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ABSTRACT 

This paper presents a discussion of methods available for conduct~ 

ing model.,..based evaluations of treatment-release corrections programs. 

A general model of rearrest patterns over time is described along with 

a numerical example illustrating model behavior under alternative 

assumptions .. Classical and Bayesian methods for the estimation of 

model parameters are reviet..red, as are complementary model-based 

evaluation procedures. 
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MODELS FOR THE EVALUATION OF 'l'REATMENT - RELEASE CORRECTIONS PROGRAHS 

I. INTRODUCTION 

Within the corrections component of the criminal justice system, a 

range of programs aimed at the rehabilitation of selected individuals 

has been established. These programs (inclu9ing prison, parole, resi­

dential centers for drug offenders, alcohol abuse counselling, etc.) 

all share the following feature in common: individuals committed to a 

program are subjected to a period of "treatment"; upon satisfa~tory com­

pletion of the treatment period, these individuals are "released" (hence 

the term "treatment-release program"). Of interest to the officials of 

such programs is the event that a randomly chos~n program client commits 

an offense after :t'elease; the likelihood of this event is termed the 

"recidivism probability." 

~fuile the concept of a recidivism probability poses no immediate 

difficulty, the measurement o~ recidivism is: not an easy task, In a 

clever paper, Blumstein and Larson (1969) di,scussedmeasurement prohlems 

which arise from alternative defini,tions. of recidiviSm? and from improper 

interpretati.on of sample statisti,cs, If; we, allow recidi:vism to refer 

solely to the event where a program client commits an offense after re­

lease, then recidivism cannot be measured directly. 

When an individual commits a crime, there is no guarantee that 

(s)he will be apprehended. Of all individuals who commit crimes, some 

fraction will in fact be arrested by the police. Placed into the con­

text of a treatment-release corrections program, only those recidivists 



- 2 -

who are rearrested are in fact observed as having recidivated; indeed, 

the difference betwee~ rearrest levels and true recidivism levels may 

be greater than one might expect (Barnett and Stabile, 1979). {Vhether 

or not an offender is apprehended depends upon police performance as 

well as upon the nature of the offense. Thus, the methods of this pa­

per will be presented as applied to rearrest patterns over time, as'this 

is the type of data which is frequently available. 

Hhat is found in the remainder of this paper is a discussion of 

methodology for conducting model-based evaluations of treatment-release 

corrections programs. Model-based techniques have proved useful in 

evaluating police patrol programs (Larson, 1975; Kaplan, 1978a), and it 

is felt that the advantages provided by the modeling, approach can carry 

over to the corrections area. We begin with the description of a general 

model for rearrest patterns over time; the behavior of this model is 

examined under alternative assumptions in a numerical example. Classi­

cal and Bayesian estimation methods are presented, followed by a dis-

cuss ion of model-based evaluation procedures. The paper concludes with 

a brief discussion of possible extensions to the work reported here. 

." 
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II.. A GENERAL MODEL OF REARREST PATTERNS 

Consider any corrections program which subjects its clients to a 

treatment period after which they are released. Ideally, clients re­

leased from treatment return to the community as law '- abiding citizens. 

Realistically, sizeable fractions of program populations are known to 

recidivate. Of those who do recidivate, some are apprehended and re­

arrested. 

In the model to be presented, we exploit the similarities between 

the rearrest process and a branch of probabilistic reasoning known as 

reliability theory (see Chapter 4 in Tsokos (1972), Chapter 13 in 

Hillier and Lieberman (1974).1 Figure 1 depicts our observation of a 

corrections program which releases clients at different points in time; 

in total, N clients are released. Of these N individuals, some are 

rearrested, while the others are not rearrested during the period of 

time allowed for observation.· 

For all clients in the program, our model will measure time accord­

ing to time from individual rele~, hence all of our arguments are con­

ditioned on release occurri~g at time zero. An observed rearrest is re­

ferred to as a "failure", and the length of time that elapses between an 

individual's release and failure is denoted as the "time until failure". 

Hence, the statement "Five failures occurred by the eighth day after 

release" is interpreted to mean that five (of N) individuals were re­

arrested within· eight days of the particular day on which they were 

each individually released. 

Consider an individual who is released from treatment at time 

O(tR= 0). We are interested in the probability that this same individual 

will be rearrested at some future time t given release at t R= O. Let 

· f', 
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this probability of failure be denoted by PF(t). In order to derive ex­

pressions for PF(t) and othe~ performance measures, we need to make a few 

simplifying assumptions. 

(i) All individuals fail independently of each other. 

(ii) Pr {any client fails in (t,t + dt)lultimate failure, 
but not'in (O,t), tR = O} 

= cj>(tIF)dt. 

(iii) 

(iv) 

Pr {any client does not fail in (t,t+ dt)lultimate 
failure, but not in (0, t), tR"= O} 

= 1 - cj>(tIF)dt. 

The fraction of the population that wixl ultimately 
fail is given by r; 0 < r < 1. 

From reliability theory, it is well known that these assumptions 

determine the conditional probability of failure by time t given tR = 0 

and ultimate failure to be (Hillier and Lieberman, (1974» 

t f cj>(xIF)dx 
-0 ' 

= 1 - e t > 0 (1) 

subject to: 

(i) cj>(tIF) > 0 V t > O. 

00 

(ii) f cj>(tIF)dt = 00 

o 

The unconditional probability of failure by time t after release, PF(t), 

is then given by 

t 

f cj>(xl F) dx 

PF(t) = r(l -
-0 

e ). t > 0 (2) 

o < r < 1 
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It is apparent that the behavier ef this mede1 is cemp1ete1y de­

pendent en the nature ef the functien $(tIF). This functien, which is 

referred to. as the hazard functien, dictates the prebabi1ity ef failure 

in the next time instant fer these clients who. have yet to. fail but will 

ultimately fail. Several functiens ceme to. mind fer $(tIF). These are 

shown in Figure 2. Curves ef Type I are ef the ferm $(tIF) = A; such an 

assumptien implies that PF(tIF) will take en the simple negative expenen­

tial distributien. Ste11mack and Harris (1974) studied this medel, they 

also. assumed that the fractien ef ut1imate failures was equal to. ene, a 

rather restrictive assumptien. Maltz and McCleary (1977) studied this 

mede1 witheut the r = 1 assumptien. Beth ef these mede1s will be examined 

later on in this paper. Type II and Type III curves inve1ve increasing 

er decr.easing prepensities to. be rearrested ever time. Seme ef these 

curves can be fermu1ated ~s $(tIF) = aStS- 1 , which implies that PF(tIF) 

takes en the Weibull distributien (Freund, 1971:117); a mede1 efthi.s 

sert is illustrated later en. A mere cemp1icated mede1 inve1ving an 

expenentia1 - type hazard functien is discussed by B1eem (1978). In the 

appendix, we shew that Bloem's mede1 pel:ferms equivalently to. the. Ma1tz.­

McCleary mede1. Hence, B1eem's mede1 will net be reviewed. Of ceurse, 

plausible arguments fer mere complicated curves such as Types IV and V 

can be made; .these weu1d1ead to. still mere cemp1ex forms fer PF(tIF). The 

cheice of an apprepriate function fer $(tIF) is a data analysis questien net 

pursued in this paper; since there is no. ene cerrect functien $(t\F) which 

werks fer all situations, the results which fo11ew will be netated fer 

the general case. 
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Performance Measures for the General Model 
, 

(i) Ultimate Probability of Failure: r 

The ultimate probability of failure, r ~ PF(~)' is directly esti­

mated along with whatever parameters accompany the hazard function ~(tIF); 

this estimation problem is discussed in Section IV. 

-(ii) Expected Time Until Failure: tF 

We have already computed the uncpnditional probability of failure 

by time t to be 
t 

f ~(xlF)dx 
= r(l - e -0 ). 

t > 0 

Differentiating this expression with respect to time from release pro-

vides us with the pseudo - pdf 2
. for clients' individual times until 

failure 
t 

f ~(xIF)dx 
I -0 

'" r~(t F)e t > o (3) 

The expected time until failures for ultimate failures is thus formulated 

as 
~ 

t =1:.!tf (t)dt. 
FrO tF 

(4) 

Note that unless r = 1, the unconditional expected time until failure 

is infinite,. since 

E(time to failure) = E(time to ~ailurelultimate failure).Pr {ultimate failure} 

+ E(time to failure/ultimate success)·Pr {ultimate success} 
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-= tF • r + 00 • (l-r) 

= 00 

(iii) Median Time Until Failure: 

The median time until failure for ultimate failures is given by 

the equation 

-1 
t ( 5) = PF (.5r). F • 

This is the time by which 50% of all eventual rearrests will have 

occurred. 

(iv) * Safety Time: t (8) 

* The performance measure t (8) satisfies the equation 

* * . . Pr {individual fails in (t ,00) Ididn't fail in (O,t ) and tR=O} 

(5) 

8' , 

and hence defines the safety time at risk level e: (see Bloom (1978». In-

tuitively, if one wishes to observe a client after release until the re-

arrest probability of that client is less than or equal to e:,then one 

* ) . must observe that client for at. least t (e: t~me units after release at 

tR = O. The safety time is found by solving 

* -1 r - e: 
t (e:) = PF (1 - e:)' o < e: < r. 

(v) Probability Mass Function of the Number of Rearrests: P (t) 
n 

(6) 

Recall that by assumption, all individuals fail independently of 

one another. Since the probability of failure by time t given release 

.' 
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at tR = 0, PF(t), applies to any client, the probability that exactly 

n individuals have failed by time t is given by the well known bi-

nomial pmf 

Note that the probabilities 

p (00) 
n 

n =: O,l, •• ,N 

N-n 
r) 

t > ° . 

n = O,l, •• ,N 

t > 0 

(7) 

(8) 

may be interpreted as long run probabilities of failure, in that equa-

tion (8) determines the probability distribution of the ultimate failure 

population. 

(vi) Expected Number of Failures: net) 

The expected number'of failures that have occurred by time t is 

simply 

since net) is a binomially distributed random variable. 

(vii) Variance of the Number of Failures: cr
2(t) 
n 

This measure is also easily obtained; it is given by 

(9) 
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(10) 

It is interesting to note that since 0 < p (t) < 1, cr
2

(t) will achieve 
- F -- n 

a maximum when PF(t) = 1/2. This implies that l.'egardless of the functional 

form of PF(t), the maximum achievable variance of this model is equal to 

N/4. Under the conditions of .this model, at worst one can be 95% certain 

that the observed number of failures by any time t is within ±~of net). 

(viii) Gausian Approximation to P (t): 
n 

Most correctional programs involve a large number of clients. In 

such situations where N is large, the calculations of P (t) are both tedious 
n 

and perhaps unrewarding. However, if N is sufficiently large (i.e., if 

NPF(t) and N(l - PF(t», are both greater than 5 (Freund, 1971:177», 

one may approximate the discrete binomial distribution of net) by a 

Gaussian distribution with mean net) and variance cr2 (t). If we allow the 
n 

interval (n - 1/2, n + 1/2] to represent the integer number of failures n, 

then the number of fai1ures'whi~h occur by a given time tmay be approxi-

mated as a continuous random variable with pdf 

- 2 
x - net)] 

= 1 e-1 / 2 [ cr (t) 
cr (t) \I27i- n 

n 
(11) 

- 00 <x <00 

The corresponding steady state pdf is obtained by setting t = 00 in the 

above formulation. For large values of N, thesl~ distributions fn(t) (x) 

will be quite accurate. 
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(ix) Time by Which the Probability of Failure Equals kiN: Tk 

One may also be interested in the time until the kth failure. 

While there is no theoretical problem formulating the expected time until 

the kth failure given that at least k failures ultimately occur~ the 

computations involved are prohibitively difficu1t. To gain some in-

dication of the timing of rearrests, it seems reasonable to examine 

- -1 
Tk - Il (k). (12) 

This statistic reports the time by which the probability of failure equals 

kiN; we will use Tk in Section V to compute fracti1e times until failure 

for ultimate failures. 

In summary, this section has presented a general model which can 

provide a framework for analyzing rearrest patterns over time. Having 

discussed this model, it is useful to examine the differences in model 

performance that result from the choice of alternative hazard functions. 

Such an example is presented in the next section. 
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III. AN ILLUSTRATIVE EXAMPLE 

Consider a treatment-release corrections program which serves a 

client population of N = 100. Suppose that a preliminary review of re-

arrest data has revealed that 25 of the program's 100 clients were re-

arrested within 6 months after' release (hence PF(6) is estimated to equal 

.25). Program officials are committed to evaluate ~he program after 24 

months of exposure data have been collected. The program will be con-

sidered a success if PF(24) < .40. In the meantime, the program staff 

would like some indications of the range of rearrest patterns that could 

occur ove,; time under alternative assumptions governing the rearrest 

process. 

Three conjectures are of particular interest to the program staff; 

each may be formulated as a model consisted with the data point PF(6) = .25. 

Model 1 (Sto11mack-Harris) 

Let ¢(tIF) = A, A > 0, and assume r = 1.0. 

Model 2 (Maltz-McCleary) 

Let ¢(tIF) = a, a > 0, and assume r 0.5. 

Model 3 (Weibu11) 

Let ¢(tIF) = a ~ t~-l, a, ~ > 0, and assume r = 0.5 •. 

The implications of these postulates may be examined in some 'detail. 

Table I presents the formulas used to compute the measures associated 

with the models, while Table II reports numerical values for selected 

measures. 

If we direct our attention tp Figure 3, we notice that the three 

models do represent quite different rearrest patterns over time. 

,..1 
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TABLE I 

FORMULAS FOR PERFORMANCE MEASURES 

PERFORMANCE 
MEASURES EQUATION STOLLMACK-HARRIS MALTZ-MCCLEARY WEI BULL 

-At -at a 
PF(t) (2) 1 - e r(l - e ) r(1 _ e-I1t ) 

1 

tF (4) 1 .! (l)6r (1 + 1) I a rt a 

tF(·5) (5) 1 
~ I 1n(.5) 

1 - ii 1n(.5) l- ~ 1n(.5)/% 

" t (e:) (6) N.A. _ 1 In(e:(l-r» 
a r(l-e:) 

[_ 1 1n(e:(1-r»]i 
a r(l-e:) 

net) (9) N(l - e -At) -at Nr(l - e ) -atB 
Nr(l - e ) 

Nr(l - e -at) -uta 
Nr(l - e ) 

a2(t) (10) N(l _ e-At)e-At (l-r + re -at) • (l-r + re -at B) n 

Tk (12) 
.' 1 k 1 k 

[ 1 k r - - In(l - -) - ii 1n(1 - 'Nr) - - 1n(1 - - ) B A N u Nr 



- 15 -

TABLE II 

NUMERICAL RESULTS 

PERFORMANCE STOLLMACK-HARRIS MALTZ-MCCLEARY WIHBULI • 
MEASURE (A '" .05) (a - .12) . , __ . _ ~ :l.!h.JL:.....:1QL 

r 1.0 0.5 0.5 

t F(.5) (months) 13.9 6.0 6.0 

tF 20.0 S.3 25.5 

* t (.1) (monthfi) N.A. 18.3 61.6 

* t (.2) N.A. 11.6 24.5 

* t (.3) N.A. 7.1 9.2 

* t (.4) N.A. 3.4 2.1 

T1 (months) 2.1 0.2 0.0 

.I' 

T20 4.5 4.3 3.3 

T40 10.2 13.4 33.0 
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Recalling that an evaluation is to be performed on the basis of 24 months 

of exposure data, the model~based values of PF(24) are useful indices for 

shaping prior expectations of program performance. As an example, our 

Weibull model demonstrates that even if PF(24) = .37 < .40, the criterion 

set ~priori by program administrators, the long run probability of re-

arrest can equal .50. Thus, program success in th~ short run is not in-

consistent with long run program failure; evaluations of such programs 

should take this possibility i~to account. 

If we now: consider the tiwing of rearrests, some differences in 

model behavior are noteworthy. Although the Maltz-McCleary and Weibull 

models produce equivalent median times until failure, the Weibull ex-

pected time until failure is more than three times that of the Maltz-

McCleary model. Of the three models considered, the Maltz-McCleary 

model clearly exhibits the most rapid failure process over time for ul-

timate failures; this is best reflected by Figure 3. 

* Figure 4 presents a graph of the safety time t (E) vers!.lS E for the 

Maltz-McCleary and Weibull models. The Weibull model is clearly conser-

vative in its implications. Only after an arrest-free release of 61.6 

months can one be 90% certain that a client will not fail according to the 

Weibull model. At an equivalent 90% confidence level, the Maltz-McCleary 

model zequires 18.3 months of arrest free releases. 

To examine the uncertainty associated with these models, the 

variance of the number of failures is plotted as a function of time in 

Figure 5 for each of our three sets of assumptions. All three models 

reach the maximum achievable variance of N/4, since PF(t) approaches 

1/2 as t approaches infinity for the Maltz~McCleary and Weibull modelS, 
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while PFC13.9) = 1/2 for the Stollmack-Harris model. 

Finally, 'Figures 6, 7 and 8 present the Gaussian approximationa to 

P Ct) for t = 6, 24 and 00. At t = 6, all three models are identical. 
n 

The distributions are quite distinct at t = 24, with the Stollmack-Harris 

model translated the furthest to the right, and the Weibull model the 

furthest to the left. As t ap'proaches infinity, tl).e Stollmack-Harris 

model produces an infinite spike at n(oo) = N. Of course, the Maltz-

McC~eary and Weibull models reproduce each other for this case. 

It is apparent that the behavior of the models can be drastically 

different at various points in time. This stems from the alternative 

formulations of PF(t) which in turn depend upon the assumptions governing 

the behavior of ~(tIF), the conditional hazard function. While the mo-

dels demonstrated here do not by any means exhaust the world of possible 

models, they do illustrate the different types of model behavior achiev-

able via the specification of alternative hazard functions. 
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IV. ESTIMATION OF PARAMETERS FOR THE REARREST MODEL 

In order tCi utilize in. practice the general formulation developed 

thus far, we need to consider some reasonable techniques for estimating 

r and the parameters of ~(tIF). To this end, both maximum likelihood and 

Bayesian m~thods are suggested. The data aggregation scheme presented in 

conjunction with this discussion is attributable to Stollmack and Harris 

(1974). 

Recall our discussion of I?igure 1 from Section II. Suppose that of 

the N individuals who were released, k have been rearrested by the time 

we begin our analysis. If we let t. correspond to the time from release 
1. 

until the ith failure (i = 1,2, •• ,k), then the likelihood of observing 

these k failures at the times they occurred under the conditions of our 

model is given by 

k 
= .TI

1 1.= 

t. 

f 1. ~ (x I F) dX 
I -0 

r ~(t. F)e 
1. 

Simct1ar1y, let T. represent the time from release that the jth 
J 

client (j = 1,2, •• ,N-k) has been observed to remain unarrested. The 

(13) 

probability of observing this combination of the N-k success times is 

given by 

N-k 
L{N-k, T} = ~ (1 - r + 

tv j=l 

(i) Maximum Likelihood Estimation 

T. 

fJ ~(xIF) dx 
-0 re ). (14) 

Let ~(t;~IF) denote the conditional hazard function where ~ is the 

set of parameters contained in this function (e.g. for the Weibu11 model, 

~ = {a, S}). The overall likelihood of observing a particular pattern of 
rv 
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k failures over time according to our model is given by 

To find the maximum likelihood estimates for r and ~, one must solve the 

optimization problem 

max 
r, 1jJ 

'V 

subject to 0 < r < 1, constraints on 1jJ 
'V 

(16) 

In general, this is not an easy problem to solve. Maximum likel.ihood 

estimates have been obtained analytically for the Stoll mack-Harris model 

(Stollmack-Harris, 1974), numerically for Bloom's model (Bloom, 1978) 

and numerically for the Maltz-McCleary model under the special condition 

. that T. = T, j = 1, 2, •• ,N-k (Maltz and McCleary, 1977). To obtain 
J 

maximum likelihood estimates for more complicated forms of cp(tIF) may 

require the usC:! of non-linear programm:Lng routines. 

. (ii) Bayesian Estimation 

In Bayesian analysis, we allow both subjective and objective infor-

mation to playa role in our model (Freund, 1971: 280-281). The para-

meters of interest, rand 1jJ,are not viewed as being fixed and unchanging 
'V 

as is the case with classical techniques such as maximum likelihood esti-

mation. Rather, r and ~ are assumed to behave as random variables with 

a priori probability distributions. These distributions lIlay be obj ective1y 

or subjectively derived. 
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As an example, assume for the moment that r and ~ are independent 

within the Bayesian scheme of things. A corrections program official 

might make a series of statements of the form: 

"The probability that some fraction not exceeding r of our clients 

will fail is given by F(r)." 

These statements may be based on both the past, experience of other 

programs and personal convictions regarding the likelihood of program 

success. This subjective cumulative distribution F(r) is then converted 

to a density function by examining successive differences (e.g., F(.l) -

F(.05), F(.15) - F(.l)>> •••• F(1.0) - F(.95)) and fitting a curve to the 

resultant histogram. Such a prior distribution fer) is interpreted as the 

probability distribution of ultimate failure likelihoods across the popu-

1ation of programs similar to the one in question. The true value of r 

that will actually be observed is treated as a random selection from this 

population. 

Suppose that a program administrator. specified the following values 

for rand F(r): 

r F(r) 

.2. .10 

.4 .50 

.6 .80 

.8 .95 
1.0 1.00 

The prior distribution graphed in Figure 9 would result. This dis-

tribution formally represents prior expectations of ultimate rearrest 

probabilit:i,ea. 
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Figure 9 

Prior Distribution of the Ultimate 

Probability of Failure 



- 26 -

Let fer, t) represent the joint prior distribution of r and~. Since 

r and ~ are now being viewed as rando~ variables, the likelihood function 

of equation (15) is nothing more than the conditional probability of 

having observed a particular rearrest pattern given specific values of r 

and~. What we wish to compute is the joint conditional distribution of 
'V 

r and ~ having observed a particular rearrest pattern characterized by k 

failures out of N released clients, and times to failure t, observed success 
'V 

times :to 

This posterior distribution of r and ~ is formulated via the use of 

Bayes' Rule (Freund, 1971: 280-281) 

g(r, ~Ik, N, ~, ~) = fer, ~)L{k, N, ~~ ~Ir, ~} 
R(k, N, t; T) 

'V 'V 

(17) 

where R(k, N, t, T) is a normalizing constant. The posterior distribution 
'V 'V 

of r may be found by integrating out over ~ 
'V 

h(rlk, N, t, T) = 
'V 'V 

g(r, ~Ik, N, ~, ~)d~l ••• d~. 
(18) 

The posterior expected value of r is then found by computing 

1 

E(rlk, N, ~, ~) = r~ r h(rlk, N, t, T)dr. 
'V '\J 

(19) 

Similarly, the posterior expected valueq of each of the performance 

measures discussed in Section II can be found. Let a generic performance 

measure be denoted by M(r, ~); the posterior expected value of this 
'V 

measure is given by 
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E[M(r, ~)lk, N, t, T] = 
IV IV IV 

Now, since the calculations in the equations of this Bayesian analysis 

require nothing more complex than integration~ the Bayesian estimates dis-

cussed can be obtained numerically. It would be possible to write a com-

puter program to perform these calculations for any given function ~(tIF), 

though the design of such a program has not yet been attempted. 

1' .• 
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v. EVALUATION ISSUES 

In the introduction to this paper, we stressed the difference that 

exists between observed rearrest rates and true recidivism rates. Since 

we have not attempted to account for the relative influence the police 

have on the rearrest process, the models which have been discussed should 

be used in conjunction with controlled evaluation designs (see Campbell 

and Stanley, 1966) if the comparison of two corrections programs is being 

pursued. 

The manner in which our model is used for evaluation purposes depends 

upon whether the estimation approach chosen is classical or Bayesian. The 

differences resulting from these alternative appr.oaches are illustrated 

throughout. 

The fi:rst measure of evaluative interest is the ultimate rearrest 

probability r. In general, program success is seen to vary Lnverse1y 

with the value of r. 3 It may be established a priori by program officials 

that one program target is the achievement of an r value less than some 

desired tolerance level * r . If r was estimated via maximum likelihood 

* techniques, then for large N', the null hypothesis H : r = r may be tested 
o 

using 

* Z = r - r 
(21) 

where r is the maximum likelihood estimate of r, and Z is distributed as 

a standardized Gaussian random variable (Freund, 1971:329).4 The rationale 

for this test stems from the Gaussian approximation fn(t) (x) discussed in 

Section II. 
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The Bayesian version of this test would consist of computing the 

* probability that r is truly less than r. This is computed as 

* Pr{r < r Ik, N, t, T} = 
'U 'U 

* r 
J h(rlk, 
o 

N. t, T) dr 
'U 'U 

(22) 

where h(rlk, N, t, T) is as defined in Section IV. What constitutes an 
IV IV 

acceptable likelihood of program success in this instance is a decis,ion 

problem for program officials. 

One would also be interested in the average rearrest probability. 

To this end, E(rlk, N, t, T) may be found through use of equation (19). 
IV IV 

* A computed value of E(rlk, N, t, T) < r is indicative of program success. 
IV IV 

The procedure just presented may also prove useful as indicators of 

whether or not additional data collection is necessary during the life 

of a program. Suppose that after some initial fixed period of data 

collection, k failures out of N releases have occurred. For the classi-

cal procadure, compuce the maximum likelihood estimate r, and substitute 

* kIn for r in equation (21). If there appears to be no significant 

difference between r and kIN, then perhaps there is no need to continue 

collecting data, and resources available for this segment of the evalua-

tion maybe ~hanneled to other evaluation tasks (e.g. interviews with 

program clients). The Bayesian analogy consists of substituting kIN for 

r* in equation (22); if Pr{r < k/Nlk, N, t, T} is relatively large, then 
IV IV 

this may also be an appropriate signal to end data collection. 

Conversely, if there is a strong disagreement between the observed 

fraction of failures and the estimated ultimate fraction of failures, 

maybe more data should be collected, e~en if the time by which k rearrests 

have occurred corresponds to the scheduled completion date for the data 

, I 
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collection effort. For an example of this sort, data extracted from 

Pre-Trial Intervention: A Program Evaluation of Nine Manpower-based 

Pre-Trial Intervention Projec~ revealed that after one year of release 

time, 18.3% of all released clients had been rearrested, yet application 

of the Maltz-McCleary model to this same data yielded a maximum likeli-

hood estimate of r = .43 (Kaplan, 1978b:23). Sinc? r is almost Z 1/2 

times .as large as kiN in this instance, it might have been a good idea to 

sustain the data collection effort for this evaluation; if models like 

those presented here had been available to these evaluators, this finding 

could have been discovered during the data collection phase. 

If we now consider the case where two programs are being compared 

in a controlled environment, a number of our model-based performance 

measures may be utilized. Again focusing our attention on the ultimate 

probability of rearrest r J the null hypothesis Ho: r 1 = r Z may be tested 

using 

(23) 

where: 

N
l

, N2 = client populations of the programs; 

'" '" r l , r
Z = maximum likelihood estimates of the 

ultimate failure probabilities; 

Z = a standardized Gausian random variable. 
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As with all of the procedures we have discussed which are dependent upon 

the Gausian approximation fn(t) (x) , this test is valid only if Nl and NZ 
are large (Freund, 1971: ~32). 

The comparison of two programs from a Bayesian perspective using r 

connnends a more graphic analysis. Essentially, the posterior distribu-

tions of r for each program may be plotted on the q;ame figure; such a 

presentation provides a visual method for comparing program performance. 

An example of such a plot is shown in Figure 10. 

The Bayesian approach does allow for numerical comparisons as well. 

The simplest, of such comparisons would be to compute the expected posterior 

probabilities of ultimate rearrest using equation (19), and check to see 

which program produced the lower value. A more meaningful comparison in-

volves finding the likelihood that one program produced a lower probabil-

ity of rearrest than the other program. If we let 

~l - {kl , Nl , ~l' ~l} 

t2 - {k2 , N2 , ~2' ~2} 

where the subscripts denote program one and two, then the expected pro-

bability that r l < r 2 is computed as 

where h(rIA) is as defined in equation (18). Conversely, 

'" 

(24) 

Pr{rl > r21~1' ~2} = 1 - Pr{r1 < r21~1' t2}· If the result of equation 

(24) is greater than 1/2, then it would appear that program one has out-

performed program two using r as a performance measure. 
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PROGRAM ONE PROGRAM TWO 
h (r) 

o 
ULTIMATE PROBABILITY OF FAILURE 

Figure 10 

Comparing the Posterior Distributions 

Of Ultimate Failure Probabilities 

I r 
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When compari,ng two programs, the timing of rearrests becomes important. 

For example, if two programs produced equivalent values for r~ one could 

argue· that the progt'am with the lesser value for tF (or E e'E
F

) if you Ire 

a Bayesian) was the more successful since such a program quickly distin­

guishes ultimate failures from the rest of the client population. Indeed, 

Maltz and McCleary recognized this possibility when, they wrote that 

"Knowledge of a program' iJ> failure rate can help in matching programs to 

participants" (Maltz and McCleary, 1977: 432); in the example presented 

here, clients who are felt likely to fail ~ priori by program officials 

could be assigned to the IIquick failure given ultimate failure" program 

to the benefit of the other program participants (Maltz and McCleary, 

1977) • 

The use of time until failure measures has process implications as 

well. In the example concerning th~ evaluation of pre-trial interven­

tion projects presented earlier, it was found through application of the 

Maltz-McCleary model that the median time until failure for ultimate re­

arrests was equal to 462 days; thus the one yea:!:' data collection effort 

terminated before 50% of all ultimate rearrests had occurred! Again, 

had this calculation been performed, it could have been seen as a signa,l 

to prolong the data collection phase of the evaluation (Kaplan, 1978b:24). 

To compare the timing of rearrests resulting from two programs with 

different client populations, the measure Tk (or E(Tk) for Bayesians) is 

useful. One can examine the fractile times until failure to perform a 

relative comparison. Suppose we are interested in the time it takes until 

a fraction q of the population of ultimate failures has failed. For both 

of the programs being compared, compute' 
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-1 
= n (N

i
' r i . q) i = 1, 2, o < q < 1 (25) 

for various Values of q between 0 and 1. The values of Tk ./ q (or E(Tk ./ q» 
1. 1. 

are ,t.hen comparable for similar values of q (note that for q = 1/2, 

Tkilq = tF(.S)' the median time until failure). 

The final evaluation measure we will consider for the comparison of 

* * * two programs is the safety time t (E). The values of t (or E(t » as a 

function of 8 may be plotted for each program on the same graph. It is 

* then possible to check for dominance. Consider Figure 11 where t (e:) has 

been plotted for two hypothetical programs. Here it is clear that Pro-

oJe * gram A dominates Program D, since for any value of e:, t A < t B' To 

assert with confidence (l-E) that an individual will not be arrested 

* given that (s)he hasn't failed by t will always require a longer time 

from release for individuals in Program B than for individuals in Program 

A. Of course, it is possible for partial dominance to occur; A could dom-

inate B for low values of 8, while B could dominate A for high values of 

E. For evaluation purposes, dominance over low values of E characterizes 

a successful program. 

It should be noted that in our discussion of the methods of this 

section, no specific form was assumed for cj>(t / F) • In fact" different 

hazard functions could be engaged for different programs, and the compara-

tive procedures discussed here could still be invoked. Also, as mentioned 

by Maltz and McCleary (1977: 432), it is not necessary for programs to 

exist for the same length/of time in order to use these techniques. 
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LL « 
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RISK LEVEL 

Figure 11 

Program A Dominates Program B 
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VI. SUMMARY AND EXTENSIONS 

This paper has analyzed the common structure shared by treatment­

release corrections programs within the framework of reliability theory. 

Having presented a general model of the rearrest process, we examined 

the performance of this model under alternative assumptions~ and illus­

trated appropriate techniques for estimating model parameters. We then 

discussed classical and Bayesian model-based evaluation procedures for 

use in both process and outcome situations. 

While the substantive focus of this paper has been on models for 

rearrest patterns, it should be noted that the mathematics involved are 

appropriate for generic failUl:e problems. Thus, if one was interested 

:l.n performance measures based on alternative failure patterns OVL.r time, 

the reliability models of this paper could prove useful. For example, 

suppose one wished to judge a program participant as a failure only if 

that client was reconvicted. The time until failure would then corres­

pond to the time until reconviction. Thus, the models presented here 

are responsive to the notion that different types of programs may re­

quire different definitions. of client failure for evaluation PUIT.poses. 
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FOOTNOTES 

lReliability theory addresses prQbl.ems associated with the failure 
of systems (or system components) over time. 

2The pdf is a pseudo-pdf since 
not equal to one. 

t;o 

~ ftF{t)dt = r, and r is in general 

o 
3While r is often considered to be a fundamental performance measure, 

the model presented by Blumstein and Larson (1971) suggests that l/l-r 
is a more readily interpretable performance measure. The expression 
l/l-r represents the number of future 9rimes committed per individual 
after release from treatment in the Blumstein/Larson model; this expres­
sion is very sensitive to changes in the value of 'r when r is close to 
one. 

!fIt is assumed that the reader is familiar with the procedures of 
hypothesis testing; a good discussioIl of hypothesis testing is found in 
Chapters 10 through 12 of Freund (1971)" 
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Appendix: Assymptotic Equivalence of the Bloom and Maltz-McCleary Models 

As mentioned in Section II, Bloom (1978) has proposed a model 1n.-
I 

,volving an exponential hazard function. We also stated that Bloom's 

model was operationally equivalent to the Maltz-McCleary model. In this 

appendix, we will explain why this is so. 

Bloom did not rely upon the notion of a conditional haza(d function 

when formulating his model, as he rejected the assumption that some 

fraction r of the population released could be conceived ~ priori as 

consisting of ultimate failures (Bloom, 1978: 4). Rather, Bloom defined 

an unconditional hazard function for his model of the form (Bloom, 

1978: 6) 

!j>(t) -ct = be ,b, c > 0 (AI) 

In Bloom's model, !j>(t) represents the likelihood that an individual will 

fail in the next time instant given release at tR ~ O. Note that Bloom 

does not explicitly restrict the application of his hazard functibn to 

ultimate failures. 

To obtain an expression for PF(t) gj.ven the hazard function of equa­

tion (AI), the well-known reliability result of equation (1) may again be 

invoked yielding (Bloom, 1978: 6) 

b 

=l_e c e 

b -ct c e b, c > 0, t > 0 (A2) 

This model has some interesting properties; foremost among these is 

the fact that by setting t = CD in equation (A2), one arrives at the. ex-

pression (Bloom, 1978: 7) 

;, 
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b 

P (00) = 1 - e c b~ c > 0 
F (A3) 

b 

Thus, Bloom's model implies that some fraction 1 - e c of the population 

released will ultimately fail. Bloom does interpret equation (A3) as 

an expression for the "ultimate probability of failure" (BloDm~ 1978: 7), 

yet he rejects the notion that one may assume the a priori existence of 

an ultimate rearrest probability r. This distinction is at best artifi­
b 

cia1, as rand 1 - e c are both constants. 

Recall that for the Maltz-McCleary model, ¢(tIF) = a, a positive 

constant. To see how the Bloom model asymptotically approaches the 

Maltz-McCleary model, we will formulate the conditional hazard function 

¢(tIF) for Bloom's model, and show that as t approaches infinity~ ¢(tIF) 

approaches a positive constant. If we define PF(tIF) as the probability 

of failure by time t given release at tR :;:: 0 and ultimate failure, then 

for Bloom's model, 

(A4) 

1- e c 

Differentiating (A4) with respect to time from release to obtain f t (tIF), 
F 

the conditional pdf for time until failure given ultimate failure, yields 

b b -ct 
-ct -e c c 

f (t\F) be e e = 
tF b 

b, c > 0, t ~ 0 (AS) 

1 - e 
c 
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Now, the preba.bi,lity that an ultimate: fai1ut:e will bel rearrested in the 

next 'time ins.tant cendition~d en the event that (s)he has n.ot failed by 

time t is given by 

_ b b -ct 
<!>(t!F)dt = be-ct e c e C e dt 

b 

1 

which algebraically reduces te 

1 - e 

b 

1 -c ... e -

1 -

b -c.t 
-ct c e 

c 

b '''ct c e e 
b 
c e 

, 

<P(t!F) = 
be e b, c > 0, t > 0 
b -ct 

e C e _ 1 

(A6) 

If we examine the limit .of <P(t! F) as t appreaches infinity, we re,a1ize 

that we cannet evaluate this limit directly since both the numerater and 

denominater .of (A6) appreach 0 as t appreaches infinity. Applying 

L'Hopita1's rule (Purcell, 1972: 562), we obtain 

lim <P(t!F) 
t+. CO 

d b -ct 

1
. dt[be -ct e c e ] 

= ~m b 
t +00 d - -ct 

ddec e - 1] 

(An 

= c c > o. 

Thus, thecenditional hazard functien for Bloom's model does approach a 

positive constant over tilne. 
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To illustrate the operational similarities between Bloom's model 

and the Maltz-McCleary model, we will return to our example of Section 

III. First, we impose the same restrictions on Bloom's mode~ as those 

that were imposed on the Maltz-McCleary model! 

(i) PF(6) = .2 

(ii) PF(oo) = .50 . 

To satisfy restriction (ii), we use (A3) to obtain 

b = -c In (.50). (A8) 

Substitution of (A8) into Bloom's ~xpression for PF(t) given in (A2) 

combines with restriction (i) to produce the result c = .089. Placing 

this value for c in equation (A8) yields b = .062. These values of band 

c may be used with equation (A2) to produce the results shown in Table AI. 

It is evident from Table Al that these models behave in equivalent 

fashions. 

Hence, it is not surprising that Bloom found the performance of his 

model and the Maltz-McCleary model to be operationally equivalent, de­

spite their mathematical differences (Bloom, 1978: 16). When applied to 

the same data set, these two models will produce comparable results. 
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TABLE AI 

FAILURE PROBABILITIES FOR THE MALTZ-MCCLEARX: AND BLOOM MODELS: . ' 

THE EXAMPLE ,OF SECTION III 

Time from Release Mal t z-McCle'ary Bloom 
(months) (r .. .5, a - .12) (b - .062, c - .089) 

0 0.00 0.00 

6 0.25 0.25 

12 0.38 0.36 

18 0.44 0.42 

24 0.47 0.46 

30 0.49 0.48 

36 0.49 0.49 

42 0.50 0.49 






