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HULTIVARIATE ECONOHIC CONTROL CHARTS FOR THE NEAN 

ABSTRACT 

In this paper, 'Vle have determined the economic 

parameters (sample size and the control chart constant) for 

two quality characteristics by extending Page's scheme of 

minimizing Ll (the average run length of an out of control 

process) for a large fixed value of La (the average run 

length of an in control process). One result is that, for 

correlated quality characteristics, the sample size needed 

"to detect shifts in the levels of these characteristics 

does not always decrease as the magnitudes of the shifts 

that are important to detect in=rease. Another is that in 

general a smaller sample size is needed for two quality 

characteristics than for one. 



INTRODUCTION .. 
Since the inception of the Shewhart control chart 

in 1931, numerous publications have dealt with the exposi-

tion and application of these charts. Hore recently, 

increasing attention has focused on the economic design 

of these charts. One of the pioneering ~vorks in this 

area was that of Page in 1953. Page discussed the choice 

of sample size and control limits for controlling the 

mean of a univariate normal population using the scheme 

of minimizing the average run length of an out of control 

process, where the average run length is. defined as the 

average number of articles inspected between two succes-

sive occasions vlhen rectifying action is taken. Although 
, 

this is a very simple type of economic control chart, it 

is perhaps the most valuable because of its ease of 

understanding and implementation. 

In today's complex society, the quality· of each 

manufactured item depends upon several (p) quality 

characteristics. Early attempts to monitor the quality 

of the p characteristics were ad hoc in that p.univariate 

control charts were constructed. If a point fell out of 

the control limits on any of the charts, the process was 

judged to be out of control. The shortcomings of this. 

approach have been frequently pointed out in the 

literature, and publications have appeared which indicate 

the correct multivariate procedures to be adopted. 
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Although quality control management has long recognized 
~ 

the need to implement multivariate control procedures, 

quite frequently thy have failed to do so. One of the 

reasons is that bvo crucial questions remain unanswered: 

(i) hmv large a sample should be selected? (ii) i.vhat 

value should be used for the control chart constant? 

This paper answers'both of those previously unaddressed 

questions by extending Page's scheme to the mUltivariate 

case. Furthermore, it also allows the quality control 

decision maker to determine the reduction over other 

methods in the amount of scrap produced. before an out 

of control state is detected. 

ONE QUALITY CHARACTERISTIC 

When there is only one quality characteristic (X) 

which is normally distributed with stancLard values 

specified for the process mean (PO) and gtanda~d deviation 

(01) and successive random samples of size n are generated 

from this process, the control chart limits are of the 

form ~O ± B(aI/In) , where customarily B = za/2 = 3.0. 

In accordance with Page [2]', let m denote the true value 

of the process mean \tlhichmay vary from period to period. 

However, a I remains constant. 2 Thus, X ~ N(m, cr
I 

). 

Let P(m) denote the probability that a given 

sample yields an x outside the control limits when m is 

the process mean. Then 
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P(m) ~ P(X > ~o + Bar/In 1m) + P(X < ~o - B aI/Y~ 1m) 
oJ 

Let Y be a random variable denoting the number of 

samples up to and including the first one for which an x 
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indicates an out of control process. Then Y is a geometric 

random variable with parameter P(m). Specifically, 

y-l Py (y) = P (m) [1 - P (m) ] ,y = 1,2, ••• 

= 0 otherwise 

is well known that E(Y) = l/P(m). 

." 
Page defines the average run length (L) as the average 

number of articles inspected between two successive occasions 

-O;'lhen rectifying action is taken. For constant m, 

L = nE(Y) = n/P(m), 

which is the sample size per sample times the average number 

of samples up to and including the first one out o£ control. 

Let Lodenote the average run length when m = 11 0 • 

Since P(~o) = 2 ¢(-B), it follows that 

Let k > 0 be. a value such that Ita shift in the mean m of 

(2) 



amount equal to or greater than kOr is serious and we 

desire tht such a shift should be detec·ted as soon as possi-

ble after it has occurred." Define Ll to be the average 

run length when m = ~O + kOr . Since 

it follows that 

4 

L = n/[~(-B + kin) + ~(-B - kin)]. 
1 

(3) 

Page's scheme for determining Band n is to choose 

that inspection scheme such that Ll is minimized for some 

given large value of LO and fixed k. By revlrit;Lng equation 

(2) as n = 2 LO ¢(-B) and substituting this result into 

equation (3)r we see that 

O(-B + k/2 LO O(-B» + ~(-B - k/2 LO,I(-B» 

The problem is to find B which minimizes Ll for fixed LO 

and k. This B is then used to find n from the equation 

n = 2 LO O(-B). By using a computer search routine, Page. 

constructed tables of n, B, and Ll for LO = 2,000, 5,000, 

10,000, 15,000, 20,000, 40,000, and 60,000 and k = 

(0.2) (0.1) (1.8), where (O.l) denotes the step ~ize of k. 

A computer program was written to duplicate Page's 

(4) 

results, and, in. order to facilitate later comparisons, the out-

put is given in Table 1 for LO = 10,000 and k = 0.2 (0.2) 1~8. 



:;. ....... 

5 

These results correspond almost exactly with those of Page. 

By inspecting the table, we see that, for a fixed LO' n 

decreases as k increases. This is intuitively appealing 

since it says that a larger sample is needed to detect 

a small shift \qhile a smaller sample will suffice for a 

large shift. Perhaps the most surprising result of Table 1 

is that the control chart constant is quite frequently less 

than 3.0, the traditional value. For example, when, 

LO = 10,000, it is only when k ~ 0.80 that B ~ 3.0. Thus, 

Page's scheme calls for tighter than usual control limits 

and larger than usual sample sizes to detect small shifts. 

Table 1. Values of n, Xl~a = B2, and Ll for fixed LO and k 

.' 
One Characteristic, Independent Observations 

La k n 2 
Xl, a~ B L}, 

10000 .20 187 5.528 2.351 287.8 
10000 .. 40 65 7.405 2.721 93.8 
10000 .60 34 8.579 2.929 . 47.5 
10000 .80 21 9.459 3.076 29.1 
10000 1.00 14 10.199 3.194 19.8 
10000 1.20 11 10.635 3.261 14.4 
10000 1.,40 8 11.241 3.353 11.0 
10000 1.60 6 11.774 3.431 8.7 
10000 1.80 5 12.110 3.480 7.1 

-I 

l1ULTIPLE QUALITY CHARACTERISTICS 

This section extends the results of the previous 

section by allowing the quality of each item to be governed 

by more than Qne quality characteristic. In order to do 

this, we need to recall certain underlying principles of 



multivariate statistical quality control. ~ve ,\.,ill only 

consider two quality characteristics although the results 

are easily extended. 

Suppose ~l = [XIY ~21]t':··'~n = [Xl~X2n~t is ~ 
random sample of size n from a bivariate normal process 

with mean vector m and known variance-covariance matrix 
rv 

r (possibly obtained from a large amount of past data) . 

Let ~O = [~~, ~~]t denote the nominal value of the process 

mean. To maintain statistical control over .lto' the vector 

- - - t 
of sample means (~ = [x~ x 2 ] ) is calculated and it is 

t d t . h th n(x- - JC )t, ~-l(x- - '1 ) necessary 0 e ermlne w!e er ~ ~ 
rv 0 '" ",0 

exceeds the upper control limit (X2~a). Note that this 

is equivalent to testing HO:~ = JtO vs. Hl:~ + JtO with r 

knmvn. Additional background on the multivariate quality 

control problem can be found in Alt [1]. 

Page's procedure can be extended to this multi-

variate case by determing P(m) where 
rv 

which is the probability that the statistic plots out of 

control when the true process mean is m. If X '" N2 !m, E) 
'" ",. '" -and hence ~ ~ N2(~' r/n) , then if follows that 

where the prime denotes the noncentralchi-square random 

variable and the noncentrality para~eter 
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t -1 
A = n(~ - ~O) E (~- ~O). Thus 

P ') (I 2 2 I) ~~ = p X 2,A > X2,a ~. 

and 

(6) 

In order to measure departures of ~ from ~O' it is 

necessary to account for the possible de~arture of each com­

ponent of m. This is accomplished by introducing the 
'V 

(2 x 1) vector a where 
'V 

and letting m = ~O + a. We require that at least one 
'V 'V 'V 

k i > o. Tqus, although we wish to simultaneou~ly control 

the mean vector of several variables, it may be necessary 

to detect a shift in only one of these variables. When 

m = )..10 + cJ, 
'V 'V 'V 

t -1 2 -1 2 2 
A = n Z E Z = n{l - p) (kl - 2pk1k 2 + k 2 ) 

( ) { ,2 2} 
P ~O + Z = P X 2,A > X2,a ' 

and 
l'_\ 

Ll = n/p{X'2;A -> X2~a)· (7) 



" 

As with the univariate .case, that inspection scheme 
" 

will be chosen which minimizes Ll for some given large 

t 
value of LO and fixed ~ = [kl , k 2 ] • However, in the 

multivariate case, we must also fix p which is the corre-

lation between quality characteristics 

2 
rewriting equation {6} as n = La P{X2 

Xl and x2 • By 
2 

> X2 ) and sub­,a. 

stituting this result into equation {7}, we see that 

( 
I 2 

P X 2,1. 

2 
> X2 ) ,a. 

> X 2 ) 2,a. 

2 ,- ., 
For fixed LO' k, and P ''Ie seek that X2 , a. ana. n which mini-
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(8) 

mizes LI as stated in equation (8). One difficulty in doing 

this is the need for evaluating .the denominatqr of equation 

(8), which is the complementary cumulative noncentral chi­

square distribution function evaluated at X~2. To accom­k,a. 

plish this, we use the remarkably accuarate approximation 

of Sankaran [3J. The search routine used to find the 

minimum Ll is a modified version of the success-failure 

method as described by Dixon. The minimization of I.l was 

investigated for LO = 10,000, p = (-O.S) (.0.4) (+0.8), 

kl = 0.2, 0.6, 1.0 and k2 = 0.0, 0.2, 0.6, 1.0. The 

results are printed in Table 2. 

Upon first glancing at Table 2, it appears that, 

for a fixed La and P, n decreases as kl and. k2 increase. 

Again, this is intuitively appealing; for the magnitude of 

the required sample size should indeed decrease as the 



Table 2 

Economic Parameters for Two Quality Characteristics (La = 10,000) 

p = -0.8 p = -0.4 p = 0.0 p = 0.4 p = 0.8 

k1 k2 
2 * 2 L 1, 2 ~.( 2 L -I, 2 ,', n X2 ,et L1 n X2' n X2 et L1 n X2,et n X2 et L1 ,et 1 1 , , --

0.2 0.0 103 9.15 148 1 199 7.83 295 9 227 7.56 339 199 7.83 295 9 103 9.15 14S1 

0.2 36 11.25 50 2 89 9.44 127 133 8.64 194 173 8.11 254 209 7.74 311 

0.6 ' 11 13.62 15 3 26 11. 90 36 10 36 11.25 50 2 39 11.09 55 16 27 11.82 36 19 

1.0 5 15.20 7 4 12 13.45 17 11 16 12.87 22 15 16 12.87 22 15 9 14.02 12 18 

0.6 0.0 17 12.75 23 5 34 11.37 47 12 40 11.09 55 16 34 11.37 47 12 17 12.75 23 5 

0"2 11 13.62 15 3 26 11.90 36 10 36 11.25 50 2 39 11.09 55 16 ·27 11.82 3619 

0.6 6 14.81 7 6 14 13.14 19 13 22 12.24 30 29 11. 68 40 36 11.25 50 2 , 

1.0 3 16.22 4 7 9 14.02 11 14 13 13.29 17 17 16 12.87 22 15 15 13.00 21 20 

1.0 0.0 7 14.51 9 
8 14 13.14 19 13 , 17 12.75 23 5 14 13.14 19 13 7 14.51 9 8 

0.2 5 15.20 7 4 12 13.45 17 11 16 12.87 '22 15 16 12.87 22 
15 

9 14.02 12 18 
4 

0.6 3 16.22 4 7 9 14.02 11 14 13 13.29 17 17 16 12.87 2Z 15 15 13.00 21 20 

1.0 2 17.00 3 6 14.81 8 6 9 14.02 12 18 12 13.45 17 11 15 13.00 21 20 

I 

"'2 *The numerical superscripts indicate those entries which have the same values of the economic parameters n , X
2

,ct' and L
1

• \0 



magnitudes of the.shifts which are imp.ortant to det~ect 

increase. Usually, n is much larger for small kl and k2 = 

0.0 than for other values of k2" The interpretation of 

k2 = 0.0 is that it is important to detect a shift of zerq 

magnitude in the second component, or an "infinitesimally 

small" shift. This accounts for the rather large sample 

sizes in ,this case. However, further inspection of 

Table 2 shows that it is not always true that n decreases 

as kl and k2 increase for fixed LO and p. While this is 

true for p .s 0 and also for p = 0.4 \'lhen kl is sI!lall, it 

is not true for the other values of kl and p = 0.4, nor 

is it ever true ,,,hen p = 0.8. Thus, for a relatively large 

positive correlation, the sample size needed to detect 

large positive shifts is larger than the sample sizes 

10 

needed for smaller positive shifts. An explanation of thi.s 

is provided by examining the noncentrality parameter A, which' 

is a generalized measure of distance of how far the true 

mean is from the nominal value. Fix p = +0.4 and kl = 0.6. 

When k2 = 0.2, A = (n/.84) (.304); when k2 = 0.0, 1 = 

(n/.84) (.360); and, when k2 = 0.6, A = (n/.84) (.432). 

Inspection of Table 2 shows that, for the (kl , k 2 ) pairs 

investigated, the largest sample size (35) occurred with 

the smallest value of the noncentrality parameter (.304), 

the next largest saiilple size (30) occurred ~lith the next to 

the smallest value of the noncentrality parameter (. 36), and 

the smallest sample size (26) occurr~d with the largest value 

o£ the noncentrality parameter. Thus, when the generalized 

. ~ .•. ----.. ---, .. -' --,-",-". >. ~-'",--""'" 
•• ' ' .... ~".~,.::Y~ .... -;.-~~~~. 
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measure of di~tance (A) bet~'leen the true mean and the 

nominal value is small, it is to be expected that a larger 

sample size will be needed to detect such a small shift. 

Let us now compare n for positive p \'lith n for nega-

tive p. It i.s to be expected that both n's will be equal 

h k O · , -- n(l - p2)-1 k 2 d th . f . w en 2 = slnce A I an e ~lgn 0 p 1S 

lost through the squaring operation. However, for fixed 

kl and k2' n is ahlays much smaller for p < o. However, 

this is not to imply that one should try to choose nega­

tively correlated characteristics as opposed to positively 

ccrrelated characteristics. The stated phenomenon occurs ... 
because we are looking at positive shifts (kl > 0, k2 > 0) 

instead of negative shifts (k l < 0, k2 < 0). Thus for 

p < 0 and kl > 0, k2 > 0, the generalized distance measure 

(A) is larger than for p > 0 and kl > 0, k2 > o. 

One additional topic of interest is how does the 

required sample size for bvo quality character:j..stics compare 

with the sample size for one quality characteristic (Table 1)1 

Some idlea of this behavior is obtained by letting p = 0.0. 

2 2 
Thus, A = n (kl + k2 ): Novl, ,,,hen k2 = O,A reduces to the 

2 univariate noncentrality parameter n k,. Hovlever, the con-

trol limit will still be 2 Tables 1 and 2 show that, X2 . ,et 

for p = 0.0, k2 = 0.0 and fixed LO and k l , the required 

sample size is larger for two quality characteristics than 

for one· quality characteristic with ~his difference becoming 

smaller as kl increases. Furthermore r as soon a~ k2 be-, 

comes positive, n for p = 2 is usually much sr.tal1er than for' 
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p = 1. Thus, an economical sample size is not an unusual 

result \'lhen two quality characteristics are used as opposed 

to one. As a final point of interest, note that the maxi-

mum n in Table 2 occurs for p = 0.0, kl = 0.2, and k2 = 

This is the one case where the required sample size for 

p'= 1 (Table 1) is considerably smaller than for p = 2 

(Table 2). 
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