

THE FORENSIC SCIENCES FOUNDATION, INC.

11400 ROCKVILLE PIKE • ROCKVILLE, MARYLAND 20852 • //(301) 770-2723.

LABORATORY PROFICIENCY TESTING PROGRAM

ų,

REPORT NO. 12

FIBER EXAMINATION

PROJECT ADVISORY COMMITTEE

John F. Anderson Spokane, Washington

J.D. Chastain Austin, Texas Richard H. Fox Independence, Missouri

Anthony Longhetti San Bernardino, Ca.

Charles McInerney Andrew H. Principe Pittsburgh, Pa. Highland Park, Illinois

> B. Edward Whittaker Miami, Florida

PROJECT STAFF

K. S. Field

15

S.S.

John Thornton

Berkeley, Ca.

E. Fabricant

M. A. Reich

Statistical presentations prepared by: COLLABORATIVE TESTING SERVICES, INC. Vienna, Virginia

Prepared for the Department of Justice, Law Enforcement Assistance Administration, Mattonal Institute of Law Enforcement and Criminal Justice, under Grant 74-RL-99-0048.

Points of view or opinions stated in this document are those of the authors and do not necessarily represent the official position or policies of the U.S. Department of Justice.

FOREWORD

G

 \diamond

The analysis summarized in this report is the twelfth of a series that will be made in conjunction with this proficiency testing research project.

In the course of this testing program participating laboratories will have analyzed and identified different samples of physical evidence similar in nature to the types of evidence normally submitted to them for analysis.

The results for Test Number Twelve are reflected in the charts and graphs which follow.

The citing of any product or method in this report is done solely for reporting purposes and does not constitute an endorsement by the project sponsors. \odot

Comments or suggestions relating to any portion of this report or of the program in general will be appreciated.

April 1976

TABLE OF CONTENTS

ĮĮ,

FOREWORD	i
BACKGROUND	1
SUMMARY	2
ANNEX A - DATA SHEET	3
FIGURE 1.	
TABLE 1 - CODE NUMBERS OF NON-RESPONDING LABORATORIES	5
TABLE 2 - SUPPLIERS CHARACTERIZATION OF SAMPLES	6
TABLE 3 - RESULTS OF REFEREE LABORATORIES	7 ⁸
TABLE 4 - SUMMARY OF RESPONSES TO QUESTION 1	10
TABLE 5 - FREQUENCY OF REPORTED METHODS USED TO ANSWER QUESTION 2.	11
TABLE 6a- COMPARISON OF ITEM A AND ITEM C BY THE EIGHT MOST FREQUENTLY REPORTED METHODS	12
TABLE 6b- COMPARISON OF ITEM B AND ITEM C BY THE EIGHT MOST FREQUENTLY REPORTED METHODS	13
TABLE 6c- NUMERICAL AND SEQUENTIAL BREAKDOWN OF THE EIGHT MOST FREQUENTLY REPORTED METHODS	14
TABLE 6d- NUMBER OF TESTS PERFORMED TO REACH A CONCLUSION	15
TABLE 6e- NUMBER OF CONCLUSIONS REACHED FROM EACH OF THE EIGHT MOST FREQUENTLY USED METHODS	15
TABLE 7a- MELTING POINT DETERMINATION RESULTS	16
TABLE 7D- REFRACTIVE INDEX RESULTS	17
TABLE 8 - DETAILED SUMMARY OF LABORATORY RESPONSES	18

ť

Ó

ii

BACKGROUND

This laboratory proficiency testing research project, one phase which is summarized in this report, was initiated in the fall of 1974.

This is a research study of <u>how</u> to prepare and distribute specific samples; <u>how</u> to analyze laboratory results; and <u>how</u> to report those results in a meaningful manner. The research will be conducted in two cycles, each of which will include five samples: a controlled substance; firearms evidence; blood; glass; and paint.

Participation in the program is voluntary. Accordingly, invitations have been extended to 238 laboratories to share in the research. It is recognized that all laboratories do not perform analyses of all possible types of physical evidence. Thus, in the data summaries included in this report, space opposite some Code Numbers (representing specific laboratories) may be blank, or marked "No Data Returned".

Additional evaluations of individual tests will be published in a separate report.

The Project is under the direct control of the Project Advisory Committee whose members' names are listed on the Title Page. Each is a nationally known criminalistic laboratory authority.

Supporting the Project Advisory Committee in their efforts is the Forensic Sciences Foundation with additional support from the Collaborative Testing Systems, Inc. in the areas of statistical presentation.

SUMMARY

 ϕ_{CY}

Sample #12 consisted of fiber samples A, B, and C packaged in glassine envelopes. They were mailed on January 6, 1976 with instructions to handle the samples in a manner similar to like evidence submitted for analysis.

In this test, 238 laboratories were sent three fiber samples which were referred to as Items A, B, and C. Participants were asked three questions: (1) Could Items A or B have common origin with Item C? (2) What information did you develop to arrive at your conclusions in Question 1? (3) What methods and instruments were used?

Of the 238 laboratories, 42 indicated that they do not do fiber analysis, 79 did not respond, and 116 responded with data. This represents a participation rate of 61%. One laboratory responded too late to be included in this report. Table 1 listed the codes for laboratories in each of the first two categories above.

The information in Table 2 shows that Items A and B were not of common origin with Item C. Table 3 contains the responses of the referee laboratories. Table 4 summarizes the responses given for Question 1. Table 5 lists the frequency of reported methods given in the response to Question 2. The eight most frequently used methods are tabulated in Tables 6a and 6b. Table 6c tabulates the steps of the fiber analysis in which each of the eight most frequently used methods was performed. Tables 6d and 6e contain information pertaining to the points at which conclusions were reached. Tables 7a and 7b tabulate the results of Melting Point Determination and Refractive Index studies by the laboratories. Finally, Table 8 is a summary of the methods used and the results of the methods used by each laboratory in lab code order.

No effort was made in the report to highlight areas wherein laboratory improvements might be instigated.

LAB CODE B

3

ÉN

CHECK HERE (AND RETURN) IF YOU DO NOT PERFORM FIBER EXAMINATION

ANNEX A

DATE RECEIVED IN LAB

DATE PROCESSED IN LAB

DATA SHEET PROFICIENCY TESTING PROGRAM

TEST #12 FIBER EXAMINATION

Item C represents fibers from the scene of a homicide. Items A and B represent fibers found on the shoes of two different suspects.

1. Could Items A or B have common origin with C?

	ITEM A	ITEM B
YES		
NO		
INCONCLUSIVE		

2. What information (qualitative and quantitative) did you develop to arrive at your conclusions in Question 1? Please check all appropriate boxes and provide values where applicable.

In the left hand column indicate the sequence (1, 2, 3, etc.) in which the tests were run. Indicate with an asterisk (*) the point where a conclusion was reached, even though subsequent tests were performed for confirmatory purposes.

Sequence of Testing		ІТЕМ А	ITEM B	ITEM C
BIREFRING	ENCE			
EMISSION (Specify	SPECTROSCOPY Elements Identified)			
FLUORESCE	NT STUDIES			
INFRARED	ANALYSIS			
MACROSCOP	IC EXAMINATION			
MELTING P	OINT DETERMINATION			
MICROSCOP (Specify	TC EXAMINATION			
PYROLYSIS	G-C			
REFRACTIV	E INDEX	41		
SOLUBIL: Solvents	Y TESTS (Specify U∢ed)			
THIN LAYE	R CHROMATOGRAPHY			
UV SPECTR	OPHOTOMETRY			
X-RAY DIF	FRACTION			
<u>X-RAY-FLU</u> (Count Ra	SXESGENCE c tio)			
OTHER (SP	ECIFY)			
8				
0				

3. Please specify the information developed with each of the methods and instruments checked in Question 2. (Example: Solubility tests using HC1, H_2SO_4 , Acetone and HNO_3 ; microscopic-fibers identified as cotton, nylon, etc.)

- 2 -

Please provide specific and complete responses. Attach additional sheets if necessary.

0

the want

CAL.

4

0

Method:

• \$

Method:

Method:

4. Additional Comments:

DATA SHEETS MUST BE RECEIVED AT THE FOUNDATION OFFICE BY FEBRUARY 10, 1975

ſ

THE FOLLOWING	LABOR	ATORTES	INDICATED	THEY	DO	NOT	DO	FIBER
ANALYSIS	<u> </u>							
208	316		391			427		
221	326		392			439		
229	333		399			459		
239	338		400			460		
259	342		402			469		
270	372		404			471		
276	377		409			477		
298	378		416			480		
300	386		417			484		
301	390		421			496		
001	0.50		")" Free E		1	497		
					٦	000		

THE FOLLOWING LABORATORIES DID NOT RESPOND

207	294	352	413
213	296	354	414
223	299	355	415
224	302	360	419
226	304	363	420
228	307	366	423
233	308	367	434
240	311	368	435
243	312	369	440
255	327	373	441
268	335	374	448
275	336	381	454
279	339	389	458
280	343	393	467
281	344	395	475
283	346	396	481
284	348	401	483
290	349	403	485
292	350	407	486

Total Labs = 79

-m

5

489 494 495

6 6)

Supplier's Characterization of Samples

Item A	100% wool Color:	Philadelphia Carpet Company Heather Green
Item B	Acrylic	(70% acrylic + 30% modacrylic) Brinkcrest Company
	Color:	#1014 Avocado
Item C	100% Dacron Polyester	Burlington Industries
	Color:	#31 Pine

A

RESULTS OF THE REFEREE LABORATORIES

Referee Laboratory 1

1. Response to Question 1:

7

Could Items A or B have common origin with Item C?

Item A - NO

Item B - NO

2. Response to Question 2:

What information did you develop to arrive at your conclusions in Question 1?

Sequence of Testing	<u>Test</u>	Item A	Item B	Item <u>C</u>
1	Macroscopic Examination			
*2	Microscopic Examination	Woo1	Synthetic	Synthetic
3	Sign of Elongation			+
*4	Solubility Tests		Soluble in 20% H ₂ SO ₄ + Dimethyl- formamide Identified B	Not Soluble
5	Refractive Index	ė	ng 1.514- 1.516 n _c 1.514- 1.516	ng 1.552

*6 Infrared Analysis

Identified C

Note: Microscopic Examination showed a difference between A, B & C and the following battery of tests was to identify B & C.

Table 3, continued

Referee Laboratory 2

1. Response to Question 1:

Could Items A or B have common origin with Item C?

Item A - NO

Item B - NO

3

2. Response to Question 2:

What information did you develop to arrive at your conclusions in Question 1?

- 1. Stereoscopic Examination at 10X: Differences in color and crimp of fibers noted between A, B and C.
- 2. Microscopic Examination at 200X mounted in R.1. 1.540 using polarizing microscope:
 - Sample A: pale yellow-green color scales are **visible** refractive indicies of fiber in area of 1.540
 - Sample B: almost colorless smooth surface, no delusterant visible flat ribbon-like appearance both $n_{\prime\prime}$ and n_{L} below 1.540
 - Sample C: yellow-green in color smooth surface, no delusterant visible appears to be trilobal both $n_{1/2}$ and $n_{1/2}$ above 1.540
- 3. Birefringence using polarizing microscope at 200X:

Sample B: negative birefringence lst order grey

- Sample C: positive birefringence 3rd order yellow-orange
- Refractive Index using certified Cargille liquids and polarizing microscope at 200X:

Sample B: n_{ij} = 1.512, n_{j} = 1.515 (possible acrylic fibers) Birefringence = -0.0003

Sample C: $n_{fl} = 1.693$, $n_{L} = 1.555$ (possible polyester fibers) Birefringence = +0.138

Table 3, continued

5. Scale cast using clear nail polish:acetone (1:1)

Sample A: A is dyed animal fibers exact animal cannot be given due to stripping and dying of fibers, however, a type of wool is suspected

- 6. Cross-sections using Hardy microtome:
 - Sample B: "dog-bone" cross section sample very likely Orlon acrylic
 - Sample C: triangular cross section reference literature in our possession reports only one polyester type with triangular crosssection as being Dacron T-62
- 7. Solubility Test:

9

Sample B: fibers are not soluble in cold dimethylformamide fibers are soluble in boiling dimethylformamide Sample B confirmed as being Orlon acrylic fibers

11

8. Melting point using polarizing microscope at 100X and Metter Microfurnace:

Sample C: (in air) 254.0 to 259.8 C confirmed as being polyester fibers

2

¢÷,

10

SUMMARY OF RESPONSES TO QUESTION 1

Question 1: Could Items A or B have common origin with Item C?

ξ].

Response	Item A <u>Same as Iten</u>	n C % of Total Labs	Item B Same as Item C	<u>% of Total Labs</u>
Yes	0	0%	2	1.7%
No	116	100%	114	98.3%
Response		<u>No. of Labs</u>	% of Total Labs	
Yes for bo A and B	ťh	0	0 %	
Yes for A No for B	and	0	0%	
No for A a Yes for B	nd	2	1.7%	
No for bot A and B	h	- 114	98.3%	
	ang	116	100 %	0

Ø

Ŕ

FREQUENCY OF THE REPORTED METHODS USED TO ANSWER QUESTION 2

Question 2: What information did you develop to arrive at your conclusions?

°11

3

<u>Method</u>	Number of Re- ported Use of this Method	Percentage of Responding Labs Using this Method
Microscopic Examination	121*	N/A*
Macroscopic Examination	84	71.8%
Solubility Test	55	48.2%
Birefringence	46	40.4%
Melting Point Determination	20	17.1%
Refractive Index	19 /	16.7%
Fluorescent Studies	13	11.1%
Infrared Analysis	10	9.4%
Flame Test	2	1.7%
Density Studies	(1,2,2,2,2,2,1)	.9%
Thin-layer Chromatography	1	.9%
Dupont I.D. Stain #4	1.1.1	.9%
Thermal Depolarization Analysis	1	.9%
Color Test	1	.9%
UV Spectrophotometry		.9%
Diameter of Fibers	1	.9%

*Some Laboratories reported more than one microscopic examination in response to Question 2. 113 different Labs did some kind of microscopic examination

C -

65

ñ

Table 6a

0

Û

12

?)

		f Items A and C by quently Reported Me		
<u>Method</u>	Number of Labs Comparing Item A and Item C by this Method	Number of Labs Reporting they Could Differentiat Item A from Item (by this Method	Report Could te entiat	of Labs ing they Not Differ e Item A tem C by ethod
Microscopic Exam	108	108		0
Macroscopic Exam	56	38		18
Solubility Tests	26	22		4
Birefringence	22	19		3
Melting Point Determination	10	10		0
Refractive Index	4	4		۵
Fluorescent Studies	8	3 3		5
Infrared Analysis	3	2	0	1

Ø Method	Number of Labs Comparing Item B and Item C by this Method	Number of Labs Reporting they Could Differentiate Item B from Item C by this Method	Number of Labs Reporting they Could Not Differ entiate Item B from Item C by this Method		
Microscopic Exam	107	99	8		
Macroscopic Exam	56	20	36		
Solubility Tests	45	39	6		
Birefringence	36	33	3		
Melting Point Determination	19	19	0		
Refractive Index	16	16	Q		
Fluorescent Studies	10	5	5		
Infrared Analysis	9	9	0		

Table 6b <u>Comparison of Items B and Coby</u> the Eight Most Frequently Reported Methods

Table 6ċ

D

14

Numerical and Sequential Breakdown of the Eight Most Frequently Reported Methods

<u>Method</u>	Number of Labs Using this Method	Step	Step	Step	Step	Step	Step	Step 7	Step
Microscopic Examination	121*	30	79	8	2	0	1	0	1
Macroscopic Examination	83	80	3	0	°.0	0	0	0	0
Solubility Tests	55	0	9	26	13	5	2	0	0
Birefringence	46	2	12	17	10	3	2	0	, Q
Melting Point Determination	20	0	1	7	6	3	2	1	0
Refractive Index	19	0	1	6	7	5	0	0	0
Fluorescent Studies	13	1	5	4	3	٥	0	0	0
Infrared Analysis	10	1	1	4	2	1	0	1 "	0

*Some Labs reported more than one microscopic examination.

	Number of	Tests	Perfo	rmed to	Reach°	<u>a Conclus</u>	io
<u>Step</u>	7 8)			Number <u>Reachec</u>	of Con 1 at th	clusions is Step	
1			3. 3.		20		
2					71		
3	•				16		
4					5		
5					1		
6					1		

ð 15

Ö

 \odot

n

Note: 15 Labs did not report the point where a conclusion was reached (i.e., no * shown) Also, some Labs reported more than one asterisk

Table 6e

Number of Conclusions Reached from Each of the Eight Most Frequently Used Methods

<u>Method</u>		of Concl on this	
Microscopic Examination		79	
Macroscopic Examination		6	
Solubility Tests		7	
Birefringence		11	
Melting Point Determination		3	
Refractive Index	stalina de la seconda	2	
Fluorescent Studies		1	
Infrared Analysis		4	la vier

Table 6d

Table 7a

Melting Point Determination Results

e

Lab Code	<u>Item A</u>	<u>Item B</u>	<u>Item C</u>
215		Partially melts 180 ⁰ -190 ⁰ C Remainder above 270 ⁰ C	220-230 ⁰ C
218	A and B indeten	rminate	260 ⁰ C
227		Softening at 225°C does not melt	250°C
248	Chars at 225°C	Chars at 275°C	Melts at 225°C
252	Indeterminate	Indeterminate	257 ⁰ C
254	A and B indeten	rminate	2350C
266	Decomposes	233 ⁰ C	238 ⁰ C
271		Indeterminate	253.9°C
273		Chars up to 291.7 ⁰ C	253.1°C
277	an a	No melting; chars	200 ⁰ C
282	Indeterminate	Indeterminate	257.5 [±] .5 ^o C
324		Greater than 260°C	258 ⁰ C
405		Shrinkage 153 ⁰ - 155 ⁰ C	251 ⁰ - 252 ⁰ C
406		Indeterminate	250 ⁰ - 252 ⁰ C
430	Charred	Charred	Melted
436	None	None	258 ⁰ C
444	None	None	250°C
462	W	Indeterminate	250 ⁰ C
482	A, B, C diffe	rent	

Table 7b

3

	<u>Refractive Index Results</u>							
Lab Co	<u>le Item A</u>	<u>Item B</u>	G <u>Item C</u> 99					
227		C has greater refrac than B	ctive index					
269			$n_{11} > 1.67$					
271		1.515 - n ₁₁	1.697 - n _{ii}					
		1.515 - n <u>r</u>	1.553 - n ₁					
282	1.556 - 1.560	1.517	Greater than 1.700					
285	 δ δ	Both indices of B le	ess than C					
314		Qualitative differen B and C with immers	nce between ion oil					
320		greater than 1.502						
353	 A state of the sta							
380		n _e , n _w ≈1.51	$\mathcal{P}_{\varepsilon}$ Greater than 1.70					
384		η _ε 1.51 - 1.53	ⁿ EGreater than 1.66					
385		B and C different						
405	n ₁ , 1.56	n,, 1.532 n_ 1.532	n ₁₁ 1.705 n ₁ 1.552					
444		N=1.53 & 1.52	N=1.69 N=1.55					
445			n ₁₁ = 1.700					
446	1.560	1.510	1.718 parallel 1.534 perpen- dicular					
` 450	parallel 1.557 perpendicular 1.547	1.51 and 1.54	Parallel near 1.7					
453 0		n_L and n_H below 1.6	n_{11} higher than 1.6 n_{1} lower than 1.6					
455 277		n_{II} and $n_{\perp} \approx 1.54$	n" 1.71 n」 1.55 length greater than 1.568 width less than 1.568					
			- 000 μου του τησημαία 					

Refractive Index Results

17

13

Detailed Summary of Laboratory Responses

Lab <u>Code</u>	Sequence of Testing	<u>Test</u>	<u>Item A</u>	<u>Item B</u>	<u>Item C</u>
201 NN	1 2*	Macroscopic Exam Microscopic Exam	Hair of animal origin	Mixture of dull & bright syn- thetic fibers	Bright synthetic fiber
202 NN	1 2* 3	Macroscopic Exam Microscopic Exam Solubility Tests			
205 NN	3 1 2*	Macroscopic Exam Microscopic Exam			
209 NN] 2*	Birefringence Microscopic Exam	Yes Animal hair wool	No Two varieties of synthetic fiber one with de- lusterizing agen one with dumb be	; synthetic; trilobular nt; cross-section
÷ .	3	Pyrolysis GC		B different from	n C
210 NN	1 2*	Macroscopic Exam Microscopic Exam			
211 NN	1 2 3 4	Macroscopic Exam Density Microscopic Exam Birefringence	Yes	A ‡ B ‡ C B ≥ A > C A ≠ B ≠ C Yes	No
212 N¥	1 2 3	Macroscopic Exam Microscopic Exam Solubility Tests °	Lighter green than B & C Does not compare with B & C	Compares w/C Synthetic Compares	Compares w/B • Only dne figer compares w/B Compares w/B
	4 5	Birefringence Pyrolysis G-C		with C Compares w/C	Compares w/B
214 NN	1 2 3	^o Macroscopic Exam Microscopic Exam Solubility Tests	Woo]	Synthetic difference from Dissolves in HNO3	<pre> Synthetic C difference from B Doesn't dissolve in HNO3 </pre>
215 NN.	1 2 3	Macroscopic Exam Microscopic Exam Melting Point Determination	A different th Animal fiber	an⊳B and C B and C differ s Partially melts 180-190°C; completely above	220-235°C
216 NN	1 2 3*	Macroscopic Exam Microscopic Exam Infrared AnaTysis	Hair °	Color differen® from C Acrylic	Color different from B° Polyester

એ ભ

0

ŋ

1

* indicates the point where a conclusion was reached

18

Lab <u>Code</u>	Sequence of Testing	Test	<u>Item A</u>	<u>Item B</u>	Item £
217 NN	[]_]* ∫	Microscopic Exam	Natural fiber	B&C synthetic	B different from C
	2	Birefringence	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	Elongation sign of B opposite_th	
218 NN	1 2*	Macroscopic Exam Microscopic Exam	Light yellow- green; medium luster Natural Animal	Light yellow- green; high luster	Light yellow; green; high luster
	3 4	Fluorescent Studies Melting Point	Fiber Fluorescent	Synthetic Fluorescent	Synthetic Absorbs
й 	5	Determination Solubility Tests	A & B indetermin Insoluble	Soluble to Partial to Insoluble	imately 260 ⁰ C Soluble to insoluble 5 reagents
0	6	Microscopic Cross Section	Round	Dumb Bell Shaped	Irregùlar triangle
219 NN	1 0	Macroscopic Exam	Green, Many thin fibers	Green, short fibers; glisteni	Green ng
	2	Microscopic Exam	A different from C	B different from	ı C
225 NN]*	Microscopic Exam	Wool Fiber	Synthetic; two- types	Synthetic- Trilobal
	2 3	Birefringence		Low birefring- ence	High birefring- ence
1997 - 19	3	Infrared		l)acrylic 2)mod-acrylic	Pet Polyester
227 NN	1 2* 3 4*	Macroscopic Exam Microscopic Exam Fluorescent Studies Solubility Tests	A has scales, B		Fluoreses yellow
	5 6 7	Refractive Index Birefringence Melting Point Determination	B Sc	has greater refra and C are birefri oftens at 225°C, bes not melt	ctive index than B ngent 250 ⁰ C
236 NM	1 2*	Macroscopic Examinat Microscopic Exam (stereo)		Yellow Dog bone syntheti	Green c Tri-lobal synthetic
an an tha	3	Microscopic Exam (polarizing)	, Wool	(-) sign elongati	on high birefringence
	4 5	Birefringence Solubility Tests	Medium Dye in- soluble in aroclor	Low Dye insoluble in aroclor	High Dye soluble in aroclor
237 NN	1 2* 3	Macroscopic Exam Solubility Tests Microscopic Exam	A, B, and C appr Used four solven Almost trans- parent thickness= .025m	Yellow-green thickness= .05mm	ound to be different Yellow-green
	4	Birefringence	Low bire- fringence + optic sign	"Low bire- fringence - optic sign	High bire- fringence + optic sign

* indicates the point where a conclusion was reached

Ŀ

Lab <u>Code</u>	Sequen ce of Testing	<u>Test</u>	<u>Item A</u>	<u>Item B</u>	Item C
238 NN	1* 2	Microscopic Exam Birefringence			
246 NN	1 2	Macroscopic Exam Microscopic Exam			9
247 NN]*	Microscopic Exam	Wool	2 types noted - dogbone shape acrylic	1 type of Fiber Polyester
248 NN] 2	Macroscopic Exam Microscopic Exam	clear to gray animal origin (possibly wool)	B & C similar (g man-made, with flattened conformation	reenish-yellow) man=made, rounder filament, (possibly nylon)
	3*	Birefringence	high bire- fringence negative elongation	slight bire- fringence positive elongation	birefringence plus-minus elongation
	4	Solubility Tests	A, B, and C inso except for Nitri	oluble in all seve	en reagents
	5	Melting Point Determination	Chars at 225°C	Chars at 275°C	Melts at 225 ⁰ C
249 NN	1 2 3	Microscopic Exam Birefringence Solubility Tests	Wool Medium Confirm microsco	Acrylic Low opic examinations	Polyester High
250 NN	1 2*	Macroscopic Exam Microscopic Exam		e different colors tain different fib	
251 NN	1 2*	Microscopic Exam Birefringence	Animal origin Yes	Dumb bell shape No	Dumb bell shape Yes
252 NN	1	Microscopic Exam	Round shaped, has scales	Dog-bone shaped	Trilobal shaped
	2	Solubility Tests	Soluble in Chlorox	Sol. in H ₂ SO ₄ Insol. in HCI	Sol.in H ₂ SO ₄ Insol in HCT
	3*	Melting Point Determination	(Na OCI) Indeterminate	Indeterminate	257°C
253 NN	1 2 3 4	Macroscopic Exam Microscopic Exam Fluorescent Studies Solubility Tests		а а 9 Ф	
254 NY	1 1	Microscopic Exam	Wool Round cross- section	Twisted dog- boned cross section	3 sides ball-shaped
	2	Flame Test	Smell of burnt hair,	Fuses away from flame	Fuses away 👔
	3*	Solubility Test	self-extinguishi Soluble in Na OCl	Sol. NH_4SCN , 75% H_2SO_4 Insol-HCL,	Sol-cresol-M
	4	Melting Point Determination	A and B indeterm	снзсоон	Insol-Acetic Acid Approx. 235 ⁰ C

* indicates the point where a conclusion was reached

20

11.0

21

Lab <u>Code</u>	Sequence of <u>Testing</u>	<u>Test</u>	Item A	<u>Item B</u>	<u>Item C</u>
256 NN	1 2*	Macroscopic Exam Microscopic Exam	A, B, C grossly Wool	same color Bilobed Synthetic 2 types	c Trilobed synthetic
ini ini ini ini Multi ini ini Multi ini ini ini	3	Birefringence		sign (+) for lst type sign (-) for 2nd type	Sign Indeterminent
257 NN	1 2 3 4	Macroscopic Exam Microscopic Exam Solubility Tests Pyrolysis G-C	Wool Three r	Acrylic (orlon) eagents used	Nylon
260 NN	1* 2* 3	Macroscopic Exam Microscopic Exam Solubility Tests	Natural fiber	Difference betwee in color, and in No usable results	cross-section
261 NN] 2*	Macroscopic Exam Microscopic Exam	A "lighter" than Wool	BorC	
	3* 4	Birefringence Infrared Analysis	in an	Low order Acrylic	High order Polyester
262 NN	1 2*	Macroscopic Exam Microscopic Exam	Woo1	3 components different from C	Polyester
	3	Thin-layer Chroma- tography Pyrolysis GC		Acrylic & mod- acrylic	Polyester
	5	Birefringence			High order
266 NN	. ¶ in territori. St	Microscopic Exam (stereo)	light green	light green	dark green
	2* 3	Microscopic Exam (high-power) Melting Point Determination	small scales round Decompose	large ribbon 233 ⁰ C	small round 238 ⁰ C
269 NN] 2* 3*	Macroscopic Exam Microscopic Exam Birefringence	Wool Normal for wool	2 cross section Acrylic and mod-acrylic	Trilobal High
	4	Refractive Index			Greater than 1.65 indicates polyester
271 NN	1 2*	Macroscopic Exam Microscopic Exam	A, B, C, light g Rough surface, cross markings wool	reen Broad, no cross markings	Rod-like with smooth surface
	3	Solubility Tests	Insoluble in all reagents	Soluble at 200°F	All insoluble
	4	Refractive Index	•	1.515-n ₁ 1.515-n <u>1</u>	1.697- n ₁₁ 1.553- n ₁
	5 6 7 8	Birefringence Melting Point Deter. DuPont I.D. Stain #4 Cross-Sections	Brown Ye Round	0 Indeterminate 11owish-orange Dog-bone	-144 253.9 ⁰ C Orange Round

* indicates the poin t where a conclusion was reached

Ð

5

Table 8 (continued)

Ø

Lab <u>Code</u>	Sequence of Testing	Test	Item A	<u>Item B</u>	Item C
273 NN	1 2* 3*	Macroscopic Exam Microscopic Exam Melting Point Determination	Wool Approx. 291.7 ⁰ C chars only	Approx, 25	3.1 ⁰ C
274 NN	1 2	Macroscopic Exam Microscopic Exam	A, B, C, differe Round	ent coTors Dog-bone	Trilobal
277 NN	1 2 3 4	Macroscopic Exam Microscopic Exam Birefringence Solubility Tests	Yes None	Yes Insol. in Glacial Acetic	Yes Insol. in Glacial Acetic
	5	Refractive Index	None	None	Length 1.568 Width 1.568
	δ*	Melting Point Determination	None Wool	No melting, chars Orlon	200°C Nylon
278 282 NN	NN]* 1	Microscopic Exam Macroscopic Exam	A, B, C all diss Light green, semidull luster No UV Fluorescer	Light Green, bright luster	Light green, bright luster, No UV Fluorescence
	2*	Microscopic Exam	Woo1	Acrylic	Synthetic, but not acrylic
	3 4	Refractive Index	1.556-1.560 A, B, C tested w natural origin	1.517 /ith nine reagents acrylic	Greater than 1.700
	5	Melting Point Determinant	Indeterminate	Indeterminate	$257.5 \pm 15^{\circ}C$
	6 7	Pyrolysis G-C Thermal Depolari- zation Analysis	A, B, C differer]t	Only C yielded a curve
285 NN	2" <mark>1</mark> 2	Macroscopic Exam Microscopic Exam	A, B, C, light g Animal fiber	reen Synthetic- diameter greater than C	Synthetic-diameter less than B
	3* 4	Refractive Index Solubility Tests		Both indices of Insoluble in	B are less than C Soluble in
	5	Birefringence	A A A A A A A A A A A A A A A A A A A	m-cresol Negative birefringence	m-cresol Positive birefringence
291 NN	1 2* 3	Macroscopic Exam Microscopic Exam Cross Section	Animal hair	synthetiz bi-lobed	synthetic tri-lobed
295]*	Macroscopic Exam	Lighter in	Color density	Has luster not
NN	2	Microscopic Exam	color than B&C Animal hair	between A&C dumb bell	present in A&B crenulated perifery
	3 4	Microscopic-Compound Microscopic-Floures.	Nothing in ad Green	cross-section dition to No. 2 a Red	bove Absorbed
297	1*	Microscopic Exam	Animal fibers	Synthetic dumb-	Synthetic triangular
NN	2	Sclubility Tests	Insoluble	bell shaped Slowly dissolves in H ₂ SO ₄	shaped Rapidly dissolves in H ₂ 50.
	3	Color Tests		Orange-Brown	H ₂ SO ₄ No R _x

* indicates the point where a conclusion was reached,

Q

22

23

1S

Lab <u>Code</u>	Sequence of Testing	<u>Test</u>	Item A	<u>Item B</u>	<u>Item C</u>
303 NN	1 2*	Macroscopic Exam Microscopic Exam	Dissimilar to B Wool	and C Mixture 1)Bifilament 2)Synthetics Acrylic/Spandex	Single type; nylon/polyester
	3 4	Solubility Tests Flame/heat Tests	Woo1	Mixture Acrylic/Spandex	
309 NN	1 2*	Macroscopic Exam Microscopic Exam	A, B, C green co Wool	Synthetic dog-bone cross-section	Synthetic crenulated cross-section
	3	Solubility Tests		Acrylic-"Orlon"	Polyester- "Dacron Type 62"
310 NN	1 2*	Macroscopic Exam Microscopic Exam	A, B, C, basica Wool	lly similar Wider than C	Different from B
ζį	3	Solubility Tests		B soluble in concNitric acid	Similar to A Not soluble in Nitric acid
313 NN]*	Macroscopic Exam			C different from A and B
	2	Microscopic Exam	Animal origin	Synthetic B and C have dif	Synthetic ferent cross-sections
	3	Birefringence			ferent birefringence
314 NN]*	Microscopic Exam	Woo1	Qualitative diff between B and C	erence noted
	2	Refractive Index		Qualitative diff B and C with imm	
0	3	Solubility Tests			
315 NN	1 2 3*	Fluorescent Studies Macroscopic Exam Microscopic Exam	Non-striated Optic sign (+)	A, B, C have no A, B, C have sam Striated Optic sign (-)	fluorescence le color Striated Optic sign (+)
and San Angeland Marke San Angeland San Angeland San Angeland San Angeland	4	Birefringence (Mitchell Levi Chart)	.013	.006	
317 NN	1 2*	Macroscopic Exam Microscopic Exam	A, B, C colors s Wool	imilar Synthetic B and C differen	Synthetic It
319 NN	1 2*	Macroscopic Examinati Microscopic Exam	on Animal hair, perhaps wool	C different colo B is bilobal, di	
	3*	Solubility Tests	In soluble in H ₂ SO ₄	Soluble in H ₂ SO ₄ with no re- sulting color	Soluble in H_2SO_4 with green color
	4 5	UV Spectro- photometry Infrared Analysis		No absorption	Peak at 244nm
		이 같은 것 같은			

* indicates the point where a conclusion was reached

Lab <u>Code</u>	Sequence of Testing	Test	<u>Item A</u>	<u>Item B</u>	<u>Item C</u>
320 NN	1	Birefringence 🎕	Positive Optic Sign	Negative [®] Optic Sign	Birefringent
	2*	Microscopic Exam	Natural Fiber Possibly wool	Dumb Bell shape cross-section	
	3	Solubility Tests	Seven reagents t dimethylformamid	ried, B only solu	ble in
	⊲⇒ 4	Refractive Index	4 mile city + 1 07 main (a	B greater than 1	.502
322 NN	1 2	Macroscopic Exam Microscopic Examinati	A,B, C different	colors	
			All animal fibers, probably wool	Color & structur Synthetic possibly orlon	e of B different than C Synthetic possibly nylon
324 NN	1 2* 3	Macroscopic Exam Microscopic Exam Solubility Tests	A, B, C similar Animal fiber		etic, but different Insoluble in acetone HCl Very sol. in H ₂ SO4
	4	Melting Point Determination		Greater than 260°C	258°C
325 NN	1 2*	Macroscopic Exam Birefringence	Low order Optic sign (+)	High order	3rd-4th order Optic sign (+)
330 NN	1 2*	Macroscopic Exam Microscopic Exam	Lightest A, B, C have dif	slightly darker ferent shape of f	darkest iber
331 NN	1*	Microscopic Exam	Light Yellow,	Guaaniah	Vollow
1414		(stereo) 100X	dull Animal fiber	Greenish, bright 2 kinds of	Yellow, bright Lime synthetic
	2	Birefringence		synthetic fibers	fiber
337 NN	1 2*	Macroscopic Exam Microscopic Exam			
340 NN	1 2*	Macroscopic Exam Microscopic Exam	A, B, C, light g Wool (green fibers Synthetic light green)	Synthetic (Medium green)
341 NN	1*	Microscopic Exam	Scales present B	Bilobed synthetic	Tri-or-more Lobed synthetic
MU	2	Solubility Tests	Eight reagents a	ttempted, B solub	
345 NN	1 2 3	Macroscopic Exam Microscopic Exam Birefringence	A, B, C same Animal fiber A, B, C all diff	B and C same erent	3
347 NN	1 2*	Macroscopic Exam Microscopic Exam	A, B, C similar Wool	in color - C has Twolobes	more static electricity Three lobes Possibly polyester
	3 4	Solubility Tests Fluorescent Studies	Yellow fluorescence	B and C differen Yellow Fluorescence	

ΰ

0

* indicates the point where a conclusion was reached

24

D

Ser.

Lab Code	Sequence of Testing	Test	<u>Item A</u>	<u>Item B</u>	Item C
351 NN	1 2* 3*	Macroscopic Exam Microscopic Exam Solubility	A, B, C differen Insoluble in HCl	t in size, color, t Slowly dissolves yellow solution	, Rapidly dissolves,
353 NN	1 2 3 4 5	Pyrolysis G-C Microscopic Exam Diameter of fibers Birefringence Refractive Index	A, B, C dissimil Wool	ar B and C different .037 mm	diameter .067 mm
	6	Solubility Tests		A was wool, Item I C was polyester	B was acrylic,
356 NN	1* 2*	Microscopic Exam Birefringence		Synthetic eakly birefringent oderately birefrin	Synthetic
359 NN		Microscopic Exam	Scales	Very weak medullary	Moderate Synthetic
	2	Solubility Tests	H ₂ SO ₄ , slow	H ₂ SO4, brown & decompose	H ₂ SO ₄ , blue and decompose
370 NN	1 2* 3	Macroscopic Exam Microscopic Exam Solubility Tests	Woo]	Possible nylon Soluble in H2SO 4 probably nylon	Possible polyester Soluble in cresol, indicates polyester
371 NN	1	Macroscopic Exam	Color not as bright as B&C	Bright yellow	Bright yellow
	2*	Microscopic Exam	round-scaly	flat-ribbon like	round (brighter color than A)
	3	Birefringence	yellow, orange, blue	pale yellow	bright yellow
	4 5	Fluorescend Studies Solubility Tests	A, B, C show no Insol. HCl, H ₂ SO Acetone, CHCl ₃ Sol. HKO ₃	fluorescence 4 Ins. HCl, HNO ₃ Sol. H ₂ SO4, CHCl ₃	Ins. HCl, Acetone, ChCl ₃ Sol. H ₂ SO ₄ , HNO ₃
376 NN	1	Microscopic Exam	Animal fiber	Bi-lobal synthetic	c Tri-lobal synthetic
	2	Birefringence			
379 NN]* 2	Macroscopic Exam Microscopic Exam			
380 NN	1	Microscopic Exam	Animal	Two-lobed cross section Synthetic	Multi-lobed cross section Synthetic
	2* 3	Birefringence Refractive Index	h _ω , r	1st Order	Ath Order \mathcal{E} greater than 1.70 s
384 NN	1	Macroscopic Exam	Green, round, scales	green, flat no scales	dark green, round
	2*	Microscopic Exam "	Animal hair	Occlusions	Fiber, darker than B, striated
	3 4	Birefringence Solubility Tests		Little or none Sol. HNO ₃ and	High Insol. HNO3 and N,N-Dimethylformamide
	5	Refractive Index		η_{c} between 1.51	n greater than 1.66 probably polyester

* indicates the point where a conclusion was reached

G 0

 $\langle \tilde{c} \rangle$

¢ù

Lab <u>Code</u>	Sequence of Testing	Test	<u>Item A</u>	<u>ltem B</u>	<u>Item C</u>
385 NN	1 2*	Macroscopic Exam Microscopic Exam	Woo1	2 types of	
	3 4 5*	Melting Point Determination Solubility Tests Refractive Index	Eight reagents u Dimethylform	acrylic used, B and C different in namide B and C different	
	6 7	Birefringence Infrared Analysis		B and C differen Polyacrilonitril	
387 NN	1 2*	Macroscopic Exam Microscopic Exam	green animal fiber	yellow-green synthetic,bi- lobated; 60 micron width	yellow-green trilobate 30 micron width
	3*	Birefringence	medium low	low	hìgh
388 NN	1 2* 3 4	Macroscopic Exam Microscopic Exam Birefringence Solubility Tests	anima] Five sol	synthetic vents used	plant
394 NN]	Microscopic Exam	similar to C but has larger	flat ribbon-like appearance	
	2* 3	Infrared Analysis Pyrolysis G-C		natural fiber neither A nor B ha confirmed polyeste	d a common
397 NN	1	Macroscopic Exam			ð
	2 3	Fluorescent Studies Microscopic Exam	scales	med. green 2 x 4 units	dark green 4 x 8 units
398 NN	1 2*	Macroscopic Exam Microscopic Exam	W00]	at least three synthetic fibers diff. from C	
405 NN	1 2*	Infrared Analysis Microscopic Analysis	A, B, C differen Round, scales		e different than A or B
	3 4	Melting Point Determination Refractive Index	n,, about 1.56	shrinkage 153-155°C n ₁₁ about 1.532	251-252 ⁰ C n _{//} about 1.705
12			wool	nj about 1.532 acrylic fiber	n∡ about 1.552 polyestêr
406 NN	1 2*	Macroscopic Exam Microscopic Exam	green Cuticle scales	green Dog-bone shaped	darker green Trilobal
	3 4	Birefringence Melting Point Determination	Yes	No Indeterminate	Yes 250–252 ⁰ C /
	5	Solubility Tests		Sol. Dimethyl- formamide	Insoluble in/HCl
	6	Pyrolysis G-C	Animal Fiber	Acrylic fiber	Polyester fiber

* indicates the point where a conclusion was reached

26

G

27

Lab <u>Code</u>	Sequence of Testing	Test	<u>Item A</u>	<u>Item B</u>	<u>[tem C</u>	
408 NN	1 2* 3	Macroscopic Exam Microscopic Exam Solubility Tests	Animal origin	not animal r Sol. in J	not animal Insol. in	
418 NN]*	Microscopic Exam	Vool	2 types, polyester unk. synthetic	Unknown synthetic diff. from A in diameter	
	2	Solubility Tests	Insol. H ₂ SO ₄	Sol. H ₂ SO ₄	Sol. H ₂ SO ₄ w/color change	
422 NN] 2*	Macroscopic Exam Microscopic Exam	A, B, C, similar Animal hair	Dumb Bell cross section	Synthetic, not dumb bell shaped	
a	3*	Infrared Analysis		B and C different		
426 NN	1 2*	Macroscopic Exam Microscopic Exam	A, B, C yellowis A, B, C, have si	h green gnificant gross differences		
428 NN	1 2 3*	Visual Microscopic Exam Birefringence	A, B, C have sub natural fiber Low	tle differences in trilobal Low	color and form trilobal High	
429 NN	1 2* 3	Macroscopic Exam Microscopic Exam Solubility Test	woo1	2 synthetic fibers modacrylic, acryli	s l synthetic fiber ic polyester	
430 NN	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Macroscopic Exam	light-green- yellow dissimilar to B&	B and C Lt. Green Yellow, similar		
77	2* 3	Microscopic Exam Melting Point Determination	A, B, C dissimi Charred		Melted	
431 NN] *	Microscopic Exam	scales wool	B and C contain differences in diameter and polarized colorations acrylicnylon		
	<u></u> 2*	Birefringence	low-medium	possibly orlon low (-) sign of elong	possibly nomex high ation	
	3	Solubility Tests	n an tha an an tha an	Band C insol. in	formic acid, m-cresol	
432 NN	1 2*	Macroscopic Exam Microscopic Exam	A, B, C, yellow Round cross- section	Triangular cross- section	Triangular cross- section	
	3 4*	Fluorescent Studies Infrared Analysis	A, B, C, have no			
433	1 2	Macroscopic Exam Fluorescent Studies	A, B, C, similar	C different from A and		
NN	2 3 4*	Infrared Analysis Solubility Tests	A and C similar A & B insol.		Sol. H ₂ SO4	
436	1* 2	Microscopic Exam Melting Point Determination	Light yellow mix mp-none mp-none	Orange mix mp-117 mp-none	Orange mix mp-110 mp-258	
	3*	Cross Section	Round	Dog-bone	Tri-lobal	

* indicates the point where a conclusion was reached

GS)

ñ

Ð

SQUE :

93

1.46	Castrona				
Lab <u>Code</u>	Sequence of Testing	Test	Item A	<u>Item B</u>	<u>Item C</u>
437 NN	1 2	Macroscopic Exam Microscopic Exam	wool	blend of	synthetic
	3*	Solubility Tests	Sol. H ₂ SO ₄ , HNO3	synthetic fibers Sol. HNO3, H ₂ SO4	s Sol. H ₂ SO4 but changed colors in
	an a		11103	472004	HNO3
438 NN	1 2*	Macroscopic Exam Microscopic Exam			
	3	Solubility Tests	A and B differen	it from C (4 reager	nts used)
443 NN	1*	Microscopic Exam	wool	2 synthetic fibers	l synthetic fiber different from A or B
444	1	Macroscopic	A slight differ	rence in color from	B and C
NN	2*	Microscopic Exam	wool	striated fibers dog-bone	striated fibers trilobal
	3	Birefringence	+ .01	cross-section + .002 002	cross-section + ,14
	4	Refractive Index		N= 1.53 & 1.52	N= 1.69 N= 1.55
	5	Melting Point		WARMA	[*] 250
an an Angalan an Angalan An Angalan An Angalan An Angalan An Angalan An An	6	Determination Solubility Tests	none	none acrylic/modacryl (acrylic likely orlon	
				<pre>modacrylic likely verel)</pre>	
445 NN	1*	Microscopic Exam	Animal fiber (wool)	synthetic flat shape	synthetic bright irregular shape
	2 3	Solubility Tests Refractive Index		Sol. HNO3 acrylic	Insol. HNO ₃ n _{//} = 1.700 polyester
446	1	Macroscopic Exam	green	green	darker green
NN	2* 3	Microscopic Exam Solubility Tests	wool Insoluble in	synthetic Sol. H ₂ SO ₄	synthetic (different Sol. H ₂ SO ₄ from B
			everything used (4 reagents)	HNO3	o
	4	Refractive Index	1.560	1.510	1.718 - h _{ll} 1.534 - n _L
449 NN	1	Macroscopic Exam	A, B, C differer B & C shiny	nt color of green,	A dull.
1111	2*	Microscopic Exam	hair	B different than appearance of	
	3	Birefringence		C much more bire	fringent than B
450 NN	a	Macroscopic Exam	A, B, C, approxi lustrous than A		
	2*	Microscopic Exam	scale structure		one type of
	3	Refractive Index	n_{1} , 1.557, n_{1} 1.547	observed synthet both fibers between 1.51 & 1.54	n _{il} near 1.7
	4 5	Birefringence Solubility Tests	Moderate Wool	A 1.54 Low one acrylic & one unidentified fibe 8 reagents tested	er polyester

* indicates the point where a conclusion was reached

Ģ

a.

28

Q

00

Ŋ

Lab <u>Code</u>	Sequence of Testing	Test	<u>Item A</u>	<u>Item B</u>	Item C
452 NN	1 2*	Macroscopic Exam Microscopic Exam	A, B, C light g wool	green, curly synthetic, bicomponent low-order color	synthetic, trilobal, high-order color
453 NN	1 2* © 3 4	Macroscopic Exam Microscopic Exam Refractive Index Birefringence	scales wool	tri-lobed 2 types delustered n ₁ , and n <u>1</u> below 1.6 negative elongation	tri-lobed not lustered N _{II} higher 1.6 N _L lower 1.6 positive elongation
455 NN	1	Microscopic Exam Birefringence Refractive Index Solubility Tests	Animal Hair possibly wool	synthetic fiber not tri-lobal negative acrylic nu and ni both approx. 1.54 Sol. H ₂ SO ₄ Insol. HCL	tri-lobal positive h _{ll} approx. 1.71 n _L approx. 1.55 polyester Insol. HCL, H ₂ SO ₄
462 NN	1 2* 3	Macroscopic Exam Microscopic Exam Melting Point Determination	dull green wool	B and C lime gre synthetic, dog-bone cross-section Indeterminate	synthetic, collapsed tubular cross-section 250°C
465 NN	4 1 2 3 4*	Solubility Tests Macroscopic Exam Fluorescent Studies Solubility Tests Microscopic Exam	A and B yellow g A, B, C no fluc A and B do not c in H2SO4 animal (wool)	prescense	Sol, dimethylformamide polyester dark yellow green Dissolves in H ₂ SO ₄ vegetable
468 NN	1 2*	Macroscopic Exam Microscopic Exam	A different from A, B, C all dif		
470 NN] ⊗2*	Microscopic Exam Macroscopic Exam	natural fiber-scales	synthetic fiber granulated dog-bone cross-section	synthetic fiber no granules trilobular cross-section
472 () NN	1 2* 3	Macroscopic Exam Microscopic Exam Solubility Tests	dull wool	glossy orlon type acrylic	glossy dacron type 62 type polyester no effect in 1:1 HCL

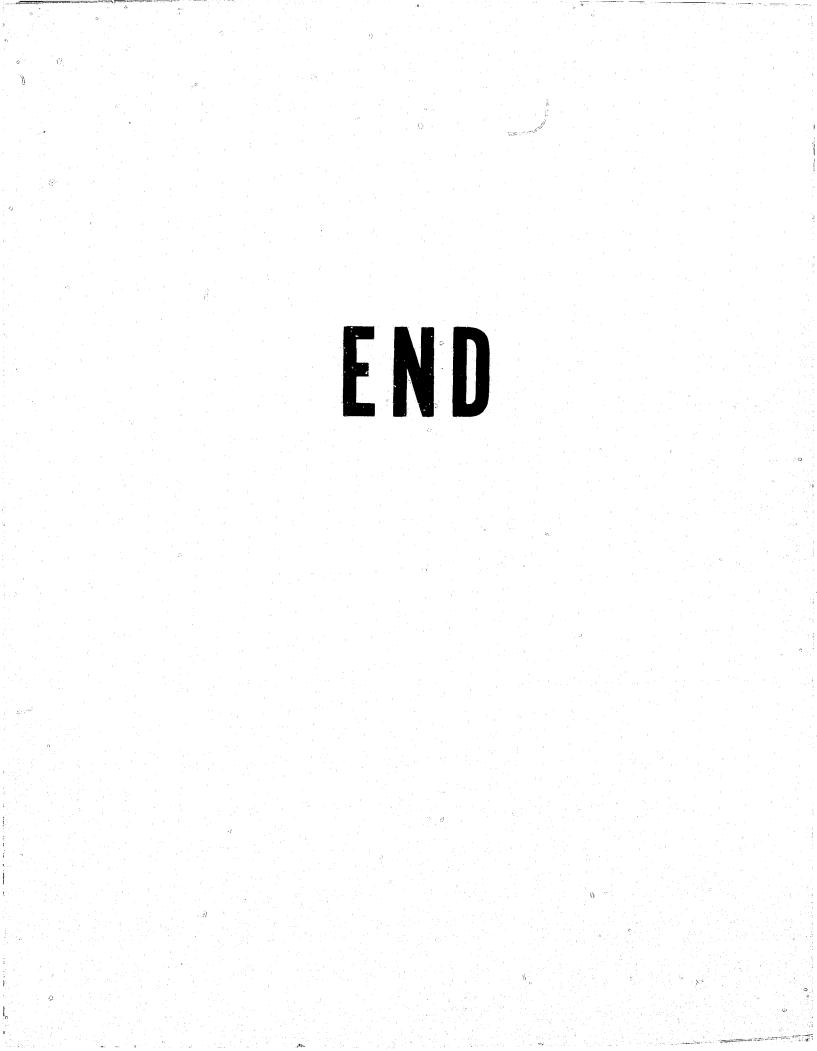
* indicates the point where a conclusion was reached

S.

29

° 🕄

30


B a

Ì

Lab <u>Code</u>	Sequence of Testing	<u>Test</u>	<u>Item A</u>	<u>Item B</u>	<u>Item C</u>	
473 NN	1 	Microscopic Examinati	on			
474 NN]* 	Macroscopic Exam	A, B, C, greenish	fibers Targe stati in C	amount of c.electricity	
	2	Fluorescent Studies	yellow fluores- ence	yellow-orange	no fluorescence	
	3	Microscopic Exam	scales present wool	fluorescence possibly nylon 6-6 Dupont Type 501	possibly darvan or arvel	
	4	Solubility Tests	confirmed as wool	confirmed as nylon 6-6 Dupont type 501	confirmed as arvel	
476 NN	1 2*	Macroscopic Exam Microscopic Exam				
478 NN	1	Microscopic Exam	Animal hair fibers (wool)	extruded textile	synthetic fibers	
	2*	Fluorescent Studies		fluorescence	no fluorescence	
479 NN	1	Microscopic Exam	A and B light gre A has scales animal hair	eπ	bright green	
	2	Solubility Tests		5 reagents used B is soluble on in HNO ₃	;C insoluble in ly all reagents	
	3 4*	Birefringence Pyiolysis G-C	(<u>+</u>) 0.01	(-) 0.006 B and C differe	Indeterminate nt	
482 NN	1 2* 3 4	Macroscopic Exam Microscopic Exam Binefringence Melting Point	Failure to differentiate between A, B and C Structural differences noted in A, B and C A, B, C different			
	an a	Determination	A, B, C different			
493 NN	1	Macroscopic Exam		9	showed greater sheen than A or B	
• • •	2*	Microscopic Exam	с. Коод	B different tha		
499 NN	1 2*	Macroscopic Exam Microscopic Exam	green wool B and C are	synthetic	different than A synthetic	
n Service and Service and	3	Birefringence	A, B, C different	О. 6 - Ф		

* indicates the point where a conclusion was reached

