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MULTIVARIATE ECONOMIC CONTROL CHARTS FOR THE MEAN

ABSTRACT
In this paper, we have determined the economic

parameters (sample size énd the chtrol chart constant) for
two quality characteristics by extending Pagé's scheme of
'minimizing Ll (the average run length df an out of control
piocess) for a large fixed value of Lg (the average run
length of an in control process). One résult is that, for
correlated quality characteristics, the sample size needed
to detect shifts in the levels of these charagteristics
does not always decrease as the magnitudes of the shifts
that are important to detect increase. Another is that in
general a smaller sample size is needed. for two quality

characteristics than for one.



INTRODUCTION )

Since the inception of the Shewhart control chart
in 1931, numerous publications have dealt with the exposi-
tion and application of these chérts. More recently,
increasing attention has focused on the economic design
of these charts. One of the pioneering works in this
area was that of Page in 1953; Page discussed the choicé
of sample size and control limits forx cdntrolling the
mean of a univariate normal population using the scheme
of minimizing the average run length of an out‘of control
process, where the average run length is’defined'as the
average number of articles inspected between two succes-—
siVe occasions when rectifying action is taken. Althoﬁgh
this is a very simpie type of economic control chart; it
is perhaps the most valuable because of its ease of
understanding and iniplementation.

In today's complex society, the quality  of each
manufactured item dépends upon several (p) quality
characteristics. Early attempts to monitor the‘quality‘
of the p characteristics were ad hoc in that p-univariate
contiol charts were constructed. If a.point'fell out Qf
the control limits on any of the charts, the proceés was
kjudged to be out of control. 'The,shortcomings’of'this ’
approach have been frequently pbinted.out'in the |
literature, and publicaﬁibns have appeared which indicaté 

the correct‘multivariate'procedurés to be adopted.



Although quality control management has long recogqized
the need to implement multivariate control procedures,
quite frequently thy have failed to do so. One of the
reaéons is that two crucial questions rémain unanswered:
(1) how large a ;ample should be selected? (ii) what
vélﬁe‘should be used for the controlkchart constant?
This paper answers both of those previousiy unaddressed
questions by extending Page's scheme to the multivariate
case. Furthermore, it also allbws the guality control
decision maker to determine the reducﬁion over other
methods in the amount of scrap produced before an out

of control state is detected.

ONE QUALITY CHARACTERISTIC

When there is only one guality characteristic (X)
which is normally distributed with standard values
specified for the process mean (uo) and‘étandard‘deviation
(GI) and successive random samples of size n are generated
from this process, the control chart limits are of the
form po'i B(OI//H), where‘custqmarily B = Z4/2 = 3.0.
In accordance with Page [ 21, let m.denote the true wvalue.
of‘the process mean which may vary from period to period.
However, 01 rémains constant. "Thus, X % N(m,kolz).

Let P(m) denote the probability that aygiven

sample yields an x outside the control limits when m is

the process mean. Then




P {m)

'll

P(X >y, + B o/va |m) + P(X < N ~= B 0/vn |m)

P(Z > B + (uy - m)/(cI//H))+ P(z < -B4'(U0-m)/(01//5))

(1)

Let ¥ be a random variable denoting the number of
samples up to and including the first one for which an %
indicates an out of control process. Then Y is a geometric

random variable with parameter P(m). Specifically,

P (y) = Pm Il - pm1¥7, y = 1,2,...
=0 , otherwise

It is well known that E(Y) = 1/P{m).

Page defines the average run length (L) as the average

number of articles inspected between two successive occasions

when rectifying action is taken. For constant m,
L = nE(Y) = n/P(m),

which is the sample size per sample times the averagernumbér
of samples up to and including the first one out of control.

‘Let L, denote the average run length whéh.m = Hg-

0
Since Plug) = 2 ¢(-B), it follows that

L, = n/[2 e(-B)1. @

Let kX > 0 be a value such that "a’Shift,in the mean m of




amount equal to or greater than koI is serious and‘we‘
desire tht such a shift should be detected as soon as possi-
ble after it has occurred." Define L, to be the average

run length when m = Uy + koI. Since

Pluy + kop) = 8(-B + kv/m) + &(-B - kv/n),
it follows that

L, = n/[®(-B + k/n) + o{(-B - kv/n)]. | (3)

Page's scheme for determining B and n is to choose
that inspection scheme such that Ll is minimized for some

given large value of L, and fixed k. By rewriting equation

(2) as n =2 L, 9(-B) and substituting this result into

0

equation (3), we see that

-

2 L, 2(-B)
L,y = (4)
9(-B + k¥2 L ¢(-B)) + @(-B ~ k/2 L,.2(-B))

The problem is to find B which minimizes Lq for fixed LO'

and k.  This B is then used to find n from the equation

n = 2_LO ®(~-B). By using a cdmputer search routine, Pége_

constructed tableé of n,’B, and Ll for L0 = 2,000, 5,000,'

10,000, 15,000, 20,000, 40,000, and 60,000 and k =

(0.2) (0.1) (1.8), where (0.1l) denotes the step size of k.

A computer program was written to duplicate Pégefs

results, and, in order to facilitate later comparisons, the out-

i ' . . }

“  put is given in Table 1 for L

0~ 10,000 and k = 0.2 (0.2) 1.8.



These results correspond almost exactly with those of Page..

By inspecting the table, we see that, for a fixed Lgr 1

decreases as k increases. This is intuitively appealing

since it says that a larger sample is needed to detect

a small shift while a smaller sample will suffice for a

large shift. Perhaps the most surprising result of Table 1

is that the control chart constant is quite frequently less

than 3.0, the traditional value. For example, when .

Lo = 10,000, it is only when k 2> 0.80 that B > 3.0. Thus,

Page's scheme calls for tighter than usual control limits

and larger than usual sample sizes to detect small shifts.

Table 1. Values of n, Xlza = B2, and Ll for fixed LO and k
H4
One Characteristic; Independent Observations
2
Lo k n Xl,m B Ll
10000 .20 187 5.528 2.351 287.8
10000 .40 65 7.405 2,721 93.8
10000 .60 34 8.579 2.929 47.5
10000 .80 - 21 9.459 3.076 29.1
10000 1.00 14 10.199 3.194 19.8
10000 1.20 11 10.635 3.261 14.4
10000 1.40 8 11.241 3.353 11.0
10000 1.60 6 11.774 3.431 8.7
10000 1.80 5 ©12.110 3.480 7.1

MULTIPLE QUALITY CHARACTERISTICS

This section extends the results of the previous

section by allowing the quality of each item to be governed ;

by more than one quality characteristic. 1In order to do

this, we need to recall certain underlying‘priﬁciples bf‘ R



A

multivariate statistical gquality control. We will only
consider two quality characteristics although the results

are easily extended.

; S t o i £ .
Suppose X, [kll’§21] TERTE [AlanZn] is a

random sample of size n from a bivariate normal process
with mean vector m énd known variance-covariance matrix

L (possibly obtained from.a large amount of past data).
Let &0 = [ug,ug]t denote the nominal value of the process
mean. To maintain statistical control over Kgr the vector
of sample means (% = [§r §2]t) is calculated and‘it is

necessary to determine whether n(% - Ho)tz—l(%~‘ EO)

2

a)' Note that this
’

exceeds the upper control limit (x2
is egquivalent to testing Hoﬁk = Mg vS. Hy:p + Ko with I
known. Additional background on the multivariate quality
control problem can be found in Alt [1].

Page's procedure can be extended to this multi-

variate case by determing P(m) where

2

t o—1,=
TE - K) 7 Xg g Iml,

P(Iﬂr}) = P[n(,)é - )éo)

which is the probability that the statistic plots out of

control when the true process mean is m. If X~ Nz(m, )
- N N ' n

and hence g.m N2($’ £/n), then if follows that

. o=l . 2

where the prime denotes the noncentral chi-square random

variable and the noncentrality parameter




(6)

A= n(m EO) by (m go). Thus .

, 2 2

P = ! > .

\Q) Py 2x 7 X2 | m)

Vhen m = u., A = 0,
n a0
- 2 2

Pg) = Py~ > X3 4),

and
_ 2 2
Lo = 1’1/]?()(2 > X2,0£)'
In order to measure departures of ﬁ frcm.ko, it is

necessary to account for the possible departure of each com-

ponent of m.

(2 »x 1) wvector % where

t
g = [k k 02],

1917 %2

and letting m = by * G-
N N v

ki

This is accomplished by introducing the

We require that at least one

> 0. Thus, although we wish to simultaneously control

the mean vector of several variables, it may be necessary

to detect a shift in only one of these variables. When
BT Ko TR
A=ng" 27t o = nal - %) T - 20k k, + kgs
Plpg + 0) = P(X'Z?A > XZ?a"
and
Ly = /R, > 1) - (7).



As with the univariate.pase, that inspectiog scheme
will be chosen which minimizes Ly for some given large
value of Lo and fixed i = [kl, kz]t. However, in the
multivariate case, we must also fix p which is the corre-
lation between guality characteristics X and X,. By

2 2
rewriting equation (6) as n = Ly P(X, > X2,a) and sub-

stituting this result into eqguation (7), we see that

(8)

2 - . ..
For fixed L., k, and p we seek that Xy o @nd n which mini-
14

0
mizes L, as stated in equation (8). One difficulty in doing
this is thé need for evaluating the denominator of equation
(8), which is the complementary cumulative noncentral chi-
square distribution function evaluated at XZ?a’ To accom-
plish this, we use the remarkably accuarate approximation

of Sankaran [3]. The search routine used to find the

nminimum Ll is a modified version of the success-—~failure

method as described by Dixon. The minimization of Ll was
investigated for LO = 10,000, p = (-0.8)(0.4) (+0.8),
k, = 0.2, 0.6, 1.0 and k, = 0.0, 0.2, 0.6, 1.0. The

results are printed in Table 2.

Upon first glancing at Table 2, it appears that,
fof a fixed LO and p, n decreases‘as kl andk2 increase,
Again, this is‘ihtuitively‘appealing; for the magnitude‘of

the required sample size should indeed decrease as the

e L



B N

Table 2

Economic Parameters for Two Quality Characteristics (LO = 10,000)

p=-0.8 p = -0.4 p = 0.0 p = 0.4 p = 0.8
R R BoXpg Iyt X v X v 4
0.2 0.0 | 103 9.15 148 | 199 7.83 2959 | 227 7.56 339 199 7.83 295 ° | 103 9.15 148’
0.2 36 11.25 50 2 89 9.44 127 133 8.64 194 173 8.1L 254 209 7.74 311
0.6 11 13.62 15 26 11.90 36 *° 36 11.25 50 2 39 11.09 55 16 27 11.82 36 *°
1.0 5 15.20 7 12 13.45 17 |16 12,87 227 16 1287 2% | 9 14020 1218
0.6 0.0 | 17 12.75 23 34 1137 47 %% | 40 12,00 5536 | 34 11,37 4712 | 17 12,75 23
0.2 | 11 13.62 15 26 11.90 36 0 | 36 11.25 s50% |39 11.00 556 | .27 1182 36
0.6 6 14.81 7 14 1314 192 | 22 12,24 30 29 11.68 40 36 11.25 50
1.0 3 16.22 4 o 14.02 11 % | 13 13.20 177 |16 12.87 225 | 15 13.00 21 20
1.0 0.0 7 14.51 9 1 13,14 19 117 12,75 23 | 14 13.14 19 %3 7 14,51 9
0.2 5 15.20 7 12 1345 17 | 16 1287 215 |16 1287 22 P 9 14,02 12 %
0.6 3 16.22 4 9 14.02 11 %% | 13 13.20 17 Y |16 12.87 22 | 15 13,00 21 %
1.0 | 2 17.00 3 6 14.81 8° o 14.02 1238 |12 1345 17 | 15 13.00 21 20

*The numerical superscripts indicate those entries which have the same values of the economic parameters n, x;za, and Ll.
. . . ?
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‘magnitudes of the shifts which are important to detect
increase. Usually, n is much larger for small kl and k2 =

0.0 than for other values of kzu The interpretation of

k2 = 0.0 is that it is‘important to detect a shift of zero
magnitude in the second component, or an “"infinitesimally
small" shift. This accounts for the rather large sample
sizes in this case. However, further inspection of

Table 2 shows that it is not always true that n decreéses

as kl and ké increase for fixed L0 and p. Vhile this is

true for p < 0 and also for p = 0.4 when k; is small, it

is not true for the other wvalues of kl and p = 0.4,’nor

is it ever true when p = 0.8. Thus, for a relatively large
positive correlation, the sample size needed to detect

large positive shifts is larger than the sampie sizés

needed for smaller positive shifts. An explanation of this
is proVided by’examining the noncentrality parameter A, which
is a generalized measure of distance of how fafkthe true

mean is from the nominal value. fix p = +0.4 and kl'é 0.6.

When k, = 0.2, A = (n/.84)(.304); when k, = 0.0, A =

2 2
(n/.84)(.360); and, when k2 = 0.6, A = (n/.84)(.432).
InspeCtion of Table 2 shows that, for the (kl,‘kz) pairs
invesﬁigated, the largest sample size (35)‘occurred with
the Smaliest value of the noncentrality’parameter (.304),
the next iargésf éample size (30) occurred with the hext‘ﬁd
the smallestvalue<3f the noncéntrélity paraméter (.36), and
lthesmailestsample;siZe (26) occurréd with theylaigest valué

of the noncentrality parameter. Thus, wheﬁ the generalized
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measure of distance (A) between the true mean and the

nominal value is small, it is to be expected that a larger
sample size will be needed to detect such a small shift.
Let us now compare n for positive p with n for nega-—

tive p. It is to be expected that both n's will be equal

when k, = 0 since A = n(l - p%) ™+ klz

lost through the squaring operation. However, for fixed

and the sign of p is

kl and kz, n is always much smaller for p < 0. However,
this is not to imply that one should try to choose nega-
tively correlated characteristics as opposed to positively
cecrrelated characteristics. kThe statedlphenomenon occurs
becaose we are looking at positive shifts (kl > 0, kz >'0)
instead of negative shifts (kl < 0, k2 < 0). Thus for

p <0 and k |

1

(A) is larger than for p > 0 and kl > 0, k2 > 0.

One additional topic of interest is how does the

> 0, k2 > 0, the generalized distance measure

required sample size for two guality characterlstlcs compare
with the sample size for one quality characterlstlc (Table 1)9
Some idea of this behavior is obtained byflettlng o 5‘0.0.
Thus, A = n(kl2 + kzz): NOQ, when k2 = 0, A reduces to the
univariate noncentrality parameter n k2- However, the con-
trol limit will’still be xz?a. Tables l and 2 show that,

for p = 0-0,7k2'= 0.0 and fixed L, and k,, the requ;red
esample size is larger for‘two quality characteristiosjthsnr
~for one quallty cnaracterlstlc w1th thls dlfference becomlng

smaller as k, increases. Furthermore, as soon as k2 be-

1
comes positive, n for p = 2 is ﬁsually~much,smaller‘than for ©




»
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p = 1. Thus, an economical sample size is not an unusual
L]

result when two quality characteristics are used as opposed

to one. As a final point of interest, note that the maxi-

mum n in Table 2 occurs for p = 0.0, kl = 0.2, and k2 = 0.0.
This 1s the one case where the required sample size for
p=1 (Téble 1) is considerably smaller than foxr p = 2

(Table 2).
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