Table 6 EXAMPLE MINIMUM TIMES IN THE EXPERIMENTAL AREA 16
Table 7 EXAMPLE MINIMUM TIMES IN THE CONTROL AREA 16
Table 8 EXAMPLE DISTRIBUTION OF TIMES (BEST OF ALL POSSIBLE) IN THE EXPERIMENTAL AND CONTROL AREAS 18
Table 9 MEAN TOTAL TIMES 76
Table 10 NUMBER OF ITERATIONS REQUIRED TO ACHIEVE DESIRED CONFIDENCE 80

I INTRODUCTION

One goal of the National Highway Traffic Safety Administration (NHTSA), pursuant to the Highway Safety Act of 1966 and Standard 11, Emergency Medical Services, has been to "develop, upgrade, and professionalize the prehospital emergency medical care system, enhance its life-sustaining quality, encourage its establishment where it does not yet exist, and achieve complete system development. ${ }^{1 l}$ Citizens Band (CB) radio is in widespread use, and NHTSA's National Emergency Aid Radio (NEAR) program is intended to make use of this existing resource to improve emergency communication and thereby help to achieve the goals of Standard 11. The specific objectives of the NEAR program are to:
". Provide prompt identification and reporting of highway safety incidents under a range of emergency conditions.

- Make public safety services more readily available to the motoring public.
- Enhance citizen participation in highway safety, including the formation of citizen adjuncts to assist professional public safety agencies in the performance of their highway safety duties.
- Provide an interface between volunteer $C B$ groups and public safety agencies for the coordination and management of resources necessary to provide assistance and relay information concerning transportation safety or other citizen emergency needs."1

To achieve these objectives, mobile $C B$ radio may be made a more effective tool for emergency communication. The existing system of

[^0]volunteer $C B$ monitors ${ }^{1}$ is being expanded, with the goal of providing 24 -hour coverage throughout the nation. The function of the NEAR monitor is to receive emergency messages transmitted by mobile $C B$ units and to relay the messages by telephone to the appropriate public safety agency, e.g., police, fire department, or an ambulance.

Further improvement of the $C B$ emergency communication system could be achieved by having more widespread installation of $C B$ radios in police patrol vehicles. The use of $C B$ radios in the patrol vehicles would made direct communication possible between $C B$ mobile units and patrol vehicles; this innovation could substantially reduce reporting time and response time.

To further this concept, NHTSA is funding a demonstration project ${ }^{2}$ involving the use of CB radios in Highway Patrol vehicles in New York. The main goal of the project is to measure the effectiveness of CB radio as a means to improve highway safety by increased emergency reporting. As a demonstration project, these activities will be carried forth under an experimental situation, i.e., a control group (no CB in Highway Patrol vehicles) will be utilized. State patrols in a number of states have similar projects underway or planned, with varying degrees of attention to experimental techniques.

In this report, an approach to the problem is discussed. The approach entails using a computer simulation model as a tool to help design such

[^1]experiments. The model can simulate accidents, road hazards and speeders, and the response of Highway Patrol units when notified through various communication links, including CB radio. The model was intended by NHTSA to be a design and evaluation tool for experiments such as the one currently being conducted in New York and for other states. Therefore, the program can simulate experimental (CB units in the Highway Patrol vehicles) and control (no CB units in the Highway Patrol vehicles) areas and can compute statistics from both areas for comparison.

The model can be accessed via terminal and is highly interactive. The analyst is requested to input data variable values, totally prompted by the computer and requiring no previous computer experience of the analyst.

For a given situation modeled, the output displayed provides for a comparison among alternative ways of detecting an emergency or hazard event and notifying the authorities. The time from occurrence of the event to response on scene of a Highway Patrol vehicle is the basic measure of effectiveness of a particular scheme.

There are many uses for a computer model of this sort. First, in SRI's experience, one of the biggest problems in this type of research project (especially enforcement projects) is that the designers have no preliminary estimates concerning the extent to which experimental and control areas might vary in their outcome. The model can, by predicting results, save the designer from many misconceptions. For example, if the model predicts a very small difference in response time between experimental and control areas, the designer knows that he may have to increase the number of incidents observed to preserve the required statistical confidence level.

Secondly, the model can indicate which communication links (e.g., citizen telephone to Highway Patrol, CB radio direct to Highway Patrol, CB radio to NEAR monitor to Highway Patrol base) are important in determining
actual detection, notification and response times. These dominant links might differ by the study area or areas chosen, e.g., urban freeway or rural highway.

Thirdly, the model can be used to try out changes in patrol operations. For example, one could test the effect of increasing or decreasing the number of patrol vehicles on the road.

The following sections give details of the mathematical aspects of the modeling, instructions for users and some examples of output. Section II gives a general model description. Section III gives the instructions for interactive use of the model. Section IV gives the mathematical assumptions and computer program description. In Section IV, the iterations required to achieve convergence within desired confidence bounds are discussed.

The Citizens Band (CB) radio model is designed to measure the role of CB units in a Highway Patrol emergency response system. A mathematical simulation, the model is used to describe the geography, dynamics, and emergency response situations (e.g., accidents) for a given set of assumed conditions. The model can measure changes in the detection, notification and response times of the response system as conditions are allowed to vary. It evaluates the activities on the highway and compares the emergency response times for when the Highway Patrol is assumed to have a CB conmunication system and when it does not, i.e., under experimental and control situations.

The method of modeling is a simulation. In the simulation, an iteration consists of a positioning of an event and all vehicles. Next, all vehicles are "moved" along the roadway, some of which act to attempt to report the situation to the authorities, as they view it. The simulation, then, consists of a number of these events, i.e., a sequence of iterations. Each iteration is completed when a Highway Patrol officer is on scene.

The model distinguishes between three types of traffic hazards and emergencies:

- Accidents
- Fixed (non-moving) non-accident events
- Moving non-accident events (speeding).

In the first situation--accidents--the Highway Patrol and citizens are assumed to act with high priorities. The second case would include stalled vehicles, ice or trash on the road, and the like, and would not enjoy such a high-priority response. TUe third type of event differs from the first, two in that the emergency is itself moving, creating new detection and tracking problems. liach type of event has its own scheme for communication
links possible. These links were discussed with practicing patrol officers, $C B$ advocates and NHTSA experts in the field before being implemented in the mode1.

Each type of event is discussed briefly below.
A. Accidents

A two-way highway is defined mathematically with a given total roadway length. A single state Highway Patrol base station and (possibly several) CB base stations, such as NEAR monitors, are positioned on and off the highway, with the positions being dependent on input parameters. Vehicles in traffic are all moving at a uniform, input-determined speed. They are spaced according to exponentially distributed distances. Each vehicle is assigned or not assigned as having a CB unit, based on a given density of $C B$ units assumed to be on the highway. Vehicles with CB units have a higher probability of notifying the authorities of an accident (via their CB units) than vehicles without CB units. The latter would inform the Highway Patrol of an accident by telephone. The Highway Patrol units (the exact number of units being an input parameter) are spaced uniformly on the highway, with a + or - tolerance, also input. The speed of the patrol units is the same as that of the citizen vehicles, but the patrol speed is allowed to increase when a unit is responding to a reported accident.

1. The Simulation

For a single iteration, the vehicle locations on the two-direction highway might be viewed as shown on Figure 1. The simulation evaluates a given set of conditions and parameters, first assuming that the patrol cars all have CB units and then assuming that they do not. These evaluations are simulated simultaneously and independently.

For a given iteration of the accident simulation, the model positions the accident randomly on the highway. The number and position of non-patrol

$\Delta=$ Highway Patrol Vehicle
$\Delta=$ Vehicle With No CB Unit
A = Vehicle With CB Unit
$\square=$ Highway Patrol Base Station
m $=$ CB Base Station

* $=$ Accident or Other Event

FIGURE 1 POSITIONING OF VEHICLES ON THE TWO-DIRECTION HIGHWAY FOR ONE ITERATION
vehicles on the highway during an iteration is determined by an assumed vehicle/road density. The Highway Patrol units are also positioned, and the simulation then "moves" all vehicles in both directions at the given uniform speed. As the vehicles move, the accident is "seen" by a citizen (with or without a CB) or by a Highway Patrol unit. Depending on CB range and other assumed response-time variables, the times for a Highway Patrol unit to respond to the scene of the accident are determined. The basic inputs are held constant, and the simulation is iterated a number of times so that an average of the detection, notification and response times can be computed for interpretation.

A set of values for input variables is defined by the analyst to be used for a number of iterations. After viewing the results involving average detection, notification and response times, new values of the variables may be defined and further iterations may be analyzed. The variables which may be defined by the analyst for the accident simulation are as follows (the variables with asterisks have related probability distributions from which variation, iteration-to-iteration, in a given analysis, is obtained):

- Roadway--Length of road, average speed of traffic, traffic volune*
- Highway Patrol Vehicles--Number of units, maximum variation*, emergency speed
- Highway Patrol Base Station--Location, time to dispatch report
- CB Mobile Units--Percentage of vehicles with CBs*, ranges of CBs, times to relay message
- CB Base Stations-Number of stations, locations, times to dispatch reports, ranges
- Citizens in Non-CB Vehicles-Probability of citizen action (tclephoning iliglway Patrol versus no action)*, time required to reach a telephone.

For example, the asterisked variable "traffic volume" provides the mean for exponentially distributed distances between vehicles. For an analysis, the mean distance between vehicles would always have that value, but for each iteration the distances between vehicles on the road would vary about this mean. This, coupled with the random positioning of an accident provides a variation of the relative locations, from iteration to iteration.

The variables "percentage of vehicles with $C B$ " and "probability of citizen action" represent discrete probability distributions. For example, if the probability of a citizen leaving the roadway to telephone report an accident is .5 , then about one-half of the non-CB equipped vehicles will be designated to do this, should they see the accident. The designation will change for each iteration so that different vehicles located along the road will be so designated, each time. The "maximum variation" provides the interval parameter for the variations from equal spacing of Highway Patrol vehicles. This variation follows a uniform distribution.

2.. Communication Links

For accidents, several possible communication links were considered. The possibilities were narrowed to nine which were judged to be the most comnon occurrences of detection of an accident and following relay of the message until the Highway Patrol is notified and a patrol vehicle is on scene. These links are listed in Table l. Note that for a control situation (no $C B$ in the $H P$ vehicle) links 3 and 4 are not used. If the $H P$ base station does not have a $C B$ receiving unit, links 5 and 6 are not used. If no CB base stations are included in an experiment, links 7 and 8 are not used.

Whe model considers the times to detection, notification, and response as separate time intervals. The time sequence of events starts at time zero wilh the beginning of an iteration. The time to detection occurs when a vehicle (citizell, CB, or Highway Patrol) passes the accident and is designated as onc that will then attempt to notify the Highway Patrol.

Table 1

COMMUNICATION LINK SYMBOLS AND DESCRIPTIONS

No.	Symbo 1	Description
1.	HP	Highway Patrol vehicle sees event
2.	$\mathrm{CIT} \rightarrow \mathrm{HPBS} \rightarrow \mathrm{HP}$	Citizen sees event, pulls off road and telephones Highway Patrol base station, which dispatches Highway Patrol vehicle
3.	$\mathrm{CB} \rightarrow \mathrm{HP}$	CB vehicle sees event, stops at scene, and transmits to Highway Patrol vehicle with CB
4.	$\mathrm{CB} \rightarrow \mathrm{CB} \rightarrow \mathrm{HP}$	$C B$ vehicle sees event, stops at scene, and relays to another citizen with $C B$, who transmits (moving) to Highway Patrol vehicle with CB
5.	$\mathrm{CB} \rightarrow \mathrm{HPBS} \rightarrow \mathrm{HP}$	CB vehicle sees event, stops at scene, transmits to Highway Patrol base station, which dispatches Highway Patrol vehicle
6.	$\mathrm{CB} \rightarrow \mathrm{CB} \rightarrow \mathrm{HPBS} \rightarrow \mathrm{HP}$	CB vehicle sees event, stops at scene, and relays to another citizen with CB, who transmits (moving) to Highway Patrol base station, which dispatches Highway Patrol vehicle
7.	$\mathrm{CB} \rightarrow \mathrm{CBBS} \rightarrow \mathrm{HPBS} \rightarrow \mathrm{HP}$	$C B$ vehicle sees event, stops at scene and transmits to CB base station, which calls Highway Patrol base station, which dispatches Highway Patrol vehicle
8.	$\mathrm{CB} \rightarrow \mathrm{CB} \rightarrow \mathrm{CBBS} \rightarrow \mathrm{HPBS} \rightarrow \mathrm{HP}$	CB vehicle sees event, stops at scene, and relays to another citizen with $C B$, who transmits (moving) to CB base station, which calls Highway Patrol base station which dispatches Highway Patrol vehicle.

The conditions that determine whether such a vehicle will notify the patrol are based on the input probabilities for the particular run, as described above. The time to notification is the elapsed time from detection until a Highway Patrol unit or base station is informed of the accident. The time to response is the time from notification to the time a patrol unit is on the scene. Of course, the times to detection, notification, and response are the same if the first vehicle to detect the accident is a Highway Patrol unit.

Table 2 summarizes the output by link for a given parameter set and number of iterations. Note that for some of the output, the CB relay modes are combined with their non-relay counterparts.

3. Output Material

Output tables provide the average time computed for three discrete time intervals: Accident to Detection, Detection to Notification, and Notification to Response. Tables 3 and 4 are examples of these tables. They are the result of simulating 1,000 accidents using data derived to reflect standard conditions in a CB demonstration project. Parameters used for these tables are given in Table 5.

Table 3 presents mean times in the Experimental Area for five different possible composite communication links (relay links not treated separately), and Table 4 presents mean times in the Control Area for three possible composite communication links. The best of all possible times (all links) for the links in the experimental area and control area are given separately. In the tables the first column is Accident to Detection; the second, Detection to Notification; the third, Notification to Response; and the last, Accident to Response or Total.

Looking at Table 3, one notes that the mean detection time for the Highway Patrol alone is 18.53 minutes, and that this is also the mean total time, since for this response mode the notification and response times

Table 2

SUMMARY OF CITIZENS BAND RADIO OUTPUT

Output Data

Links Studied

Experimental area

Average times for

- Detection
- Notification
- Response

Percentage of events that the link had shortest time to

- Notification
- Response

Control area

Average times for

- Detection
- Notification
- Response

Percentage of events that the $1,2,7,8$
1,
link had shortest time to

- Notification
- Response

1, 2, 3 and 4 combined, 5 and 6 combined, 7 and 8 combined
$1,2,3,4,5,6,7,8$

1, 2, 7 and 8 combined

Table 3

EXAMPLE AVERAGE TIMES FOR THE EXPERIMENTAL AREA

	Average Times			
Communication Link	Accident to Detection	Detection to Notification	Notification to Response	Total
Highway Patrol (HP) alone	18.53	0.0	0.0	18.53
Citizen phone to HP base	0.11	10.00	6.91	17.02
CB radio to HP unit	0.28	6.11	2.52	12.74
CB radio to HP base	0.28	21.31	6.71	28.30
$C B$ radio to $C B$ base, phone to HP base	0.28	22.23	6.83	29.35
Best of all possible times				9.77

Table 4

EXAMPLE AVERAGE TIMES FOR THE CONTROL AREA

Communication Link	Average Times			
	Accident to Detection	Detection to Notification	Notification to Response	Total
Highway Patrol (HP) alone	18.53	0.0	0.0	18.53
Citizen phone to HP base	0.11	10.00	6.91	17.02
$C B$ radio to $C B$ base, phone to HP base	0.28	22.23	6.83	29.35
Best of all possible times				12.59

Table 5
PARAMETERS FOR EXAMPLE

Roadway

```
Length: }100\mathrm{ miles
Speed of traffic: 55 m.p.h.
Traffic volume: 1,000 vehicles/hour
Percent vehicles with CB: 10%
```


Ranges

$C B$ mobile unit: 4 mile radius

 Base station: 10 mile radius
 Highway Patrol Units
Number of units: 4
Equal spacing tolerance: - 10 miles
Emergency speed: $80 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.
Highway Patrol Base Station
Location: 33 miles along the road
Dispatch time to mobile units: 0.5 minute
CB Base Station
Location: 67 miles along the road, 1 mile off of road Time to phone Highway Patrol base station: 1 minute
Citizens (no CB unit in Vehicle):
Probability of reporting to Highway Patrol: 25
Time to phone Highway Patrol: 10 minutes
CB Mobile Unit
Transmission time: . 1 minute
are zero. Further examination shows that, on the average, the "citizen phone to HP base" link had the shortest detection time, but a lengthy notification time, reflecting the time required to reach a telephone. The "CB radio to HP unit" link has the lowest detection plus notification time, . 28 plus 6.11 minutes. It is important to note that an iteration is not complete until every link has independently completed its sequence. Therefore, for the given situation, these times may be fairly compared, link to link.

For comparison between experimental and control areas the "best of all possible times" may be examined. This is simply the mean, over all the accidents, of the lowest times for each accident (any link). In general, the link having the lowest times is different for each accident. Comparing the best of all possible times on Table 3 and 4, one notes that for this situation, response time has improved from 12.59 minutes (control) to 9.77 minutes (experimental). This improvement is solely related to the addition of CB in Highway Patrol vehicles and in the Highway Patrol base station. The amount of improvement depends, of course, on the input parameters, especially Highway Patrol unit density, $C B$ density, and traffic volume.

Another type of table presents the percentage of accidents for which a communication link had minimum time. This is displayed for two cumulative time periods: from Accident Occurrence to Notification (denoted by Notification) and the total time; from Accident Occurrence to Response (denoted by Response). Tables 6 and 7 are examples of this type of table using the same parameters. Table 6 is for the experimental area with eight possible communication links and Table 7 is for the control area with four possible communication links. There are more links considered for these tables because the relay modes are treated separately. The percentages reflect the frequency of link minimum times, i.e. (the number of accidents where a particular link had minimum time \div the number of iterations) $\times 100 \%$.

These tables are most easily understood by example. In the experimental area, for example, it can be seen that in 4.2 of the simulated accidents, the Highway Patrol unit arrived on the scene before any other links

Table 6

EXAMPLE MINIMUM TIMES IN THE EXPERIMENTAL AREA

	Percentage of Which Link Had	idents for nimum Time
Communication Link	To Notification	To Response
HP alone	4.2	4.2
Citizen phone to HP base	6.2	5.9
CB radio direct to HP unit	29.6	29.7
CB radio to HP base	13.8	13.7
$C B$ radio to $C B$ base, phone to $H P$ base	12.4	11.1
$C B$ radio relay to $H P$ unit	18.2	20.5
CB radio relay to HP base	7.9	7.5
$C B$ radio relay to $C B$ base, phone to $H P$	7.7	7.4

Table 7

EXAMPLE MINIMUM TIMES IN THE CONTROL AREA

Percentage of Accidents for Which Link Had Minimum Time

To Notification To Response
HIP alone
26.4
28.4

Citizen phone to $H P$ base
43.2
42.1

CB radio to CB base, phone to HP base
$C B$ radio relay to $C B$ base, phone to $H P$
16.8
16.2
13.6
13.3
could complete the reporting, and in 29.6 of the accidents, the accident was reported first by a CB unit radioing directly to a Highway Patrol unit. Considering the last six CB links to Highway Patrol units, we see that in a total of 60 percent of the accidents, a CB unit to a Highway Patrol unit link resulted in the minimum detection plus notification time. Total time, detection to notification to response are also expressed in-the columns to the right. These figures are easily compared to the control area where the number of possible communication links is smaller.

The last type of table available for one set of parameters presents the distribution of times for the best of all possible times in both the experimental and control area. Table 8 is an example of such a table, again using the same parameters.

This table shows, for example, that in the experimental area the detection plus notification time was less than 5 minutes in 73.1 percent of the accidents, compared to 39.27 in the control area. In the control area, total response time exceeded 10 minutes in 62.4 percent of the accidents, but this is improved to 45.1 percent in the experimental area.

B. Simulation of Non-accident Events

Since the nature and urgency of response for non-accident events would, in most cases, differ from that for accidents, two separate versions of the model have been made available for non-accident events-one for moving events and one for non-moving events.

1. Fixed Events

For fixed events, the output tables are the same as for accidents except that no relay links are used, because of the nature of the event. For accidents, the first $C B$ vehicle on scene stops; for fixed event they do not. HP units dispatched to the scene or otherwise notified of a fixed event proceed to the scene at regular speed, without using emergency speed.

Table 8

EXAMPLE DISTRIBUTION OF TIMES (BEST OF ALL POSSIBLE) IN THE EXPERIMENTAL AND CONTROL AREAS

	Dist	ribution of	Times	
	Experiment	al Area	Control Ar	
Times (minutes)	To Notification (percent)	To Response (percent)	```To Notification (percent)```	To Response (percent)
From 0.0 to 5.0	73.1	32.8	39.2	19.2
From 5.0 to 10.0	15.5	22.1	17.2	18.4
From 10.0 to 15.0	6.4	21.1	43.6	24.5
From 15.0 to 20.0	0.0	16.1	0.0	20.4
From 20.0 to 25.0	0.0	5.3	0.0	14.2
From 25.0	0.0	2.1	0.0	3.3
	100.0\%	100.0\%	100.0\%	100.0\%

Emergency speed is used to get to an accident or apprehend a speeder. A11 vehicles--CB, citizen or $H P-$ have a probability of reporting a fixed event. This probability may be adjusted according to the particular fixed event being simulated.

2. Moving Events

The output tables shown for accidents apply to moving, i.e., speeding, events with an additional table for speeders who are not apprehended. While the basic concept of moving events is similar to fixed events, the fact that the event is moving along the roadway allows for escape. In addition, a speeder is permitted to slow down with a certain probability, when in full view of an $H P$ vehicle, resulting in no apprehension. Mean times and minimum times are computed as for other types of events but are, naturally, based only on events in which apprehension occurred.

The apprehension procedure for speeders is proposed as a reasonable one. If an $H P$ unit is a parameter-specified distance behind the speeder, traveling in the same direction, the unit will pursue the speeder, who will possibly escape. If a speeder passes the HP unit, and does not slow down, the HP unit is assumed to apprehend. If an HP unit observes a speeder going in the opposite direction, other HP units going in the same direction as the speeder will be alerted. If an $H P$ unit is behind the speeder, within the specified distance, this unit will pursue the speeder. An HP unit ahead of the speeder will also be alerted. If this unit is a parameter-specified distance away, the unit will pull off the road and wait for the speeder, then apprehend. The apprehension procedure applies when HP units have been notified by a CB mobile unit or the HP base station, as well as another HP mobile unit.

This section serves as an elementary user's guide. It describes the steps involved in accessing the $C B$ simulation model, the data input for the model, and model output. This section proceeds in order, according to the interactive conversation which would appear to the user sitting at a terminal.
A. Accessing the CB Simulation Model

The user first logs onto the computer and calls the DEMON program (see Volume I, Section IV).

10 OH 'account initials/terminal-id/box number'
EEVWDETA REM

***** TICRT TSD
TSD INETS
REEDY
E\% Dempite
The following conversation allows entrance to the CB model:
WELOOME TO DEMITM
m YOU WANT TO USE THE EITIZENS RAND RADID SINUATIDA MODELT
\because
B. Data Input Required for Accident Simulation

The CB model simulates three types of events: accidents; fixed, non-accident events; or moving, non-accident events. The data input varies according to type of cvent. So, the user must first specify the type of event desired to be simulated.

```
        Mom:m
EITI工ENS GAHT RADIO STMIIGTITN MONEL
HHHT TYFE DF EUENT ND YDU HANT TG SIMILATE:
1. ARGITIEPMTS
Z. FIXED,NDH-HOSIDENT EVENTS
#. MDYTHF,NON-BCIITENT EWEMTE
EHTEG HWMEEF FDF TESTRED T'GE DF EWEHT
**
1
The response＂ 1 ＂indicates that accidents are to be simulated．
1．Base Parameters
```

Seventeen base parameters are used for simulating all three event types．They are divided into the following seven categories：

1．ロחム！
シ．HTEHAM＇FATED！！HITS
E．HIGHMH FGTODU EASE STHTIDH

5．ETTIZEH BAMD BASE STATIOMS
૬．FITIZEN
F．COHMEFS

After identifying the seven categories of base parameters，the user is requested，in sequence，to specify each of the 17 parameters． Values specified here are those described in Section II．
a．Road Parameters

There are three road parameters to be specified． 1．FDG［ FAFGMETEFS

NHAT IS THE LENITH DF THE FDATI CTH MIEES：
－
10

WHAT TS THE GWEFHIF SFEES DH THE FOGTI ITH MILES FEF HDUROT $\stackrel{5}{5}$

－
100
fach question will identify the units of measurement needed. For example, the road length is to be in miles. The user inputs the number desired and hits the carriage return which signals the computer that input is complete. There are built-in checks for data limits, and error messages will indicate if the input data are incorrect. For example, road length cannot be zero. If incorrect data are input, the question will be asked again, after the message.

b. Highway Patrol Units Parameters

Next, the user will be requested to specify two HP unit parameters.

```
Z. HIGH!|H% FATED! IHTTS FHFGMETEES
```



```
4
```



```
ij
```

First, the user is asked to specify how many Highway Patrol mobile units are on the road. There should be at least one. Next, the user is asked to specify the spacing tolerance for the Highway Patrol mobile units. The spacing of the units is assumed to be uniformly distributed about equidistant points, e.g., if there are four units on a lo0-mile road, the units are first placed 25 miles apart, then, for a specified 10 mile spacing tolerance, the units are moved to be 25 miles apart plus or minus up to 10 miles, and thus, they can be from 5 to 45 miles apart.
c. Higlway Patrol Base Station Parameters

Next, the user will be requested to specify two Highway Patrol base station parameters. There is assumed to be one Highway

Patrol base station on the road, and the user ls first asked to spectify its location. To simplify this, an example is first given for the data expected. A reply of "Y" for "YES" indicates that the user would like to see the example. An "N" response for "NO" would bypass the example.

3: HTGHIHF FHTEDI EHEE STATIDH
HEXT, YOU MUT SEEGF'Y THE LDGTIDH TF THE HIGHWH FATEDL EASE
TIO TDI AIAHT TO SEE HU EYMFIE DF HDIU TO IHFUT EDOEDIHETES TF THF F:ASE STATIONET

- •
'

```
EQHMF!_E LDSGTIDH DF A EMEE STGTIGN
                        G4 MILES H!OHG FOMO,
                            G MTLES FEDM EENTEF LIMET
```


As can be seen from the example above, two coordinates are expected. The [irst coordinate identifies the number of miles from the start of the road to the base station, and the second coordinate identifies the number of miles from the center line of the road. In the example, the base station is four miles from the start of the road and three miles to the side of the road. The two coordinates must be input in series, separated
by a comma. After the example is given, the user is asked to input the desired coordinates for base station location. The input given here shows a base station location of 33 miles along the road and on the immediate roadside:


```
##,
```

If the user inputs a negative number for the second coordinate, this means that there is no HP base station. This will also suppress occurrence of the communcation link involving the $C B$ vehicle transmitting to the HP base station. For the experimental area, the HP base station is also a $C B$ receiving station in that it can receive $C B$ messages from CB vehicles.

The second data item requested for the Highway Patrol base station is the time involved for the dispatcher to contact a mobile unit via normal radio transmission. The range of the police radio covers the total length of the highway.

```
WHAT IS THE TTME FEDIIFEN FDE THE HIGHING FGTEOI IISFGTSHER TD SENTI
A MESSAFE TO G HTGHiAGY FATGO', INTT GIN MIHUTES,
.5
d. Citizen Band Mobile Units Parameters
```

Next, the user is requested to specify two $C B$ mobile unit parameters.


```
**
. 1
NHAT IS THE G%FEGG TIMF TO SENT A OITIZENE SGMII MESSASE GIN MIMUITEST
**
1
```

First, the user must specify the proportion of vehicles on the road with $C B$ radios in terms of a probability (S1). In the example given, 10 percent of the vehicles on the road have $C B$ radios, or a probability of .10 . The second parameter specifies the time for a $C B$ mobile unit to transmit a CB message.
e. Citizen Band Base Station Parameters

Next, the user is requested to specify three CB base station parameters.

```
F. EITIPEHE SHNTI SAEE STATIDHE FHEAMETEFS
```


"
1

871
WHAT TS THE AYEFGE TIME FOF THE GITIZEHS EAND EASE STATIDH GFERATGE

- •
1

Although there is assumed to be only one Highway Patrol base station on the road, there may be more than one Citizens l3and base station. The user is first asked to specify the number of $C B$ base stations on the road and then is asked for their locations. If the user inputs zero $C B$ base stations, this will suppress all link occurrences involving $C B$ base stations. Finally, the average time required for the $C B$ base station operator to phone the $H P$ base station must be specified.

f. Citizen Parameters

One citizen parameter must be specified.

```
\therefore. FITIEEH FHFHMETEFS
```



```
i;
```

g. Range Parameters

Two range parameters must be specified.

```
P. FGHNF FHFHMETEFE
HHAT TS THE F:HNGE TF THE GITIEENS EANTM MOEIEE INITS GIN MILESG
#
MHAT TO THE GHRGE JF THE EASE GTATIDHE GIN MILESG
1 9
```

The first range value to be specified is the receiving range of the $C B$ mobile unit in miles. This number is the radius. The Highway Patrol unit $C B$ range is assumed to be the same as that of the citizen vehicle $C B$ unit.

Next, the user is asked to specify the range (receiving) of the base stations in miles. This range is used for both the $C B$ and HP base stations. Once again, this number represents a radius.

This completes the data input required for the base parameters. Next, there are parameters which are specific to the type of event. Since accidents were requested at the beginning of the input sequence, the model would now proceed to special parameters for accidents.

2. Accident Parameters

In addition to the base parameters, two additional parameters must be specified for accidents.


```
!
```



```
\because
```

It is assumed that once the Highway Patrol unit is informed of an accident, it will travel at an emergency speed to reach the scene of the accident. The user is asked to specify this average emergency speed. Finally, the probability that a citizen will report an emergency to the HP must be specified.

This completes all parameter specification for simulation of an accident event.

3. Additional User-Supplied Information

Three additional questions are asked of the user before the output.

First, the user is given a chance to go back and make changes in any parameters desired.

In the example below, first the user is showsn the base parameter categories and asked to enter the number for the parameter type to be changed. An asterisk in response signals that the user does not want to change any parameter values.


```
#
EHFE FGFGMETFF T'HEE:
1. F!口品
B. HTGH!|G'% F=|TFO! UN+ITS
#. H[GH|,#% EHTFOL BASE STATIOM
4. EITIZEN EANT MIEILE UMTTE
E. EITTSEN EAHT EASE STATIGMS
#. EITIEEN
F. EGNGE=
ENTEF TIEGIFEI EGRANETER TYRE
1
```

If a parancter type number had been indicated, the current values would be displayed followed by a sequence of questions, one for cach parameter. An answer " Y ", indicating a desire to change that parameter, is followed by a request for a new value. An answer of "N" ships to the next parameter.

The two additional parameters for accidents may now be changed in the same manner.


```
FHFHMETEF TYFES:
1. SMEFGEMEY GFEEN DF THE HIGH!|HY FHTEOU
#. THE FEMEFFILITY THAT G GITITEN MILL FEFOGT AM EMEFGEMGY
EHTEF RIESIFEI FHFAMETEF TYPF
*
```

Next, the user is asked to declare the number of iterations to be performed. The example given shows 1000 iterations requested, which will simulate 1000 accident events.

-
190
Finally, there is an output table which gives a time distribution. The user is asked to select a time interval (in minutes) and the number of time intervals to be displayed. In the example given, the user is requesting 6 sets of 5 -minute intervals:

GHE DF THE GUTFUT TGEIFE IE A ITETFIGUTIGH DF TIMS FGF AOTIFISHTIDH HWT ZFSOTNSE.
 HTM MANG SETS DF THTS TTME TVTEFUF! MOUM YOU LIEE TG SEET
-"
C. Citizens Band Output Tables for Accidents

Four types of output tables are available. Each is described below:

First，the Average time（with standard deviation）is computed for three discrete time intervals：Accident to Detection，Detection to Notification，and Notification to Response．Detection is defined as the time at which a vehicle begins an action sequence（link）．Noti－ fication refers to Highway Patrol awareness of the situation（mobile unit or base）and response means Highway Patrol unit on the scene．Two cumulative time intervals are output：Accident to Notification and then， total，Accident to Response．Tables are given for the Experimental Area for five different possible composite communication links and for the Control Area for three possible communication links．The best of all possible times for the links in the Experimental Area and Control Area are given separately．The tables follow．The first column is Accident to Detection；the second，Detection to Notification；the third，Accident to Detection to Notification；the fourth，Notification to Response；and last，Accident to Response or Total．

EITIZEH EAHI DUTFUT

EYEETMEMTH！H『EA

CDM：14TCATIDH LINH゙	$\begin{gathered} \text { [GTE - } \\ \text { TID } \end{gathered}$	AVERAGE Nittri－ CHTIDA	$\begin{aligned} & \text { TINE } \\ & \text { HET. } \\ & H 4 \sigma_{1} \\ & 4] T . \end{aligned}$		I．＇io EFDME	イロTジ
	$\begin{array}{r} 13.53 \\ 13.9 \end{array}$	$\begin{array}{r} 9.9 \\ \therefore \quad 0.91 \end{array}$	$\begin{aligned} & 135 \\ & 13.3 \end{aligned}$	\because	$\begin{aligned} & 9.9 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \end{aligned}$
	9.11	10.09	$1 \because 11$		C． 31	17．93
\therefore O－T1］TT－－Mif	9．3	3． 11	5， 3	－	$\therefore \square^{\prime}=$	$1 \div 3$
	＜ 9.8	＜三•S＇	$\therefore \quad \bar{y}$	\because	$\because 1$	1911
	－ 9.36	$\begin{array}{r}31.31 \\ \hline 13.3\end{array}$	（ $\because 1.5$	¢	\％．71	35.3 13.01
	93		ジッシ		5.35	三j
	－ 3	＜13．3	（ 13.21	C	＋．${ }^{\text {\％}}$	1%
	$\bigcirc 9$	4	3．31		9.9	9.7

2．Minimum Times

The next type of table presents the percent of accidents for which a（communication）link had minimum time．This is displayed for two cumulative time periods：from Accident occurrence to Notification（denoted by Notification）；from Accident occurrence to Response，or Total（denoted by Response）．The first table is for the Experimental Area with eight possible communication links and the second table is for the Control Area with four possible communication links．The percentages reflect the frequency of link minimum times，i．e．（the number of accidents where a particular link had minimum time－the number of iterations）$x 100$ percent．


```
-二.7.7%
```


MJTIFTGATIO4

『ミごつけた


```
H=9.7%
OITIEH =W7tE TT HE SAES
```


\because DF acinctis cog ntict

HTICISATIJH EEE』JサE
$\because 5.4 \%$
45.
$1 \approx .3 \% \quad+3.1 \%$

3．Distribution of Times

The next type of table is the distribution of times for the best of all possible times in both the experimental and control area． This table format is user specified．In this case， 6 sets of 5 －minute intervals were requested．

4．Table of Parameters

The final type of output table is the table of parameters． The user may elect not to see this table，as it is simply a recapitulation of the parameters originally input．

```
    TムG:E JF G4E =4&GMETEES
775
```



```
F5ह!: 5%.01 वए4
```


GITIEM
QUIVE TIME： 10.99 HIVTES


```
\丁.j= पE M!TE: 4
```



```
\becauseITTENE EM&T NTEISE !N|TS
```



```
544555
EEMOETLS MNTT GOMGE: 4.0
```



```
4IFH|NGOGTFOU EMEE STATIJH
OHOEINATES: SE.T0, 0.0
4F. IISa&TS4 TINE: 0.50 MINUTES
GITIZEME BAHE EASE STATIDME
HT. IF EASE STATIGME: 1
FHIVE TIME: 1.GOMINITES
GOg:DIATES & 1:: EF.0日, 1.00
```



```
    1000
```

D. Final Options in CB Simulation

After all output tables have been produced, the user has the following options:

```
GEFIUN FMRES:
1 = СНGNGE FAFAMETEFS
Z FHAHGE T'YF DF EYENT
# = NIMREF DF ITERHTIOMS
A = FFTIRN TO MATH FROGEAM
G#FFIGGE FETUFN = ENI EROGFAM
EHTEF FEF!MH EDIE
..
Z
```

A rerun Code of 1 allows the user to return to the $C B$ simulation model with the same type of event to change the input parameters and provide new output. Rerun Code 2 allows the user to simulate a different type of event and change any of the base parameters, if desired. Rerun Code 3 allows the user to change the number of accidents iterations simulated, using the same data parameters. Rerun Code 4 allows the user to return to the DEMON main program and run a different demonstration project through the DEMON modeling system. Finally, if no number is entered and the carriage return is hit, the user leaves the DEMON model and may at this point logoff the computer.

A rerun Code of 2 shown denotes a change to other types of events. The variations from the previous interactive conversation for accidents are now discussed for fixed and moving non-accident events.

E. Variation for Fixed, Non-Accident Events

The second event type that the CB model simulates is fixed, nonaccident events. This event type would include such things as stalled vehicles or a fallen tree.

The user may initially choose to simulate this event type, or, as in this example, after having run another simulation type (accidents), the user can use a rerun Code of 2 to choose another event type.

```
EMTEF Fr%||, -grg
..
#
```



```
1. GOT:IDEMTE
B. FIXEI,NDN-ARITDENT EMENTS
3. MIUING,HMN-HCOIDENT EOENTS
EHTEP MUNEE FDO [ESIEED TYEE DE EWEMT
Z
```

In this example, the base parameters have already been specified, so the user is simply asked to specify seven additional parameters needed to simulate fixed, non-accident events.

1. CB Parameters

There are three $C B$ parameters that must be specified.

```
IHAT IS THE IISTAHE FAST THE STEHE IF GN EUEHT THAT A GE GFEFHTDE
MILL TRGHENIT C[M MIUES:
"*
S
WHAT IS THE FPDEAEIGITY THAT G EE UNIT WILL EEFOET GN EVENT DH THE
SHETE OIIE DF THF FDAIT
-
WHAT IG THE FPOGHEILITY THAT G GE UNIT WIGL REFDET AN EWENT DH THE
DFFDSITE GIIE DF THE FOHTG
*
.q
    2. Citizen Parameters
```

 Two citizen probabilities must be specified.

.13

.15

3. Highway Patrol Parameters

Two HP probabilities must next be specified.

```
WHAT IS THE FFOEAEI!ITY THET GH HF !HIT ,ISL SEE GY EVENT DM THE
GHME GITIE OF THE FODHIN GNII STOFO
*
.7
IHHT IS THE FFOEHEILITY THGT HH HE UHIT WILL SEE GH EVENT DH THE
#FOQEITE GITE IF THE FOHT ENII STDPT
-.
.5
```

4. Additional User-Supplied Information

Two additional questions are asked of the user before output.

First, the user is given the chance to change the base parameters previously specified or the seven additional parameters for fixed, nonaccident events.

```
IM TOU ,|HNT TO EHARHE GHO DF THE FHPGMETEFST
**
H
```

Finally, the user is asked to specify the number of iterations to be performed.


```
\bullet
100
```

F. Citizens Band Output Tables for Fixed, Non-Accident Events

As with accident simulations, four types of output tables are available.

1．Average Time

The first table type is again the average time table for the same time intervals and the same five communication links for the experimental area and three communication links for the control area．

ETTIEEN EAGE JITEMT

CロUTETI QFEA

DETES－ TITM		 HOTIF：－ CㄷITM		TINES C．T．＇TV					
		$\begin{aligned} & \text { IIET. } \\ & a H I T \end{aligned}$							
			4 T T．		E50745		「ゴら		
	35.45		0.9		35.45		9． 9		35.43
\bigcirc	こら，	¢	9.9	¢	ごら	¢	0.11		ご
	0.31		10.00		10.31		9.75		30.35
$¢$	0.31	＜	0.3	＜	9.3	＜	E．G＇		シ．7
	1.90		シ．75		3.75		10.37		14．1
\bigcirc	1．1．	$<$	1．5	¢	1．7）	4	E．7．		7.3
	0.3		9.9		7.50		9.9		15.59
¢	9．${ }^{\text {S }}$	C	9． 1	－	3.5	¢	9.9		三．ア

2. Minimum Time

The next two tables present the percent of accidents for which a communication link had minimum time. Unlike the similar tables for accident events, there are only five communication links for the experimental area and three for the control area. The communication links which included: a $C B$ radio relay are not used for fixed events. It has been assumed that a CB unit will not relay a message concerning stalled vehicles or other fixed, non-accident events where the urgency is not immediate.

EQGEFTMENTHL AREA

3. Distribution of Times

The next table is a distribution of times for the best of all possible times. This table is identical to that presented for accidents.

MIVITES			$\begin{gathered} \text { EXEEFIMEH } \\ \text { TD } \\ \text { HTTEIGATIM } \end{gathered}$	$\begin{gathered} \text { GISTEI } \\ \text { GOEA } \\ \text { TG } \\ \text { ESHUS } \end{gathered}$		$\begin{aligned} & \text { EA } \\ & \text { TEDUS } \end{aligned}$
－80\％	9．9 T7	5.9	63.3	13.5	3 S ． 1	9.7
$=0.71$	5.917	10.7	13.5	E9．5	1こ． 5	14．
－5．7．4	1 1．a 7 T	15.1	17.2	$1 \exists .6$	55.4	$\because 1.1$
50.71	1c． 117	$\because 9.9$	9.0	15.7	9	17.7
$=57.1$	ジッ 「フ	デ，	9.10	19.3	9.9	1
$=0.7$	○\％		9．	14.3	9.9	17.3

4．Table of Parameters

The final type of output table is the table of parameters． The user may elect not to see this table．The table of base parameters and a list of the seven additional parameters for fixed，non－accident events are presented．


```
\because
```

－-7%	GITIEE4
	CHIAE TIME： $19.0 ⿴ 囗 十$ MIMTES
H15HAFM FATEOU UHIT	HIGU1A\％＝ATED EASE STATIJN；
$\therefore \% 16+118$	40． 9 E4E

```
    %4.45%
    GS MOET:5 INTT EANHE: 4.0
    SHESTATITN FAHFE: 1O.0
```



```
WMEEF 7C GOTIDEMTS SMMMETET: 1000
```


G. Variation for Moving, Non-Accident Events

The third event type that the $C B$ model simulates is moving, nonaccident events. This event type would include such things as speeders and reckless drivers.

The user may initially choose to simulate this event type; or, as in this example, use a rerun Code of 2 to change from fixed events to moving events.

```
EEc!NAFOE=:
```



```
F = NHAMNF THEE g EvENT
```



```
t = %CTVFM T7 matay ramgeum
```



```
FETEE FENMH ratm
#
```

```
WHAT TYFE DF EUEHT RO UDU UANT TD SIMSHTE:
1. GIGITIEHTS
Z. ETYET,NGM-HTEITIEHT EWENTS
```



```
ENTEP NHMEEF FOF HFEIEETI TYPE DF EWENT
#:
```

Actually, accidents could also be reevaluated at this point.

In this example, the base parameters have already been specified, so the user is asked to specify the 11 additional parameters for moving, non-accident events.

1. CB Parameters

There are three $C B$ parameters that must be specified.

```
        MAT I: THE ITSTGHE EGNT THE SEENE OF AHENEMT THAT A GE DFEEATJF
```



```
        #
```



```
        #
```



```
        *
            ;
    2. Citizen Paramoters
```

 I'wo citizen probabilities must be specified.


```
. %e
```



```
\becauseI= 7= T4E 5!OT:
.#
```


3. Highway Patro1 Parameters

Four HP parameters must be specified.

3

.

$\cdot E$

\because

4. Speeder Parameters

'I'wo parameters related to speeders must be specified.


```
.i
```



```
G
```


5. Additiona1 User-Supplied Information

Two additional questions are asked of the user before output.

The user may change any of the parameters.

4

The user is asked to specify the number of iterations to be performed.

HIM MAM' ITEFRTIGNS MMILI YDU ! IKE TD FEFFDEMT
-
199
II. Citizens Band Output Tables for Moving, Non-Accident Events

There are five types of output tables for moving, non-accident events.

1. Average Times

The average time for moving, non-accident events has the same time intervals and communication links as for both accidents and fixed, non-accident events.


```
        2. Minimun '\Gammaimes
＇These tables present the percent of accidents for which a communication link had minimum time．As with fixed，non－accident events， the number of communication links is less than with accident events．The \(C B\) relay links are not used．
```

```
                                    CYEEEIMENTH' GEEA
```

 CYEEEIMENTH' GEEA

OMM MIGTIDH LI：4：

```
&゙7746
```

```
```

\&゙7746

```
```

OTHTE：48CP


```
```

4シ キ1 7%

```
```

```
```

4シ キ1 7%

```
```

```
1#.3% 3?.3%
EOF% O
    10
```

 QTIFISATIG FESOUEE

```
    0.7%
```


3．Apprehension Rate Table

This table is unique to moving，non－accident events．Based on the probabilities input and the dynamic situation created，this table presents the percentitses of violators who were caught，who reduced their speed， or who escaped．


```
            EITIEHEGMMA 
```


In this case, the parameters were such that no violators escaped and less than 1 percent were able to slow down before being apprehended.

4. Distribution of Times

The next table is a distribution of times for the best of all possible times. This table has the same format as accidents and fixed, non-accident events.

5. Table of Parameters

Che final option is to view the table of parameters used in the run. The user may elect to not see this table. The table of base parameters and a list of the eleven additional parameters for moving, non-accident events are presented.


```
*
i
```

```
        4.745
    54%%4: 10%.g-M!E5
    =-EET: G=.90404
```



```
        17. 70 HE MITE: 4
```



```
        ショリッロ:
```



```
        5G:= -TAT174 5%&%=: 19.0
```



```
    9.193
?90
```



```
    0.50
    \Xi.01
```


1. Logoff Procedure

To torminate the session, the appropriate response to the request for a rerun code is a carriage return. This causes exit from the DEMON program. 'Jhe user next responds by typing 'logoff'. The computer responds with charges.

```
FEFUHT FMTIES:
t= FHANGF EHFGMETEFS
Z FHENGE T'GE DF EVENT
Z = NIMEES DF ITEFHTIDHE
4 = FFTIFH TO MमIN FOOGFGM
GAFPIAGE OETIINM = FHT FFOGFGM
EHTER FEEUNH ITIIE
* .
FEGI%'
1. DGDFF
CHHFGE =
FP!| TTME =
ELHFSEI TIME =
I CO S!INT =
FEGIOTY =
```

The principal CB subroutines are CBSTAT, an overall control program, ACCSIM (for accidents), EVTSIM (for fixed, non-accident events) and SPDSIM (for speeders). The user selects the number of events to be simulated, η, and this number is passed to CBSTAT which calls ACCSIM (or EVTSIM or SPDSIM, as the case may be) η times. For a given η, only one type of event-accidents, fixed events, speeders--may be simulated. Each time ACCSIM (EVTSIM, SPDSIM) is called, it simulates one event on the road segment and computes detection, notification and response times for several different modes of reporting. CBSTAT takes these computed times and calculates means for the various links, and probabilities that various links will have minimum detection time, notification time, etc. This function of CBSTAT will be explained in greater detail, following a detailed description of ACCSIM, EVTSIM and SPDSIM.

^. Simulation of an Accident (Subroutine ACCSIM)

Each time it is called, subroutine ACCSIM simulates an accident occurrence and the response of Highway Patrol units to the accident. Initial conditions and accident locations are governed by random variables, so they vary for each accident simulated.

The first function of ACCSIM is to set up initial conditions. These include the accident location, the location of Highway Patrol (HP) units on the road segment at the time of accident occurrence, and the location of other vehicles on the road, whose drivers will report the accident in various ways.

1. The Roadway, locition of an Accident

A two way roadway is mathematically defined as being of Length ℓ, and is modeled as a loop of total length 2ℓ. Locations along the roadway are denoted by X. " At either end of the roadway, locations are $X=0 \quad(=2 \ell$, because of the loop) or $X=\ell$. HP units continually loop around the roadway, but other vehicles enter at either $X=0$ or $X=\ell$ and leave the roadway at the other end.

An accident is placed randomly on the roadway, visible from both sides of the road. Figure 2 shows the accident and vehicles in one position. X_{a} denotes the accident location.

2. Location of HP Units

The HP units are assumed to circulate around the loop at a constant traffic speed, v, in miles per hour. The assumption used in spacing the HP units is that they are approximately evenly spaced around the loop. To derive the actual placement, the number of $H P$ units, h, and a \pm tolerance s are used. The first $H P$ unit is placed randomly in the interval
$0<X<\frac{2 \ell}{h}$. The distance between this and the second $H P$ unit is computed as

$$
D_{2}=\frac{2 \ell}{h}+s(1-2 R)
$$

where R is a random number between 0 and 1 . The distance between the kth and $(k-1)$ st $H P$ unit is

$$
\begin{aligned}
& v_{1}=k\left(\frac{2 \ell}{h}\right) \\
& D_{k}=\frac{2 \ell}{1}+, k=1 \mathrm{~s}(1-2 k), k=2,3, \ldots
\end{aligned}
$$

where R would represent a new random digit for D_{k} (i.e., distinct from that used for $\left.D_{1}, \ldots, D_{k-1}\right)$.

$$
\begin{aligned}
& \Delta=H P \text { unit } \\
& \text { 合 }=\text { CB vehicle } \\
& \triangle=\text { other vehicle } \\
& *=\text { accident }
\end{aligned}
$$

Figure 2 LOCATION OF ACCIDENT ON ROADWAY

The roadway is assumed to have traffic volume m (vehicles per hour), with all vehicles traveling at constant speed v. The distance between the vehicles (excluding HP units) is assumed to be exponentially distributed. Vehicles are counted from the accident location point, and both directions along the roadway are counted separately.

In a given direction, the distance between any two vehicles, E , is computed according to

$$
E=-\left(\frac{V}{m}\right) \ln (I-R)
$$

where R is a random digit. This equation is derived from

$$
R=1-e^{-\left(\frac{m}{v}\right) E},
$$

the uniform point on the cumulative exponential distribution.

A string of these distances in both directions are generated,

$$
\begin{aligned}
\mathrm{E}_{1}= & \text { distance fron the accident to the first vehicle } \\
& \text { moving toward the accident from the left }
\end{aligned}
$$

$\vec{E}_{k}=$ distance between the $k t h$ and $(k-1)$ st vehicles moving toward the accident from the left $k=2,3, \ldots$ $\begin{aligned} \mathrm{E}_{1}= & \text { distance from the accident to the first vehicle moving } \\ & \text { toward the accident from the right }\end{aligned}$
$\begin{aligned} K_{k}= & \text { distance between the } k t h \text { and }(k-1) \text { st vehicles moving } \\ & \text { toward the accident Erom the right, } k=2,3, \ldots\end{aligned}$

The corresponding locations,

$$
\begin{array}{ll}
X_{1}, & X_{2}, \\
X_{1}, \ldots \\
< & X_{3}, \ldots \\
X_{1}, & X_{2}, \\
X_{3}, \ldots
\end{array}
$$

$$
\begin{aligned}
& \vec{X}_{1}=X_{a}-\vec{E}_{1} \\
& \vec{X}_{k}=X_{k-1}-\vec{E}_{k}, k-2,3, \ldots \\
& \stackrel{\rightharpoonup}{X_{1}}=2 \ell-X_{a}-\stackrel{E}{E}_{1} \\
& \stackrel{<}{X_{k}}=X_{k-1}-\stackrel{E}{E}_{k}, k=2,3, \ldots
\end{aligned}
$$

These designations are assigned at the start of the simulation and are shown on Figure 3. Other vehicles shown are assumed to be incapable of acting so as to report the accident.

Similarly, computations may be made for the location of vehicles who have passed X_{a} before the accident occurred, but only one vehicle in each direction, the closest $C B$ unit ahead of the accident, has usefulness for the model. These two $C B$ units are potential relayers given that they are in range.

4. Identification of Reporting Vehicles

In each direction, four vehicles are identified as participants. Each vehicle has a probability of having a $C B$ unit, p_{c}. As each of the venicles in the string is assigned a distance from the previous one, a random number k is drawn. If this number is less than p_{c}, the vehicle is "tagged" as a $C B$ unit. In ACCSIM, all $C B$ units will respond to the event with probability one. This is not true in EVTSIM or SPDSIM.

In each direction the $C B$ unit ahead of the accident and the two who will be approaching the accident are designated as participants. No other CB units will participate. If $R \geq p_{c}$, a vehicle has no $C B$ unit, but these vehicles have a probability, p_{r}, of reporting the accident by phone. for thas vehieles, mother random number is generated. If this number is less than P_{r}, then the vehicle is designated as a reporting citizen, the fourth participant in each direction. No other vehicles will participate.

Figure 3 VEHICLES THAT MAY OBSERVE AN ACCIDENT

ACCSIM moves these eight vehicles along the road, along with all IIP units, all at speed v. When notified, the HP units can increase speed to v_{e}, emergency speed. When the first $C B$ unit approaches the accident in either direction, the driver will stop at the scene. Other CB units are relayers and will continue on with velocity v. The non-CB participant will continue at speed v and exit from the road at the next exit to phone the $H P$ base station.

5. Communication Links

Given the $C B$ and citizen vehicles and HP units described above, several links may occur. A link consists of a vehicle observing an event and notifying the authorities, and response to the event by the authorities. The links for accidents are:

- HP unit detects accident on patrol without the aid of others
- Citizen observes the accident, and reports to an HP base station
- CB vehicle reports accident to HP unit on patrol
- CB vehicle reports accident to HP base station
- $C B$ vehicle relay to $C B$ base station, relay to $H P$ base station
- CB vehicle relay to another $C B$ vehicle, relay to HP unit on patrol
- CB vehicle relay to another CB vehicle, relay to HP base station
- CB vehicle relay to another $C B$ vehicle, relay to $C B$ base station, relay to HP base station.

Lath link end: with a patrol If vehicle on scene, so either an $H P$ unit was notified athe proceded to arrive on seene or radioed to a closer HP unit on patrol. 'The 111 , unit may have been notified by a CB unit or an HP base station.

a. HP Unit Detection Link (HP)

The location of all HP units approaching the accident from either direction is compared to the location of the accident. The closest $H P$ unit is the one designated for computation of this link. Denote its distance from the accident as $\mathrm{F}_{\mathrm{HP}}^{\mathrm{O}}$. The time of detection T_{d}, time from detection to notification, T_{n}, and time from notification to response, T_{r} are as follows:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{d}} & =\frac{\mathrm{F}_{\mathrm{HP}}^{\mathrm{O}}}{\mathrm{v}} \\
\mathrm{~T}_{\mathrm{n}} & =0 \\
\mathrm{~T}_{r} & =0
\end{aligned}
$$

For this link, detection, notification and response occur simultaneously with the $H P$ arrival on scene. The detection time is just the time it takes to approach the scene at regular speed and the additional time units are zero (notification and response instantaneously completed).

The time to notification is $T_{d}+T_{n}$ and the total time to complete the link is $\mathrm{T}_{\mathrm{d}}+\mathrm{T}_{\mathrm{n}}+\mathrm{T}_{\mathrm{r}}$. The model provides each time interval and the two cumulative times, for each link.
b. Citizen Phone to HP Base Station Link (CIT $\rightarrow \mathrm{HPBS} \rightarrow \mathrm{HP}$)

Let $\stackrel{>}{F}_{\mathrm{CIT}}^{0}$ denote the distance from the first non-CB equipped citizen vehicle approaching the accident from the left. Define $\stackrel{\stackrel{\rightharpoonup}{\mathrm{F}} \text { CIT }}{\circ}$ similarly, from the right. The detection time for this link will be the shorter of the two times to detect for each citizen, i.e., in each direction. The notification time for this link is a fixed input value, c, the time required to exit from the road, reach a phone and call the HP base station. Once notified, the HP base station has a fixed input time, d, to dispatch a unit to the scene. The dispatched unit is assumed to proceed to the scene at emergency speed and is the unit closest to the accident at the time of dispatch, $t . F_{H P}(t)$ is the distance from the accident to this nearest approaching HP unit at time t. (This differs from $F_{H P}{ }^{0}$, the distance of the closest $H P$ unit at the outset, prior to any link activity or movement of vehicles.).

The detection, notification and response times for this link
are:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{d}}=\min \frac{\left(\mathrm{F}_{\mathrm{CIT}}, \mathrm{~F}_{\mathrm{CIT}}\right)}{\mathrm{v}} \\
& \mathrm{~T}_{\mathrm{n}}=\mathrm{c} \\
& \mathrm{~T}_{\mathrm{r}}=\mathrm{d}+\frac{\mathrm{F}_{\mathrm{HP}}(\mathrm{t})}{\mathrm{v}_{\mathrm{e}}}
\end{aligned}
$$

c. $C B$ unit to $H P$ Unit Link ($C B \rightarrow H P$)

In this link the first $C B$ unit approaching the accident from the left, $\stackrel{\rightharpoonup}{F}_{C B} \mathrm{o}$ and the one from the right, $\stackrel{\rightharpoonup}{F}_{C B} \mathrm{o}$ are considered. Whoever arrives first, is assumed to stop at the accident site and start transmitting the emergency message about the accident. It is assumed that a time, w, is required before actual transmittal occurs. The distance from the accident to the closest approaching HP unit at the time transmittal starts, t, is denoted by $F_{H P}(t)$ for this link. When this unit comes within range of the CB unit, the HP unit increased "instantaneously" to emergency speed. The range of the $C B$ mobile unit is assumed to be a fixed value, y_{m} (one way).

The detection, notification and response times for this link are:

$$
\begin{aligned}
& T_{d}=\frac{\min \left(\vec{F}_{\mathrm{CB}}^{o}, \mathrm{~F}_{\mathrm{CB}}^{o}\right)}{\mathrm{v}} \\
& \mathrm{~T}_{\mathrm{n}}=\frac{\max \left(\mathrm{F}_{\mathrm{HP}}(\mathrm{t})-\mathrm{y}_{\mathrm{m}}, 0\right)}{\mathrm{v}} \\
& \mathrm{~T}_{\mathrm{r}}=\frac{\min \left(\mathrm{F}_{\mathrm{HP}}(\mathrm{t}), \mathrm{y}_{\mathrm{m}}\right)}{\mathrm{v}_{\mathrm{e}}}
\end{aligned}
$$

If an HP unit can be on scene faster by the addition of a CB relaying vehicle, the link, described in f below, will be assumed to occur rather than the one described here.

d. $C B$ Unit to $H P$ Base Station Link ($\mathrm{CB} \rightarrow \mathrm{HPBS} \rightarrow \mathrm{HP}$)

Since the first $C B$ unit $\left({ }_{C B}{ }^{\circ}\right.$ or $\underset{\mathrm{F}}{\mathrm{F}} \mathrm{O}$) stops at the scene of the accident, there is a possibility for the $H P$ base station to receive the stopped CB units' message, given that the accident was within the base station range ($H P$ and $C B$ base stations are assumed to have the same receiving range, y_{b}). Since the $H P$ base station has a fixed input location, this possibility depends on the random location of the accident in each iteration. If the user does not wish to use this link, this may be achieved by setting the HP base station location to a specified value. If this link is desired, it may or may not occur for a given accident, depending on accident location. If it does not occur for an accident (i.e., the $H P$ base station is not within range of the accident), then the corresponding relay link will occur. This is because a relaying CB vehicle will eventually reach the HP base station. The relay link is discussed in f, below.

Assuming that the accident is within range of the $H P$ base station, the link mechanism is quite simple. As soon as the message is complete, taking time w, the HP base station is notified and selects the closest HP unit, to arrive on scene taking time, d, to dispatch. The distance from the closest one will, at time t, be $F_{H P}(t)$, where t is the time for the $C B$ unit to arrive $p l u s w$. The time equations are:

$$
\begin{aligned}
T_{\mathrm{d}} & =\frac{\min \left(\mathrm{F}_{\mathrm{CB},}^{o} \stackrel{大}{\mathrm{~F}}_{\mathrm{CB}}^{o}\right)}{\mathrm{v}} \\
\mathrm{~T}_{\mathrm{n}} & =\mathrm{w} \\
\mathrm{~T}_{\mathrm{r}} & =\mathrm{d}+\frac{\mathrm{F}_{\mathrm{HP}}(\mathrm{t})}{\mathrm{v}_{\mathrm{e}}}
\end{aligned}
$$

e. $C B$ Unit to $C B$ Base Station, Phone to $H P$ Base Station Link $(\mathrm{CB} \rightarrow \mathrm{CBBS} \rightarrow \mathrm{HPBS} \rightarrow \mathrm{HP})$

Another link is one similar to d. except that the CB unit transmits to one of the $C B$ base stations, which, in turn, phones the message Lo the HP base station; the time for the phone call is u. As in d, above, this
link is possible only if the accident, and, thus, the first $C B$ unit, is within the receiving range of the $C B$ base station. If range constraints prohibit the execution of this link, the corresponding relay link will occur, in its place. If the user does not wish to use this link, this may be achieved by setting the number of $C B$ base station locations to zero. Also, if the base station locations are outside of the receiving range from the highway, the link cannot occur.

Should this link occur, the equations for detection, notification and response time are:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{d}}=\min \left(\mathrm{F}_{\mathrm{CB}}^{\mathbf{o}}, \mathrm{F}_{\mathrm{CB}}^{0}\right) \\
& \mathrm{T}_{\mathrm{n}}=\mathrm{w}+\mathrm{u} \\
& \mathrm{~T}_{\mathrm{r}}=\mathrm{d}+\frac{\mathrm{F}_{\mathrm{HP}}(\mathrm{t})}{\mathrm{v}_{\mathrm{e}}}
\end{aligned}
$$

f. Links Involving CB Relay

The three remaining links considered are elaborations of c, d, and e. In these links, the accident message is transmitted by the $C B$ unit on scene to two other secondary relaying $C B$ units, located at ${\underset{S}{C B}}(t)$ and $\grave{S}_{C B}(t)$, one traveling in each direction. ${\underset{S}{C B}}(t)$ specifically denotes the next $C B$ unit approaching the accident from the left at time t, when the stopped $C B$ unit has transmitted the first emergency message; ${\underset{S}{C B}}^{(t)}$ is defined similarly. These two units continue moving and eventually transmit to an HP unit, $H P$ base station (if in range) and a CB base station (if one is in range). If the corresponding links c, d, or e occurred without relay, then the corresponding relay link is not required, and thus, not computed.

To visualize the selection of vehicles located at ${\underset{S B}{B}}^{P}(t)$ and $\stackrel{S}{C B}(t)$, the reader is referred back to Figure 3 . On this figure, $\mathbb{E}_{1}<{\underset{E}{1}}^{E_{1}}$
 miles from the accident, approaching from the right. After time $t^{\prime}=\frac{E_{1}}{v}+w$
the CB unit has reached the accident site, stopped and transmitted a message. The relaying vehicles are those which at the outset were located at \hat{X}_{2} and \hat{X}_{1} and we see that $\widehat{S}_{C B}\left(t^{\prime}\right)=\bar{E}_{2}$ - wv and $\vec{S}_{C B}\left(t^{\prime}\right)=\vec{E}_{1}-\widehat{E}_{1}-w v$. If $\overrightarrow{\mathrm{E}}_{1}$ had been less than $\stackrel{E}{E}_{1}$, the relationships would reverse. The locations at times, $o, \widehat{E}_{1} / v$, and $\widehat{E}_{1} / v+w$ are shown on Figure 4.

On Figure 4, neither relay vehicle is within range of the stopped CB unit, thus the distances required to be traversed to be within range are $\vec{E}_{2}-w v-y_{m}$ and $E_{1}-E_{1}-w v-y_{m}$ (or zero if they are in range). Once in range, the relay units receive the message and transmit while leaving the accident scene until the authorities are reached. The relay vehicles also require a time w to transmit the message.

For the relay links, the three vehicles located $0, \bar{E}_{1}-w v$ and $E_{1}-E_{1}-$ wv miles from the accident are assumed to participate until an $H P$ mobile unit is contacted, an $H P$ base station is contacted and a CB base station is contacted. Conceptually, these are three separate, independent sequences of transmission, as clearly a CB vehicle would not continue to notify the other two contact points, after one had been contacted.
(1) CB Relay to HP Unit Link $(\mathrm{CB} \rightarrow \mathrm{CB} \rightarrow \mathrm{HP}$)

The CB relay vehicles begin transmitting when they first receive the message. This occurs at the time of the first units' transmission or after a time required to move into range, depending on position. At the time the first relay transmission has been completed, t, the HP unit which can be notified by a relayer and is closest to the accident is tagged $F_{H P}(t)$. Once this $H P$ unit is in range of a $C B$ mobile unit, it proceeds at emergency speed to the accident. As previously mentioned, if an $H P$ unit were to receive the message earlier from the first, stationary unit, the relay would not be necessary.

Detection occurs as in c. Notification occurs when the relay vehicles have noved to within range of the stopped $C B$ vehicle and moved further to relay the message within range of an HP unit. Detection occurs when this HP unit arrives on scene.

Figure 4 DERIVATION OF $\vec{S}_{C B}(t) \widehat{S}_{C B}(t)$
(2) CB. Relay to HP Base Station Link ($\mathrm{CB} \rightarrow \mathrm{CB} \rightarrow \mathrm{HPBS} \rightarrow \mathrm{HP}$)

In this link, the relayers continue past the accident until they are within range of an HP base station. The base station then dispatches the $H P$ unit closest to the accident. The location of this $H P$ unit, unlike the previous link, is not dependent on the location of relayers, only on the time that the $H P$ base station contact occurred.
(3) CB Relay to CB Base Station Link ($\mathrm{CB} \rightarrow \mathrm{CB} \rightarrow \mathrm{CBBS} \rightarrow \mathrm{HPBS} \rightarrow \mathrm{HP}$)

In this link, the relayers contact a CB base station, rather than HP base station. The CB base station closest to either of the relayers will be the one contacted. Following contact, the CB base station phones the HP base station which dispatches an HP unit as in the last link described.

B. Simulation of a Fixed Event (Subroutine EVTSIM)

The simulation of fixed (non-moving) non-accident events (roadway hazards, stalled vehicles, etc.) is similar to that for accidents. The basic differences involve the fact that the citizens and the authorities are assumed not to act with as much urgency as for accidents. Specifically, the differences are:

- CB units and HP mobile units have a probability assigned to whether or not they will act when observing a situation. (For accidents, this probability is 1.)
- $C B$ units which will act do not stop at the scene, but will continue along the road, broadcasting the message for an assumed fixed number of miles. (For accidents, the first $C B$ unit on scene stops and transmits as long as is required, until response is achieved.)
- No relay links are considered. (This reduces the total number of links from 8 to 5.)
- The direction of travel of the vehicle is given more consideration for fixed events; events are designated as occurring on one side of the road, in particular, and citizens without $C B$, $C B$ units and $H P$ units have probabilities of observing and acting on an observed event, depending on direction of travel. (Accidents are visible from both directions and have no designated side of the road).
- HP units do not use emergency speed when notified of a fixed event (They do for accidents).

1. The Roadway, Location of a Fixed Event

The procedure for fixed events is the same as for accidents, and its location is denoted by $\mathrm{X}_{\mathrm{f}}, 0 \leq \mathrm{X}_{\mathrm{f}} \leq \ell$. For fixed events, the side of the road has greater importance than for accidents and while the events are always located on one side of the road, reporting can occur on the same or opposite side of the road. Since the situation is symmetric, there is no need to consider events with $\ell \leq \mathrm{X}_{\mathrm{f}} \leq 2 \ell$.
2. Location of HP Units

The location of HP units for fixed events is precisely the same as for accidents.
3. Location of Other Vehicles

As for accidents, vehicles have exponentially distributed distances between, measured from the fixed event site. Once this string of vehicles is generated, the identifications are more complex than for accidents because of the probabilities introduced for fixed event activities.
4. Identification of Reporting Vehicles

Five probabilities are required as input to determine the identifications for reporting vehicles. These are:
$\mathrm{p}_{\mathrm{c}}=$ probability that a vehicle has a $C B$ radio
$\vec{p}_{c}=$ probability that a CB unit will see and attempt to report an event on the same side of the road
$\widehat{\mathbf{p}}_{\mathbf{c}}=$ probability that a CB unit will see and attempt to report an event on the opposite side of the road
$\vec{P}_{r}=$ probability that a citizen will see and report an event by phone when the event occurred on the same side of the road
$\vec{p}_{r}=$ probability that a citizen will see and report an even by phone when the event occurred on the opposite side of the road

In the string of vehicles approaching the event from either direction, a random number, R, is drawn for each vehicle to identify it. The first vehicles is either direction for which

$$
\begin{aligned}
& R<\stackrel{\rightharpoonup}{p}_{r}\left(1-p_{c}\right) \text { or } \\
& R<{\underset{p}{r}}_{\left(1-p_{c}\right)}^{<}
\end{aligned}
$$

are citizens who. will report an event. (The value of R will be different for the left approaching and right approaching vehicle.) Their distances from the accident at the outset, $\overrightarrow{\mathrm{F}}_{\mathrm{CIT}} \stackrel{\circ}{\mathrm{F}_{\mathrm{CIT}}} \stackrel{\circ}{ }$, are required to compute times for one of the links. Second, third, etc. such vehicles do not participate, since the vehicle that is closest,

$$
\min \left(\stackrel{\rightharpoonup}{F}_{\mathrm{CIT}}, \stackrel{\circ}{\mathrm{~F}_{\mathrm{CIT}}}\right)
$$

will complete the sequence to notification, by calling the $H P$ base station.

Similarly, a vehicle is a reporting $C B$ unit if $R<{\underset{p}{p}}_{c} p_{c}$ or $\mathrm{R}<\stackrel{\mathrm{p}}{c}^{c} \mathrm{p}_{\mathrm{c}}$, depending on locations. Because the CB reporting units only transmit for a specified distance and then stop, it is possible for this effort not to yield notification, when no HP unit or base station (CB or $H P$) is in range during transmission. Therefore, new reporting CB vehicles are generated until all links have been completed. A special routine in EVTSIM then computes the required separation and delineates those which will make contact from those that will not.

Although no identifiers are used for $H P$ vehicles with accidents, this is required for fixed events. $H P$ units will stop on scene if they were notified by the HP base station or a CB unit but may or may not stop if they observe the event on their own. Two probabilities are required:

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{p}_{h}=\begin{array}{l}
\text { probability that an } H P \text { unit will stop for an event } \\
\text { on the same side of the road }
\end{array} \\
& \stackrel{S}{P}_{h}=\begin{array}{l}
\text { probability that an } H P \text { unit will stop for an event } \\
\text { on the opposite side of the road }
\end{array}
\end{aligned}
$$

For each $H P$ unit a random number R is drawn. If $R<{\underset{p}{p}}_{h}$, or $R<{\underset{p}{p}}_{h}$, as the case may be, then the vehicle will stop if it passes by the event. This computation is made in both directions from the event until the closest such vehicle is found.

In all links, it is possible to set any of these probabilities to zero or to one, to either remove the link option or to show greater urgency.
5. Communication Links

The links for fixed events are:

- HP unit detects the event and stops at the scene without the aid of others
- Citizen observes the event and reports to an HP base station
- CB vehicle successfully reports accident to $H P$ unit on patrol
- CB vehicle successfully reports accident to HP base station
- CB vehicle successfully reports accident to CB base station, relay to HP base station.

Each link ends with an HP unit dispatched to the scene, except for the first link shown above, where the unit is already on scene at detection. Each link is discussed further.

a. HP Unit Detection Link (HP)

Let $F_{H P}^{\circ}$ denote the $H P$ unit closest to the event which will stop (that is, achieved $\mathrm{R}<\stackrel{\rightharpoonup}{\mathrm{p}}_{\mathrm{h}}$ or $\mathrm{R}<\stackrel{\stackrel{\rightharpoonup}{p}}{\mathrm{~h}}$). The times are as for accidents:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{d}}=\mathrm{F}_{\mathrm{HP}}^{\mathrm{o}} \\
& \mathrm{~T}_{\mathrm{n}}=0 \\
& \mathrm{~T}_{\mathrm{r}}=0
\end{aligned}
$$

b. Citizen Phone to HP Base Station Link ($\mathrm{CTI} \rightarrow \mathrm{HPBS} \rightarrow \mathrm{HP}$)

Although the parameter values for this link, reporting probabilities, c, citizen reporting time, d, HP dispatch time, would normally be different for fixed events than for accidents, the basic computational procedures are identical, except that the HP unit dispatched does not use emergency speed:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{d}}=\min \frac{\left(\mathrm{F}_{\mathrm{CIT}}, \stackrel{o}{\mathrm{~F}} \mathrm{CIT}\right)}{\mathrm{v}} \\
& \mathrm{~T}_{\mathrm{n}}=\mathrm{c} \\
& \mathrm{~T}_{\mathrm{r}}=\mathrm{d}+\frac{\mathrm{F}_{\mathrm{HP}}(\mathrm{t})}{\mathrm{v}}
\end{aligned}
$$

Note that in the computation of $\stackrel{>}{\mathrm{F}} \mathrm{CIT}^{\circ}, \stackrel{\stackrel{\circ}{\mathrm{F}}}{\mathrm{CIT}}$, the side of the roadway on which the fixed event occurred is considered, i.e., the probabilities of reporting vary according to the side of the road.
c. \quad CB Unit to HP Unit Link $(\mathrm{CB} \rightarrow \mathrm{HP})$

For this link, several possible $C B$ vehicles and $H P$ units are considered. Since both are moving and the $C B$ vehicles have a finite range and transmit for a finite distance, the first $H P$ units approaching
a reporting $C B$ vehicle may be too late to receive the message. When the first such reception which will occur is obtained for both directions of travel, these $C B$ vehicles are designated by their locations, ${\underset{F}{C B}}_{0}^{o}$ and $\mathrm{F}_{\mathrm{CB}}^{0}$. Here, ${\underset{F}{C B}}_{o}^{o}$ and $\underset{C B}{ } \underset{C}{o}$ denote the distance from the event of the first reporting vehicles in either direction which will complete the link to an $H P$ unit.
 unit will be a distance $F_{H P}(t)$ from the event at time t. The first $C B$ unit which will achieve minimum total time is selected. Letting [] denote the appropriate distances between for the variations on direction of travel, the $C B$ unit, $H P$ unit pair that will achieve minimum total time is selected according to:

$$
T *=\min \left(T: T=\frac{F_{C B}^{o}+}{v} w+\frac{\left[F_{C B}^{o}-F_{H P}(t)\right]}{v},\right.
$$

where $F_{C B}^{o}=\sum_{C B}^{o}$ or $\underset{C B}{o}$ and $F_{H P}(t)$ corresponds to one or the other of these and a pair ($\mathrm{F}_{\mathrm{CB}}^{\mathrm{o}}, \mathrm{F}_{\mathrm{HP}}(\mathrm{t})$) will achieve the link.
Denote by $\left(\mathrm{F}_{\mathrm{CB}}^{\mathrm{o}^{*}}, \mathrm{~F}_{\mathrm{HP}}(\mathrm{t})^{*}\right)$ the pair which achieves this minimum.

The time equations for this link are, then,
$T_{d}=\frac{\mathrm{F}_{\mathrm{CB}}^{\mathrm{o}^{*}}}{\mathrm{v}}$
$T_{n}=w+\max \frac{\left(F_{H P}(t)^{*}-y_{m}, o\right)}{v}$
$T_{r}=\min \frac{\left(F_{H P}(t)^{*}, y_{m}\right)}{v}$
d. CB Unit to HP Base Station Link $(\mathrm{CB} \rightarrow \mathrm{HPBS} \rightarrow \mathrm{HP}$)

This link proceeds in a manner very similar to the $C B$ unit relay to $H P$ base station link for accidents. As in the last link, several sequences may have to be attempted before a CB vehicle is transmitting while passing a base station. The basic difference between this link and the
relay mode for accidents is that the first arriving CB unit which will transmit past a base station is also the relayer for fixed events, rather than stopping. Also, HP units travel at normal speeds when dispatched to fixed events.
e. CB Unit to CB Base Station, Phone to HP Base Station Link $(\mathrm{CB} \rightarrow \mathrm{CBBS} \rightarrow \mathrm{HPBS} \rightarrow \mathrm{HP})$

As in the last link, this link proceeds as the corresponding relay mode for accidents.
C. Simulation of a Moving Event (Subroutine SPDSIM)

Subroutine SPDSIM simulates a speeder or reckless driver moving at a speed greater than the average speed of traffic on the highway. The speeder can be observed and reported by citizens, CB vehicles or $H P$ units and the HP units attempt to pursue and apprehend the speeder. Detection, notification and response times are calculated as in ACCSIM and EVTSIM, and the program also determines whether the speeder is apprehended, slows to normal speed when an HP unit is observed, or escapes without being caught.

The simulation is similar to EVTSIM in that the speeder may be observed from both sides of the road by citizens and $C B$ units with different probabilities for each side of the road. Also the $C B$ unit continues driving after having observed the speeder and transmits only for a fixed distance past the point of observation. There are no relay modes.

1. The Roadway, Location of a Speeder

The speeder is assumed to enter the road segment at $X=0$, proceeding to the right at speed $v_{s}>v$. The location of the speeder is denoted by $X_{s}(t), o \leq X_{s}(t) \leq \ell$. If the speeder achieves $X_{s}(t)=\ell$ without being apprehended, the speeder escapes. The location is calculated as $X_{S}(t)=\frac{v_{s}}{t}$ unless the speeder observes an $H P$ unit at time t^{\prime} and slows to normal speed.

In this case, the location would be:

$$
X_{s}(t)=\frac{v_{s}}{t^{\prime}}+\frac{v}{t-t^{\prime}}, t>t^{\prime}
$$

Denote by $X_{\text {app }}$ the location between O and ℓ that apprehension occurs and by $X_{\text {det }}$, the location where detection occurred.

For speeders only, the event has an identifier denoted by p_{p}, the probability that the speeder will pass the HP unit while speeding. For each iteration in the simulation a random number is drawn, R, and if $R<p_{p}$ then the speeder in that iteration will speed past an HP unit if one is encountered between $X=0$ and $X=\ell$.

2. Location of HP Units

The location of HP units for speeders is precisely the same as for accidents and for fixed events.

3. Location of Other Vehicles

Vehicles are assumed to have exponentially distributed distances between, as before, and are measured from $X=0$, the location of the speeder at time zero. A string is set up from $X=0$ to $X=\ell$, denoted X_{1}, X_{2}, \ldots, and, from $X-2 \ell$ to $X=\ell, \S_{1}, X_{2}, \ldots$. Probabilities of citizen and $C B$ vehicle reporting determine those who will report from these sequences in the same manner as for fixed events.

For a speeder proceeding in the same direction, the HP unit will observe the speeder and always attempt to apprehend. For a speeder passing in the opposite direction, there is a probability equal to $\stackrel{p}{h}$ of observing the speeder. For speeders, then, $\stackrel{\rightharpoonup}{p}_{h}=1$ and $\stackrel{<}{p}_{h} \leq 1$. For each $H P$ unit located, a random number, R, is drawn, and if $R<\stackrel{<}{p}_{h}$ then that $H P$ unit is designated as an "apprehender". A11 HP units will attempt apprehension if dispatched or notified by CB.

4. Communication Links

The links escape and correction possibilities are:

- HP unit detects the speeder and apprehends
- Citizen observes the speeder, reports to an HP base station, dispatches HP unit which apprehends
- $C B$ vehicle reports speeder to HP unit on patrol which apprehends
- CB vehicle reports speeder to $H P$ base station, dispatches HP unit which apprehends
- $C B$ vehicle reports speeder to $C B$ base station, phone HP base station, dispatches HP unit which apprehends
- Speeder escapes at the end of the roadway
- Speeder reduces speed to normal, after observing HP unit.

These possibilities are discussed below.
a. HP Unit Detection Link (HP)

First, in order to simulate the situation where an HP unit has pulled off the road and detects the speeding vehicle as it passes, speeders are assumed to be detected and apprehended in this manner if at $t=0$ there is an $H P$ unit within 0.5 mile of $X=0$. If this is the case, detection and apprehension points are

$$
\begin{aligned}
& x_{\mathrm{det}}=0 \\
& x_{\mathrm{app}}=1
\end{aligned}
$$

If the situation described above does not occur, the point at which the speeder will pass the first $H P$ unit is determined by $\underset{\mathrm{F}}{\mathrm{F}} \mathrm{o}$. If this point is past the end of the road segment, $X=\ell$, it is possible for the speeder to escape. If the passing point, $\widehat{F}_{h p}^{\circ}$ is less than \& then
a speeder designated as a "passer" will pass the HP unit and is immediately apprehended, $X_{d e t}=X_{a p p}=\underset{h p}{\circ}$. A "non-passer" will spot the $H P$ unit and slow down.

Another possibility is that a speeder proceeds along the road passing an $H P$ unit going in the opposite direction. These HP units have probability $\stackrel{S}{\mathrm{P}}_{\mathrm{h}}$ of observing the speeder and calling other HP units to apprehend the speeder. They do not turn around and chase the speeder themselves. If the first $H P$ unit to pass in the opposite direction does not observe the speeder, then further vehicles are checked, until one is found or the speeder escapes.

To derive the apprehension point when $X_{\text {det }}=\widehat{F}_{\mathrm{hp}}^{\circ}$ (an HP unit in the opposite direction detects the speeder and radios for apprehension), HP units are located in appropriate "capture zones" at the moment of notification. If there is an HP unit in a capture zone, an apprehension point is calculated and used for $\mathrm{X}_{\mathrm{app}}$.

Two distances define the capture zones:

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{b}}= \begin{array}{l}
\text { distance behind a speeder within which an } \mathrm{HP} \\
\\
\text { unit will attempt to close }
\end{array} \\
& \mathrm{K}_{\mathrm{a}}= \begin{array}{l}
\text { distance ahead of a speeder beyond which an } \\
\\
\\
\\
\text { and wait will pull off the side of the road }
\end{array} \\
& \text { ander ther }
\end{aligned}
$$

At the time that $H P$ mobile units receive the message, t, $H P$ units are examined to determine the $H P$ units closest to the speeder such that

$$
\begin{aligned}
& x_{s}(t)-\vec{F}_{H P}(t) \leq k_{b} \text {, or } \\
& \vec{F}_{H P}(t)-X_{s}(t) \geq k_{a}
\end{aligned}
$$

Denote by $\vec{F}_{\mathrm{HP}}^{\mathrm{b}}(\mathrm{t})$ the distance from the speeder at time t to an HP unit that meets the first requirement and $\underset{\mathrm{F}}{\mathrm{Z}} \mathrm{a}$ one that meets the second, if any.

If apprehension is possible, we have that

$$
X_{a p p}=\min \left[\frac{x_{s}(t) \cdot v_{e}-{\underset{F}{H P}}_{b}(t) \cdot v_{s}}{v_{e} v_{s}}, \underset{H P}{a}(t)\right]
$$

if both $\underset{\mathrm{F}}{\underset{\mathrm{H}}{\mathrm{b}}}$ (t$)$ and $\underset{\mathrm{HP}}{\underset{\mathrm{H}}{\mathrm{a}}}$ (t) are determined. If only one is determined the location $X_{a p p}$ is that one and if neither is determined there can be no apprehension. Further, if this will occur after location ℓ, then the speeder escapes and there is no apprehension.

The time equations are

$$
\left.\begin{array}{l}
T_{d}=\frac{X_{d e t}}{v_{s}} \\
T_{n}=0 \\
T_{r}=0
\end{array}\right\} \begin{aligned}
& \text { if } X_{\text {det }} \text { and } X_{\text {app }} \text { are determined } \\
& \text { and } X_{\text {det }} \leq \ell, X_{a p p} \leq \ell .
\end{aligned}
$$

Otherwise, the speeder slows or escapes.
b. Citizen Phone to HP Base Station Link (CIT \rightarrow HPBS $\rightarrow \mathrm{HP}$)

Let ${\underset{\mathrm{F}}{\mathrm{CIT}}}^{o}$ and ${\underset{\mathrm{F}}{\mathrm{CIT}}}^{\mathrm{o}}$ denote the closest reporting citizens to the speeder's location at the outset. The detection location for this mode is

$$
x_{d e t}=\min \left[v_{s} \frac{\stackrel{\rightharpoonup}{F}_{C I T}^{o}}{v_{s}-v}, \quad v_{s} \frac{\widehat{F}_{C I T}}{v_{s}+v}\right] .
$$

Notification time is fixed as c and response occurs precisely as in the link described above except that the time to dispatch, HP base station to HP unit, d, is required.

The time equations are

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{d}}=\frac{\mathrm{X}_{\mathrm{det}}}{\mathrm{v}_{\mathrm{s}}} \\
& \mathrm{~T}_{\mathrm{n}}=\mathrm{c} \\
& \mathrm{~T}_{\mathrm{r}}=\frac{\mathrm{X}_{\mathrm{app}}-\mathrm{X}_{\mathrm{det}}-\mathrm{c} \mathrm{v}_{\mathrm{s}}}{\mathrm{v}_{\mathrm{s}}}
\end{aligned}\left\{\begin{array}{l}
\text { if } \mathrm{X}_{\mathrm{det}} \text { and } \mathrm{X}_{\mathrm{app}} \text { are determined } \\
\text { and } \mathrm{X}_{\mathrm{det}} \leq \ell, \mathrm{X}_{\mathrm{app}} \leq \ell
\end{array}\right.
$$

Otherwise, the speeder slows or escapes. Note that for this mode, there is a dispatch time d, therefore $X_{a p p}$ would be computed starting from time $\mathrm{T}_{\mathrm{n}}+\mathrm{d}$.
c. $C B$ Unit to $H P$ Unit Link ($C B \rightarrow H P$)

This link is simulated in a manner similar to the preceeding one. CB vehicles who will report detect the speeder, transmit directly to HP units (no dispatch time is required) and the HP units attempt to apprehend as in all cases.
d. $C B$ Unit to $H P$ Base Station Link ($C B \rightarrow H P B S \rightarrow H P$)

This link proceeds as the last one except that a dispatch time must be awaited before the apprehension procedure can start.
e. CB Unit to CB Base Station, Phone to $H P$ Base Station Link $(\mathrm{CB} \rightarrow \mathrm{CBBS} \rightarrow \mathrm{HPBS} \rightarrow \mathrm{HP})$

In this link, both the dispatch time and the $C B$ base station, phone to HP base station, time must be awaited.
D. Computation of Results (Subroutine CBSTAT)

Subroutine CBSTAT computes the results to be used for output tables. These computations are based on n iterations using either ACCSIM, EVTSIM or SPDSIM. Each iteration produces detection, notification and response time intervals and cumulative times which are used by CBSTAT.

There are 5-8 links depending on type of event, accidents, fixed events or speeders.

For each of the n iterations of an event, and for each link, the following is computed:

- minimun detection time
- minimum notification time
- minimum detection plus notification time
- minimum response time
- minimum total time.

Next, an Experimental Area configuration of links is devised, using all links. The Control Area links are only those links which do not involve use of $C B$ by the $H P$ base station and patrol units. For the Experimental Area links, the percentage of iterations in which each link had minimum detection plus notification time and minimum total time are computed, as well as the distribution of all times. The minimum time over all links, or best of all possible times, is computed for the Experimental Area. The same is done for Control Area links.

For further calculations the link structure is slightly revised to compute means. Since some links will not occur in ACCSIM and SPDSIM, these revisions are necessary for computations. In ACCSIM, the CB relay links are combined with their corresponding non-relay links, since either one or the other will occur. In SPDSIM, the links all have a chance of not occurring, so each link is "split" into three categories-speeder apprehended, escaped or slowed. If, in an iteration, a speeder slowed or escaped in all links, then apprehension did not occur. Output tables provide the means and standard deviations for these revised "completed" link definitions and, for speeders, escape and slowed ratios, also.

V CONVERGENCE PROPERTIES OF THE SIMULATION

The method used to determine the number of iterations required is a common one. ${ }^{l}$ We desire to bound the mean total time (detection plus notification plus response) for all of the five main links studied to within a certain range with some given confidence. To do this, the simulation is run for various numbers of iterations to obtain a sample estimate of the standard deviations for each link ($s_{i}, i=1, \ldots, 5$). We also select a confidence interval d, i.e., the simulated mean total time should be within $\pm d / 2$ of the true mean, $x \%$ of the time. The number of iterations required, N, is thus

$$
N=\max \left(n_{i}: i=1, \ldots, 5\right)
$$

where

$$
n_{i}=\frac{t_{x}^{2} s_{i}^{2}}{(d / 2)^{2}}, i=1, \ldots, 5
$$

and t_{x} is the tabulated value for the number of iterations in the sample run for which s_{i} was computed at the $x \%$ level.

Nine accident runs were made for each of the following number of iterations: 200, $500,1000,2000,3000$. Table 9 shows the mean total time and s_{i} for each run. For each of the nine runs for a given number of iterations, the highest mean, lowest mean and median mean are shown, along with the range, high minus low. The parameters used were very similar to those shown on Table 5.

[^2]TABLE 9
MEAN TOTAL TIMES
(Min)

TABLE 9 (cont.)
MEAN TOTAL TIMES
(Min)

Number of Iterations
200
500
1000
2000
3000

i	Mean	s_{i}								
$\mathrm{CB} \rightarrow \mathrm{HPBS} \rightarrow \mathrm{HP}$	29.46	19.0	29.90	20.2	29.12	19.9	28.61	19.8	28.57	19.6
	28.78	18.5	28.70	19.7	28.86	19.5	28.05	19.0	28.36	19.4
	28.68	19.1	27.95	19.3	28.25	19.4	27.89	19.3	28.02	19.3
	28.51	18.3	27.75	19.6	27.80	19.1	27.89	19.2	27.92	19.6
	28.29	19.0	27.75	19.4	27.47	19.3	27.70	19.0	27.82	19.3
	27.91	18.7	27.55	19.4	27.44	19.2	27.58	19.3	27.82	19.1
	27.76	20.0	27.50	19.7	27.37	18.9	27.52	19.1	27.79	18.8
	27.25	18.9	27.09	18.9	27.23	19.2	27.51	19.1	27.70	19.1
	26.27	18.7	27.06	19.1	26.77	19.2	27.43	19.4	27.59	19.2
Median	28.29		27.75		27.47		27.70		27.82	
High	29.46		29.90		29.12		28.61		28.57	
\geq Low	26.27		27.06		26.77		27.43		27.59	
Range	3.19		2.84		2.45		1.18		. 98.	
$\mathrm{CB} \rightarrow \mathrm{CBBS} \rightarrow \mathrm{HPBS} \rightarrow \mathrm{HP}$	29.93	19.1	30.16	19.7	30.51	19.8	29.29	19.4	29.77	19.4
	29.70	18.0	29.67	19.1	30.02	19.4	29.01	19.4	29.40	19.5
	29.69	19.6	29.37	19.4	29.81	19.8	28.90	18.9	29.36	19.7
	28.91	20.0	29.32	19.9	29.72	19.6	28.88	19.2	29.27	19.6
	28.90	19.6	28.92	19.3	29.59	19.8	28.75	19.2	29.10	19.5
	28.60	18.3	28.68	19.0	29.59	19.8	28.74	19.0	28.80	19.4
	28.11	19.5	28.56	19.3	29.51	19.8	28.71	19.2	28.68	19.2
	28.05	18.9	27.85	18.6	29.14	19.2	28.66	19.4	28.44	18.8
	27.65	19.4	27.62	18.1	28.49	19.0	28.28	18.4	27.96	19.0
Median	28.90		28.92		29.59		28.75		29.10	
High	29.93		30.16		30.51		29.29		29.77	
Low	27.65		27.62		28.49		28.28		27.96	
Range	2.28		2.54		2.02		1.01		1.81	

TABLE 9 (cont.)
MEAN TOTAL TIMES
(Min)

Number of Iterations
200
500
1000
2000
3000

	i	Mean	s_{i}	Mean	si	Mean	s_{i}	Mean	s_{i}	Mean	s_{i}
	$\mathrm{CB} \rightarrow \mathrm{HP}$	13.69	10.2	13.42	10.4	13.44	10.6	13.09	10.3	12.81	10.3
		13.49	10.9	13.05	9.9	13.19	10.8	12.77	10.1	12.75	10.2
		13.22	9.8	12.49	10.1	13.09	10.4	12.66	10.1	12.73	10.3
		13.13	10.4	12.46	10.2	12.98	10.2	12.61	10.0	12.68	10.2
		12.85	9.6	12.30	9.5	12.88	10.0	12.56	10.1	12.63	10.1
		12.60	10.8	12.29	10.2	12.67	10.1	12.54	10.1	12.61	9.9
		12.02	10.2	12.28	10.0	12.64	10.5	12.36	9.9	12.50	10.2
		11.99	9.7	12.16	9.8	12.53	10.2	12.27	9.9	12.48	10.2
		11.69	10.1	12.14	10.1	12.16	9.7	12.08	10.1	12.48	10.1
∞	Median	12.85		12.30		12.88		12.56		12.63	
	High	13.69		13.42		13.44		13.09		12.81	
	Low	11.69		12.14		12.16		12.08		12.48	
	Range	2.00		1.28		1.28		1.01		. 33	

Several things are notable in these tables. First, as one would expect, the range of means decreases as the number of iterations increases. Secondly, the sample standard deviations are quite consistent for all numbers of iterations considered. And third, we see that different links have markedly different ranges for a given number of iterations. This implies that some links, such as HP alone and $\mathrm{CB} \rightarrow \mathrm{HPBS} \rightarrow \mathrm{HP}$, will require many more iterations to bound the mean time within specified minutes, than others. Since the model computes all links at once, the most difficult to bound will have to guide the number of iterations used.

The equation

$$
n_{i}=\frac{t_{x}^{2} s_{i}^{2}}{(d / 2)^{2}}
$$

was computed for two t_{x} values, $t_{.95}$ and $t_{.99}$, for 95 and 99 percent confidence levels, respectively. These apply to all numbers of iterations used since all sample runs are fairly large. The sample standard deviations vary from 4 to 20 among the links, so values of $4,10,15$ and 20 were used for s values. Table 10 shows the number of iterations required for a confidence interval of 1,2 or 3 minutes. The table is used as follows. If one desired to have a run's mean total time within $1 / 2$ minute (plus or minus), approximately 173 iterations are required for $C I T \rightarrow H P B S \rightarrow H P$ ($S \sim 4$); 1083 for $C B \rightarrow H P$ ($S \sim 10$); 2435 for HP alone ($\mathrm{S} \sim 15$); and 4328 for $\mathrm{CB} \rightarrow \mathrm{HPBS} \rightarrow \mathrm{HP} \rightarrow$ and $\mathrm{CB} \rightarrow \mathrm{CBBS} \rightarrow \mathrm{HPBS} \rightarrow \mathrm{HP}(\mathrm{S} \sim 20)$. This correspondence is made using the standard deviation on Table 9. Since we are using the largest n_{i} required for any link, the approximations of $4,10,15$, and 20 for standard deviations are adequate. The $N=\operatorname{maximum} n_{i}$ selected for this would be around 4000.

The final decision about recommending an N value was made based on cost of the runs and tolerable variations. Runs of 2000 iterations or more were judged to be costly and a one-minute error in either direction

NUMBER OF ITERATIONS

REQUIRED TO ACHIEVE DESIRED CONFIDENCE
Width of Confidence Interval About Mean
Sample Standard Deviation
1 Minute
2 Minutes
3 Minutes
95\% Confidence Level:

$\mathbf{s}=4$	173	43	19
$s=10$	1082	271	120
$s=15$	2435	609	270
$s=20$	4328	1084	480

99\% Confidence Level:

$s=4$	346	86	38
$s=10$	2164	541	240
$s=15$	4869	1217	540
$s=20$	8656	2164	960

was the largest acceptable at the 95 percent level. Consulting Table 10, with $N=1000$, 95 percent of the time, the run means are less than one minute different from the true means (± 1 min., iength 2 min。) and 99 percent of the time the run is only less than one and one-half minute off ($\pm 11 / 2 \mathrm{~min} .$, length 3 min.). This holds for links with s_{i} near 20 . Other links have smaller error, e.g., $C B \rightarrow H P\left(s_{i} \sim 10\right)$ is $\pm 1 / 2 \mathrm{~min} .$, length 1 min., at 95 percent and within ± 1 min., length 2 min., at 99 percent. $N=1000$ is therefore suggested for sensitivity runs.

$\mathrm{F}_{\mathrm{HP}}(\mathrm{t})$	$=$	distance of the closest HP unit (either direction) approaching accident at time t (miles)
$\vec{F}_{H P}^{b}(t)$	$=$	distance along the roadway of the closest HP unit behind the speeder in a capture zone
h	$=$	number of HP units
HP	=	highway patrol vehicle
HPBS	=	HP base station
k_{a}	=	capture distance ahead of speeder
k_{b}	$=$	capture distance behind speeder
1	$=$	length of roadway (miles)
m	$=$	traffic volume (vehicles per hour)
n	$=$	number of times that an event is simulated
pc	$=$	probability of having a CB unit
$\stackrel{\rightharpoonup}{\mathrm{p}}$	$\boldsymbol{\exists}$	probability of transmitting a CB message on same side of the road
$\hat{\mathrm{pc}}$	$=$	probability of transmitting a CB message on opposite side of the road
$\stackrel{\mathrm{ph}}{ }$	$=$	probability that an HP unit will stop for an event on the same side of the road
$\stackrel{\rightharpoonup}{\mathrm{ph}}$	$=$	probability that an HP unit will stop for an event on the opposite side of the road
pr	$=$	probability of reporting by phone
$\stackrel{\rightharpoonup}{\mathrm{pr}}$	$=$	probability of seeing and reporting by phone on same side of the road
<r	=	probability of seeing and reporting by phone on opposite side of the road
R	=	random number between 0 and 1
S	$=$	spacing tolerance for HP units (miles)
$\stackrel{\rightharpoonup}{S}_{C B}(t)$	$=$	distance from the accident, location to the nearest secondary relaying vehicle approaching from the left (miles)
$\stackrel{¢}{S}_{C B}(t)$	$=$	distance from the accident location to the nearest secondary relaying vehicle approaching from the right (miles)
SPDSIM	$=$	subroutine that simulates response to one speeder
Td	$=$	time of detection (minutes)
T_{n}	$=$	time from detection to notification (minutes)
T_{r}	$=$	time from notification to response (minutes)

u		time required for a $C B$ base station operator to phone a message to the HP base station (minutes)
v	=	constant traffic speed (m.p.h.)
Ve	=	highway patrol emergency speed (m.p.h.)
Vs	=	speed of the speeder
W	$=$	time required for a $C B$ vehicle to transmit a message (minutes)
X	$=$	location along the roadway (miles)
X_{a}	=	location of accident along the roadway (miles)
Xapp	$=$	location where apprehension occurred
Xdet	$=$	location where detection occurred
X_{f}	=	location of fixed event along the roadway (miles)
\vec{X}_{k}	$=$	location of the k th vehicle moving toward the event from the left (miles)
$\overrightarrow{\mathrm{X}}_{\mathrm{k}}$	$=$	location of the k th vehicle moving toward the event from the right (miles)
$X_{s}(t)$	=	location of the speeder at time t
Y_{b}	=	receiving range (one-way or radius) of the base stations (miles)
Ym	$=$	receiving range (one-way or radius) of a CB mobile unit (miles)

[^0]: 1 "Citizens Band Communication Manual," NHTSA, 1976.

[^1]: 1 Volunteer $C B$ monitoring is currently provided in many sections of the country by REACT (Radio Emergency Associated Citizens Teams), ALERT (Affiliated League of Emergency Radio Teams), and the Citizens Radio Watch.

 2
 Detailed Plan for Citizens Band Radio Highway Safety Evaluation Project, New York State Police, 1976.

[^2]: 1 "Systems Simulation, the Art and Science," R.E. Shannon, PrenticeHall, Inc., p. 189.

