
" I 

(Y') 
/'. 
U) 
\.0 Q) "0 >.-
0 "cQ):::O 

rl EI§m.!B 
e:h:fl~ 
-CO(/) 

-g.2 ~.E 
'~'ao(ij 
~ ~ c:.§ 
.... Oom 
(J)~'OZ OlQ) 

00 ~ .. ~ -g ~ :;~ u'Ons.:: ::J ::J ca(J)~O -,-, 
15'0 

x- 0 
Q).5..c: :tS 

-Q) '0 ~:; '0 c::- ~ • C11= Ol::J 
-5;'~ & E= 

t: UI 
e:§ = 0 "'c a.= Coraoe 

Ol .. ~.S Q) 0 cc c: .2' ~ :e ,0 
(/):;:: m o£ 2 
;:j~ .0 c:: a. 

oOl-
(I):;:: .... co 
ca co ca'o 

.c.!:::! cS 
E~OJO 
OlOlEOl E .... :J..c: 

00-

5 o.gE 
.ggU)~ni 
~f?£~~ 
t= ~.5 ~ ~ 

') 0 • 

Vr'-i 

IMPERFECT INFORMATION AND ANTITRUST VIOLATIONS: 

OJ 
0 

"r! 
OqJ 

c:: o~ ~ Ol iB-Ol Of-J .0 0: 
(J) §~ -, 

'" t:l 
.c 

~ iii fijZ Ol '''' 0 Ol Cf.lfij '~ iii 
E 

Ol 

ui~ 
(/) 

j 
Ol 
0 
c:: 
~ 

~~ .2! 
Ol 

~~ 
0: 0 
Ol (J) ,2 

£ iii 
Ol .~ ~ :::J 
0 

-, 
::J 

~ 
iii '0 c:: e 'E a. § ~ 8 

.9 0 r! iii 
c:: 

§ ""or! m 0 

'iii ~r-I 'iii 
'~E'§ ~ Z 

Ol 

Ol~p., a -5 
.9 0.01 U 

.;, 
'E 
iD 
a. 
(J) 

~ 
':; 
CT 
~ 
E 
Ol 
iii 
"" (J) 

(/) 
0: -, 
t:l 
Z 
Ol 
-5 
'0 
Ol 
'0...: 
'- Ol 1!lc:: 
:::J ~ 
00 

gf 0' 
::J 

"8 
... 0 

~~ 
... -
Ol-
.cO 
t:c:: 
:::JO 

LL 'Ci) 

THEORY AND EXPERIMENT~ EVIDENCE 

, 
• 

by 

Michael K. Block* 

and 

Stanley S. Reynolds** 

\. ,~ ._' 
This research was funded in part by the National Institute of 
83-IJ-CX-4055. Points of view or opinions stated in this 
the/se of the authors and do not necessarily represent 
positions or policies of the National Institute of Justice or 
St:ates Sentencing Commission. 

Justice grant 
document are 
the official 
of the United 

*U.S. Sentencing Commission, 1331 Pennsylvania Ave., NW, 14th Floor, 
W;ashington, D.C. 

**Department of Economics, University of Arizona l Tucson, Arizona 85121. 

If you have issues viewing or accessing this file contact us at NCJRS.gov.



- 1 -

INTRODUCTION 

Economic analyses of the deterrence of criminal antitrust activity 

have focused on two types of public policies. The first type of policy 

specifies penalties imposed on violators of antitrust laws. The penalties 

include payment of fines to the government, imprisonment, and payment of 

treble damages to injured parties. The second type of policy is the 

intensity with which antitrust laws are enforced and with which potential 

violations are investigated by government agencies. This intensity of 

enforcement and investigation effort is viewed as having an important 

effect on the probability of detection of antitrust violations. The 

deterrence effects of such policies have typically been analyzed by 

positing an expected profit or expected utility calculus for potential 

antitrust violators. This anal ytic approach to deterrence of anti trust 

violators has b~en utilized in several studies, including Bre'it and Elzinga 

(1973, 1985), Landes (1983), Block, Nold and Sidak (1981) and Block and 

Feinstein (1986). 

The point of departure for this paper is the observation that while 

antitrust penalty levels are often known to potential violators, there may 

be considerable uncertainty attached to the probability of detection. This 

lack of information about detection probabilities and its implications are 

examined in this paper. A potential violator of antitrust laws (e.g., the 

management of a firm) is viewed as making decisions over a number of time 

periods and is given the opportuni ty to revise his estimate of the 

probability of detection based on information acquired over time. The 

economic agent is assumed to act so as to maximize the DPV of a stream of 

expected utilities and to update his probability of detection using Bayes 

rule. 1 The key hypotheses that emerge from this theoretical model are 
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tested by using data acquired from a series of laboratory experiments. 

The experiments are designed to control for crucial variables thought to 

affect an agent's decisions, including the information available about the~ 

detection probability. 

This approach yields several t x1Jes of interesting theoretical results. 

The first type of result concerns the dynamics of antitrust violations 

over time. Suppose that the only way the agent can acquire useful 

information about detection probabilities is through his own experience as 

a violator of antitrust laws. If a violation is chosen in period t and it 

is not detected then a violation will be chosen in t+l. Also, once the 

agent chooses not to violate the law the crime will not be chosen in any 

subsequent periods. The second type of result concerns the role of 

Bayesian learning. Because a crime choice permits the 'Dpportu..'1i ty to 

learn about detection probabilities, such a choice has value for subsequent 

periods over and above the current expected utili ty of crime. As a 

consequence, a crime choice can be 'optimal I even though current expected 

utility is negative. For a simple two-period version of the model with a 

risk-neutral agent, we show that this positive informational value of 

crime decreases as the discount rate rises and as the variance of the 

subjective prior distribution over the detection probability falls. The 

third type of result deals wi th the policy trade-off between anti trust 

penalties and detection probabilities. We distinguish between the 

objective probability of detection (which is under the influence of policy) 

and the subjective detection probability as perceived by a potential 

violator. Changes in objective probability can alter subjective 

probabilities in two ways: by shifting the prior mean and by changing the 

likelihood of detections that influence Bayesian updating. If the prior 
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mean shifts by only a fraction of the change in objelctive probability then 

an increase in penal ties coupled with an offsetting decrease in the 

objective detection probability will have a short-run deterrent effect for 

a risk-neutral agent (for a two-period model). 

This paper also reports on a series of experiments that were designed 

to test various hypotheses from the theory" The subjects in the 

experiments were students at the University of Arizona. The predictions 

on the dynamics of antitrust violations did not fare well in the 

experiments: there were numerous cases of falsifications of these 

predictions. The experiments provide strong empirical evidence of a 

deterrence effect for an increase 1n the penalty and an increase in the 

prior probability of detection. Thfa observed average incidence of IIcrime;; 

in the experiments was less than the incid/snce predicted by risk-neutral 

behavior in the dynamic model. 

behavior in the experiments. 

This prc)Vides evidence of risk averse 

I. EXPECTED UTILITY AND BAYESIAN LEARNING 

In this section we describe the hypC'Jthesized objective of an agent and 

the process of learning about crime detection probabilities. The notation 

is summarized in Table 1. Thle agent has a single period utility function, 

U(·), that is increasing in net income for the period. By choosing the no 

crime option the agent earns incom'e y for the period with certainty. 

Choosing the crime option yields income z>y if the crime is undetected and 

the income z-e<y if the crime is detected. The variable e represents the 

monetary fine levied on the agent when crime is detected. The variable p 

represents the perceived probability of detection. If the individual is 

certain that p is the probabili~r of detection then the expected utility 
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crite!'ia indicates that no crime is preferred if U(y} ~ (l-p}U(z) + pU(z-e) 

and c:rime is preferred othf~rwise (assuming indifference leads to 

nonpa;C'ticipation). The utility function is normalized so that U(y)=O. 

In what follows we consider a case in which p is not known with 

certainty and in which the individual has a known planning horizon of T 

discrete time periods. The objective function olf the individual is the 

dis.cou:nted sum of expected utili ties, 

T 
(1) w = L 'Y t - 1 E[U(m t )], 

t=l 

where mt is net income in period t and 'Y = l/(l+r) is the time discount 

factor. The individual is presumed to choose crime or, no crime in each 

period t=l, ... , T so as to maximize W. 

A standard approach to modeling this sort of decision-making problem 

is to treat p as a random variable. The agent is assumed to have some 

prior probability distribution over different possible values of p. Bayes 

rule can be used to update the a'gent I s distribution over p-val ues based on 

the agent1s observations of the outc.omes of illegal behavior. DeGr'oot 

(1970, pp. 174-175) shows that if the prior distribution over multinomial 

probabilities is a Dirichlet distribution then the posterior distribution 

after observing events is also Dirichlet. For our binomial case, a 

Dir~chlet prior over (p,l-p) is equivalent to a Beta distribution over p. 

The Beta density function is, 
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(2) f(p' o! ,(:3) {= r( a+,9) pcx-l 
, r(a)r({:3} 

o 

( 1_p}{:3-1 O<p<l 

elsewhere, 

where cx>O, {:3>O. The Beta distribution is very flexible and can 

accommodate a wide range of "shapes" by changing the values of Or! and {:3. 

The mean prior probability of detection is E(p} = a/(a+{:3). If a=B=l then 

the prior is simply the uniform distribution over (0,1) (i.e., a diffuse 

prior distribution}.2 

Suppose the prior distribution of p is f(Pia,{:3) and then a total of 

(d+n) draws are taken from the enforcement mechanism with d detections 

and n no-detections. The posterior distribution is Beta with parameters 

(a+d}/(a+d+{:3+n). In what follows we assume the agent's prior distribution 

over p is Beta with parameters ex and ~. 

In this analysis we assume that the only way for the agent to acquire 

information about p is to actually participate in illegal behavior (to 

Hsearchll for the probability of detec:tion). There are, of course, factors 

other than a firm's own criminal experience that can alter its perceived 

probabili ty of detection. Evidence of spillover effects from anti trust 

enforcement is found by Block and Feinstein (1986). Spillover effects 

arise when antitrust enforcement activities spread from one submarket to 

another. So, a firm observing indictments in a related market or, 

submarket may revise its estimate of the detection probability upward. 

There is also evidence concerning the infrequent nature of recurrences in 

antitrust enforcement (see Clabault and Block (1982), pp. 1053-1070). It 

may be that the probability of detection of antitrust violation is greater 

for a firm that has been indicted in the past. Landsberger and Meilijson 
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(1982) analyze the impact of 'state-dependent' enforcement levels in the 

context of a model of tax evasion. Such a policy amounts to having 

detection probabilities that vary depending on whether an agent has a 

recent conviction or, has 'passed' a recent investigation. We do not 

include spillover effects or, state dependent detection probabilities in 

our analysis of antitrust deterrrence. However, both of these aspects of 

anti trust enforcement could be built into an extended version of our 

model. 

II. ' OPTIMAL I ANTITRUST VIOLATIONS OVER TIME 

A decision-making strategy that maximizes W in (l) is sought. Any 

strategy that specifies a fixed series of choices for periods 1 through T 

at the beginning of the planning horizon will be suboptimal. Such a 

strategy ignores possible information acquired about p over time through 

the agent's criminal experience. An optimal strategy at time t takes the 

experience up to t into account and also anticipates the current value of 

information acquisition for subsequent decisions. The dynamic programming 

approach can be utilized to characterize the optimal strategy. This 

approach involves the computation of a value function for each time t. 

The value function defines the maximum possible value of discounted, 

expected utility for periods t through T I condi tional on information 

acquired prior to t. 

An individual's val ue function is defined by USing the backward 

recursion method of dynamic programming. Initially, we must define period 

T value given any feasible history of criminal detections and nondetections 

(d, n) up to time T. (Feasibili ty at time T requires that 0 ~ d+n < T.) 
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(3) VT(q,n) = max (0, J~ [(l-p)U(z) + pU(z-e) J f(p;O!+d.~+n)dpl 

Period T value is simply the greater of the utility of the outside 

opportunity (U(y)=O) and the expected utility of crime in T. The expected 

utility of crime is computed using the updated prior distribution for the 

probability of detection, p. Equation (3) may be UEled to calculate value 

functions recursively for periods t<T. 

(4) Vt(d,n) = max h Vt +1 (d,n). J~ (l-p)(U(z) + yVt +1 (d,n+1» 

p(U(z-e) + 'YVt+1(d+l,n»]f(p;0l+d,t3+n)dp}, l~t<T. 

Equations (3) and (4) define a unique sequence of value functions for 

periods t=1,2, ... ,T. 

The agent < S ::Jptimal decision in a period is direct 1 y related to his 

value function. If the second argument ~>ide the curly brackets in (4) 

exceeds the first argument then crime is optimal in period t. In this case 

the probability of detection in t+l will be revised based on the agent's 

experience in t. The expected value of this revision is specified by the 

value functions Vt+1(d+l,n) and Vt +1(d,n+l}. If the second argument inside 

the brackets in (4) is not larger than the first then crime is not optimal 

in t. The expected value of the no-cr'ime decision is U(y) + 1'Vt +1 (d,n) = 

1'Vt +1(d,n}. The information (d,n) avculable in period t is carried over 

into t+l in this case. 
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Proposition 1 If crime is not optimal in period t then crime is not optimal 

in any later period T, l~t<T~T. 

Proof: Without loss of generality, we look at the case for wlrich r=t+l. 

The proof proceeds in three steps. 

Step 1: We first demonstrate that if d+n<t then Vt(d,n)~vT(d,n). Vr(d,n) 

specifies an optimal decision rule for the T-r+1 periods r, r+l, .. 0' T. If 

the same decision rule is followed for periods t, t+1, ... , T-r+t then an 

agent can earn an expected value of Vr(d,n} over these periods plus a 

nonnegative expected value for periods T-T+t+l, "0' T. Vt(d,n) cannot be 

less than the sum of these expected values, so Vt(d,n) > V (d,n). 
- r 

Step 2: If crime is not optimal in t then Vt(d,n) = 1'Vt +1 (d,n). It follows 

tJ:'l.at Vt +1 (d,n) ~ Vt(d,n) since 'Y~1. From step 1 we also have Vt{d,n) ~ 

Vt +1 (d,n). These two inequalities imply that Vt(d,n) = Vt +1 (d,n). 

Step 3: Next we show that Vt(d,n) = o. This follows directly from step 2 

and Vt(d,n) = 'YVt+l(d,n) if 1'<1. For the case 1'=1, suppose that Vt(d,n) = 
Vt +1 (d,n) > O. In this case, there must be at least one period in the 

sequence t+l, T+2, ... , T for which the crime choice has positive expected 

-utility, given the experience to date. Let rp be the mean subjective 

probability of detection for this period. Let p > 0 be the probability that 

all crimes committed in this sequence of periods are undetected. By 

choosing crime in t, the agent has expected value greater than Vt +1 (d,n) + 

pr~U(z) + (l-.p)U(z-e)] > Vt +1 (d,n). That is, by starting the strategy 

specified by Vt +1 (d,n) one period early, the agent earns expected value in 

excess of Vt +1 (d,n). The supposition that Vt(d,n) > 0 contradicts 

nonoptimality of crime in t. 

Step 4: If Vt(d,n} > 0 then by step 2 we Must have Vt+l(d,n} = 0 and crime 
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is not optimal for (my periods after t. This completes the proof. 

Proposi tion 2 Ii: the crime choice is optimal in t<T and crime is not 

detected in t then the crime choice is optimal in period t+l. 

Proof: Optimality of crime in t implies that Vt(d,n) > l'Vt +1 (d,n) ~ O. The 

proof proceeds by contradiction. Suppose crime were not optimal in t+l 

after an undetected crime in t. The proof of propositon 1 establishes that 

t+l value is zero in this case, Vt+1(d,n+l) = O. It is also tru'e that 

Vt+1(d+l,n) ~ Vt+1(d,n+l) (this can be established by a backward in.duction 

argument on t). So, Vt +1 (d+l,n) = 0 and Vt(d,n) = cpU(z) + (l-cp)U(z-e), from 

equation (4), where cp = (.6+n)/{a+d+.6+n). The value of a crime choice in 

t+l given experience (d,n+l) is greater than or equal to ¢ 'U(z} + {1-q'~ I )U(z-

e) > cpU(z) + (l-cp)U(z-e) > 0 where cp' = (t3+n+l}/(a+d+t3+1L). Thus, 

Vt +1 (d,n+l) > 0 which contradicts the supposition of nonoptimality of crime 

in t+l. This completes the proof. 

Propositions 1 and 2 describe two testable implications of the joint 

hypotheses of Bayesian learning and discounted, expected utili ty 

maximization. Proposition 2 states that if crime is optimal in period t 

and there is a "favorablell outcome {from a criminal IS point of view!} then 

crime continues to be optimal in period t+l. Essentially what occurs in 

this case is that no detection in period t causes the agent to revise the 

expected probability of detection downward, making the crime decision 

attractive in period t+l. Proposition 1 indicates that once a person stops 

cammi tting crimes they should "stay stopped. II If crime is not an 

attractive option in period t and no crime is committed then the agent has 

no additional information about detection probabilities in period t+l. 
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Thus, crime remains unattractive in period t+l. Again, it should be 

stressed that these predictions depend on having no sources of learning 

about detection probabilities other than an agent I s own experience. 

III. DETERRENCE EFFECTS OF ANTITRUST POLICY 

The deterrent effects of changes in fines and enforcement levels are 

examined in this section. We will demonstrate the role that Bayesian 

learning plays in the dynamic analysis and show how deterrent effects of 

antitrust policies differ in the dynamic and static models. A simplified 

two-period version of the dynamic model with a risk neutral agent is 

utilized. The sequence of decisions for the agent is illustrated in figure 

1. In each period, the agent chooses either crime (B) or no-crime (A). A 

crime choice is followed by a random draw from the enforcement mechanism. 

If crime is chosen in period 1, the agent updates his probability of 

detection for the next period based on the outcome in period 1. 

Let PI = O!./ ( cx+(3) be the mean subjective probability of detection in 

period 1. Expected income from crime in period 1 is, Z-Ple. If crime is 

chosen in period 1 then the mean probability of detection for period 2 is 

updated to P2= P = (cx+1) / (a+{3+1) in the case of detection or, Pl = 12 = 

Ot/(a+{3+1) in case of no detection. The certain income from no crime is y 

== O. 

The value function for period 1 is, 

(5) V l = max {1'max {O, Z-Ple}, z-P1e + YPlmax {O, z-pe} 

+y(l-pdmax{O, z-,Qe}}. 

The first. term inside the outer curly brackets is the expected value of the 

no-crime choice; the second term is the expected value of the crime choice. 

Each of these expected values is calculated assuming an optimal decision 
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will be made in period 2 based on the information available at that time. 

Define G to be the difference between these two terms: 

(6) G == Z-Ple - l'max {O, Z-Ple} + l'Plmax {O, Z-Pe} 

+ l'(l-pdmax {O, Z-J2e}' 

G represents the net expected gain for the crime choice in period 1. Crime 

is optimal in period 1 if G > O. So, a deterrent exists if G ~ O. The ~ 

of G is the determinant of the period 1 choice. As Block and Lind (1975, p. 

485) point out, the magnitude and direction of changes in G with respect to 

changes in underlying parameters {z, e, a, ~, l'} may also be important. 

The impact of parameter changes on G provides an indication of the 

s,trength of deterrence or, incentive effects. 

First, the effect of a change in the fine on G is considered. For 

purposes of comparison, we also examine the effect of ~e on the simple, 

static expected income model. For the static model, the net expected gain 

from crime is 

(7) G = Z-Ple, 

assuming a mean probability of detection equal to Pl' The resul ts are 

illustrated in figure 2. The net gain from crime is the same for the 

static and dynamic models except for an interval of fine levels. Over this 

interval, the net gain from crime is strictly higher for the dynamic model 

than for the static model. 

The divergence between G and G reflects the value of information 

acquired through the crime choice in the Bayesian model. The presence of 

this informational value of crime leads to a curious result. A higher fine 

level is required to deter crime in the dynamic model than in the static 

model. Solving for the value of e that sets G equal to zero yields, 
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-The term in square brackets is greater than one. As a result, e exceeds 

the fine level required for deterrence in the static model, z/pl' For 

fines in the interval z/p1 < e < e, crime is an optimal choice in period 1 

even thQugh the expected period 1 value of crime is negative. In this 

case, a favorable outcome in period 1 causes an upward revision of the 

future expected value of crime. An unfavorable period 1 outcome leads to 

the no-crime choice in period 2, with a certain payoff of zero. 

The fine required to deter potential antitrust violators, e, is a 

function of th.e discount factor, y=11 (l+r), and the parameters, cx and (3 of 

the prior distribution over detection probabilities. It is straightforward 

to show that e is increasing in y. As a firm discounts the future less, 

crime has more informational value and a larger fine is required for 

deterrence. A mean preserving spread of the prior distribution also 

increases e. The greater the variance of the prior, the higher is the 

informational value of crime and the higher is the fine required for 

deterrence. On the other hand, as the variance of the prior approaches 

zero, e approaches z/p1" As the prior variance gets smaller, the results 

from the dynamic model look more like the static model results. 

A change in the level of resources devoted to (public) antitrust 

enforcement should also affect the incentives to violate antitrust laws. 

In the standard, static expected utility model an increase in enforcement 

activi ty has been viewed as leading to a higher probability of detection 

and lower expected utility for crime. In our Bayesian model, the objective 

probability of detection need not be identical to the subjective detection 

probabili ty • In order to describe the impact of increased enforcement, we 

---I 
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must describe how a change in objective probability effects the subjective 

probability. The following provides a fairly general way of approaching 

the problem. Let p be the objective probability of detection. The mean of 

the subjective prior probability, ~, is assumed to be given by, 

(9) P1 :: P + lJ.(p-p), 

where 0<1J.<1 measures the response of the prior mean to changes in the 

objective detection odds. The parameter p can be viewed as a fixed initial 

objective detection probability. In the extreme case of IJ.=O the prior mean 

is completely unresponsive to changes in p. The subjective probability of 

detection would respond to 6p only after additional observations of the 

outcomes of crime choices. If IJ. > 0 then the prior mean Pl does respond to 

a change in p. This might occur 1 for example, if the anti trust enforcement 

agency announced. a higher budget for enforcement activities or, if the 

agency announced particular industries as targets of investigations. In 

this case, the subjective mean probability may also be adjusted subsequent 

to the announcement based on the agent's criminal experience. 

The initial deterrent effect of a change in the objective probability 

of detection is found by differentiating G with respect to p. G is 

piecewise differentiable, so the derivative is broken down into several 

parts. 

(10) ~~ = 

z 
P1 < e((a+{3)(a+l)) 

a( a+t3+1) PI > z 
( cx+t3 

e CX+I3+1) 

z 
r: a+13 ] e«a+I3)(a+l» z 

-IJ.Le (1-'Y)+'Y(2-:ee}+'Y(1-Pl} e( CX+t3+1) 1 a(a+I3+1) < Pi < e 
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An increase in p has a deterrent effect on period one crime as long as ~>O. 

The magnitude of the deterrent effect depends on the current level of 

fines and detection probabilities (because of the lIkinksll in G). 

Next we consider the impact of offsetting changes in the level of 

fines and the objective probability of detection that leave the expected 

fine unchanged. Such offsetting changes are given by 

(11) d~~P) = p+e ~ == o. 

The total differential of Gis, 

(12) dG = o:5G de + c'iG dp. 
o:5e o:5p 

Substituting for dp/de from (11) into (12) yields, 

(13) dG = o:5G .. _ (1?) (§g). 
de oe e op 

Substituting for the partial derivatives of G in (13), simplifying and 

evaluating the expression at p = Pl yields, 

(14) dGI _ = -p1(1-~)-'Y(1-pdp1~ ~-de e=e ~+~+1 

2 ~+t3 
-~'YPl (~+~+1)(~+~+1'~)' 

This expression is negative when ~=O, positive at ~=1 and strictly 

increasing in~. So, there is a critical value ~ between zero and one such 

that for ~<ii, the derivative in (14) is negative. That is, if Pl shifts by 

less than a fraction il of the change in p then an increase in the fine 

coupled with an offsetting decrease in p has a deterrent effect. 

IV. EXPERIMENTAL DESIGN 

The preceeding sections of the paper describe testable implications of 

a theory of criminal activity over time with Bayesian learning. In this 

section we describe the design of controlled laboratory experiments that 
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were used to test hypotheses from the theory. 3 An alternative approach to 

hypothesis testing would be econometric tests based on field data. Such 

an approach would require information about sequences of choices over time 

of individual criminals and noncriminals; such information may be difficult 

to acquire. Information about undetected crimes is also required, and 

again this information would be difficult to acquire. Laboratory 

experiments also permit much more control of the environment for 

potential offenders than is possible in the field. 

A laboratory environment was created in which the monetary levels, y, 

z, e and the time horizon T were set by the experimenter and .known to the 

subjects. A critical part of the theory is the uncertainty that an agent 

has concerning the true probability of detection. We utilize a procedure 

orginated by Grether (1980) that permits experimental control of the prior 

probabili ty of detection for a crime choice. This procedure involves 

specifying two urns (or, bingo cages) from which enforcement draws might 

be made. Each urn is filled with two types of balls. One type repesents a 

crime detection and the other type represents an undetected crime. Draws 

are made from the urns with replacement. The first urn has a probability 

of detection ql and the second urn has detection probability Q2<ql' 

Subjects are aware of the composi tion of the urns and the detection 

probability for each urn. At the beginning of a sequence of T periods, a 

random draw is made that determines which of the two cages is selected and 

used for enforcement draws. Cage 1 (or, urn 1) is selected with 

probability m; cage 2 is selected with probability (l-m). A subject is 

aware of the probabilities of selecting the 2 cages but does not know 

which of the cages is actually selected. This procedure induces a prior 

probability of detection equal to mQl+(1-m)Q2' After each crime choice by 
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a subject, a draw is made from a cage to determine detection or 

nondetection. The subject learns whether or not the crime was detected 

but does not know which cage the draw was made from. The outcome of the 

draw does permit the subject to update his estimate of the probability of 

detection." 

This probability structure would have the following interpretation in 

the antitrust context. There are two levels of enforcement resources that 

the agency might utilize in anyone industry. A high enforcement level 

yields a probability of detection of antitrust violation qli a low 

enforcement level yields detection probability Q2' A firm does not know 

which level of resources the antitrust agency utilizes in its industry. 

Instead, the firm assigns probabilities to high and low enforcement 

resource levels in its industry. 

The theory the experiments are designed to test is a theory of 

criminal Violation of antitrust laws over time. However, the experiments 

do not use terms like crime, antitrust, price-fixing, etc. Subjects are 

simply offered a choice between two alternativesj choice A yields a 

certain payoff and choice B has a stochastic payoff, with the probability 

structure described above. Alternatives A and B are intended to represent 

no-crime and crime decisions, respectively. Since the theory posits that 

decisions depend only on the expected utility of income, the experiments 

are designed to focus on this aspect of decisions exclusively. If such a 

theory performs poorly in controlled laboratory experiments, its ability 

to predict behavior in the naturally occurring (1'real") world is suspect. 

Three types of experiments were administered to each subject. These 

were the baseline (BL), treatment 1 (TR1), and treatment 2 (TR2). The 

parameter values used are listed in table 2. In BL the parameters were 
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set so that expected income for the crime choice in period 1 exceeds income 

for no-crime y, (based on the induced prior). In TR1 the fine level is 

higher than in BL. Treatment 1 allows us to examine the deterrence 

effects of an increase in fines. TR2 is the same as BL except for a higher 

m-value. Treatment 2 permits examination of the deterrent effect of an 

increase in the mean prior probability of detection. In TR1 and TR2 the 

expected income from crime is less than y, but the crime choice is optimal 

in period one for a risk-neutral person because of the value of 

information. Each subject was administered the following experimental 

sequence: BL, TR2, BL, TR1. This sequence permits us to determine whether 

subjects return to baseline behavior after the first treatment. 

The subjects recruited for our experiments were students at the 

University of Arizona. The experiments were run on a personal computer. 

A computer program listed the instructions (see the appendix) on the 

screen and led the subject through a sample 12 period run of the 

experiment. A subject was prompted by questions generated by the program 

and the subject entered his/her responses on the keyboard. s Each subject 

was paid in cash at the end of his/her experimental session. A subject was 

given $4.00 of working capital at the sta.rt of the experiment with which to 

absorb possible losses. s The expected payoff to a risk-neutral, value

maximizing subject in an experimental trial is given by V1 in the last row 

of table 2. Thus, the total expected payoff for a subject from working 

capital, 2 baseline trials, a treatment 1 trial and a treatment 2 trial is 

$22.21 = $4 + 2($5.29} + $3.78 + $3.85. The actual average payoff to 

subjects was $12.12. Each experiment lasted 20-30 minutes. 
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V. EXPERIMENTAL RESULTS 

A total of 30 subjects participated in these experiments. As a result 

we have 60 observations for the baseline case and 30 observations each for 

treatments 1 and 2. Our first use of the experimental data was to see if 

the data falsified propositions one and/or two. Recall that proposition 

one states that once an individual does not choose crime they should not 

choose crime in subsequent periods. A simple test of the proposition is to 

see how often it is violated-- Le., to see how often an A choice (no 

crime) is followed by a B choice (crime). Aggregating all of the data, 

violations occurred in 38% of the relevant cases. Proposition two states 

that if crime is chosen in period t<T and is undetected then crime will be 

chosen in t+ 1. Violations of proposition two occurred in 31 % of all 

relevant cases. The predictions on optimal intertemporal choice do not 

fare well in these experiments. Note that these predictions are 

independent of the risk attitutdes of subjects, so observed deviations from 

the theory cannot be accounted for by variations in risk preference across 

subjects. 

Even though the theory is not a very good predictor of period-by

period choices of subjects in the laboratory, it may still be useful in the 

sense of predicting central tendencies of behavior. To measure the 

average incidence of crime, we define the variable X to be the proportion 

of B choices out of unconstrained choices in a 12 period run of the 

experiment. This X variable was used to asse1SS treatment effects 

(deterrence effects of increases in fines and detection probabilities) and 

to test the predictions of a risk neutral version of the theory. 

Statistical tests were conducted to determim!! whether the treatment 

effects of fines (TR1) and prior probability of detection (TR2) were 
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significant. These tests are reported in table 3. We appeal to asymptotic 

normality of the ratio of mean differences to asymptotic standard errors. 

We tested whether the mean X-value for each of the treatments was 

significantly different from the mean X-value for the baseline 

experiments. We found that there was no significant difference between 

the first and second baseline experiments, so that the baseline results 

were aggregated for testing treatment effects. Each treatment yields a 

statistically significant reduction in the mean X-value (the value of the 

standard normal variate z.05 is 1.645). Thus, both a higher fine and a 

higher prior mean probability of detection yield a significant reduction in 

the average incidence of the crime choice. 

A second set of statistical tests was used to examine differences 

between observed and predicted X-values. The predictions are derived from 

the value-maximizatin problem and assume risk neutrality. Each predicted 

choice for a subject is made conditional on the experience of detections 

and nondetections the subject has prior to the choice. The results are 

reported in table 4. In each of the cases BL, TRl and TR2 the risk-neutral 

predicted mean X-value exceeds the observed mean X-value. Moreover, the 

difff~rence is statistically significant in each case. The risk-neutral 

theory predicts a significantly higher average incidence of crime than was 

actually observed in the experiments. This suggests that observed 

behavior is more likely to be consistent with risk averse preferences than 

wi th risk neutrality. 

VI. CONCLUDING REMARKS 

This paper examines the incentives for firms to violate antitrust laws 

when firms have imperfect information about the probability of detection. 
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A Bayesian model of intertemporal choice was formulated that permitted an 

economic agent to revise his prior estimate of the detection probability 

based on his own criminal experience. This approach yields several 

interesting theoretical results. A crime choice followed by no detection 

of the crime was shown to lead an optimizing agent to commit the crime 

again in the next period. On the other hand, once a decision is made not to 

commit a crime, the crime choice remains suboptimal for all subsequent 

periods. Imperfect information about the probability of detection implies 

that a crime choice has informational value. A crime choice provides the 

opportuni ty to learn more about the probability of detection. As a result, 

deterrence in the dynamic model with Bayesian learning requires a higher 

fine than is necessary in a static model. 

The experimental resul ts were inconsistent wi th the theoretical 

stopping and continuation decision rules for crime choice. There are 

several possible explanations for the failure of this part of the theory. 

Subjects may have made mistakes when entering their choices (Le., pushing 

the wrong button on the computer) or subjects may not have fully 

understood the laboratory environment. The latter problem might be 

mitigated if subjects were experienced. All subjects were inexperienced in 

these experiments. One interesting possibility is that subjects failed to 

update the detection probability according to Bayes rule. We have 

collected data from the experiments that would allow us to test the 

hypothesis of Bayesian learning, as in Grether (1980), but we have not yet 

analyzed that data. The deterrence effects of fines and an increase in the 

prior mean detection probability on the incidence of crime are strongly 

significant. These deterrence effects emerge in spite of the fact that 

subjects faced considerable uncertainty about the true likelihood of 



- 21 -

detection. The risk-neutral theory was found to predict a higher average 

incidence of crime than actually occurred in the experiments. This 

provides support for a hypothesis of risk-averse behavior. 
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NOTES 

1. Bayesian updating has been used in other analyses of the economics of 

crime. See for example Reinganum and Wilde (1983) and Salant (1984). 

2. The result on Dirichlet distributions could be used to extend this 

analysis to cases with more than two outcomes for a criminal. For 

example, crime might be i) undetected or, ii) detected and given a 

small fine or, iii) detected and given a large fine. In this case, if 

the prior distribution over multinomial probabilities is Dirichlet then 

the posterior distribution after observing the outcome of a crime is 

also Dirichlet. Rothschild (1974) uses this sort of result in analysis 

of a consumer's search for the lowest price for a particular 

commodity. 

3. A good explanation of laboratory experimental methods appears in 

Smith (1976). In a recent paper Cox and Oaxaca (1986) report on a 

series of experiments designed to test a stochastic control theory of 

individual job search behavior. The theory they test is similar to the 

present theory in that it requires an individual to make a series of 

choices over time in a£t uncertain environment. 

4. This procedure does not yield a Beta distribution for priors and 

posteriors. However, it does generate well-defined prior and 

posterior distributions over the probability of detection that yield 

the same kind of theoretical results as the Beta distribution. 

5. A computerized experiment has the advantage of greater control (more 

consistency) compared to a noncomputerized experiment. The 

computerized experiment has the possible disadvantage of forcing 

subjects to "trust" the computer to generate the random drawings as 

described. In Grether (1980) the random drawings were made from bingo 
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cages that either a subject or a monitor could see. 

6. Any subject that did not have sufficient earnings to cover the fines 

that might result from a crime choice was constrained to choose no

crime for that periodo 
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APPENDIX 
INSTRUCTIONS 

The experimenters are trying to determine how people make decisions. 
We have designed a simple choice experiment, and we shall ask you to make 
decisions at various times. The amount of money you make will depend on 
how good your decisions are. 

The experiment will proceed as follows. Each run of the experiment 
requires you to make a series of 12 decisions. You will have two choices 
each time you make a decision. If you choose option A you earn $0.25 for 
sure. If you choose option 8 your earnings depend on the outcome of a random 
drawing. If the draw is a success, you earn a positive amount of money. 
If the draw is a failure, you lose money. We will tell you the $-amount of 
gains and losses for the 8 option before each run of the experiment. 

The random drawings will be done by the computer. 
computer uses to make these draws can be illustrated as 

-- Hit the RETURN key to continue with instructions 

The process the 
follows. 

There are two bingo cages on the table next to you. The cages are designated 
as cage X and cage Y. Inside both cage X and cage Yare six balls, some 
of which are marked with an N and some with a G. Cage X has 3 Nand 3 G 
balls. Cage Y has 1 Nand 5 G balls. A G draw from a bingo cage is a 
success. An N draw is a failure. The ball is returned to the cage after 
each draw. All the draws for p particular run of the experiment will have 
a probability of success that corresponds to either cage X or cage Y. 
However, you will not know whether cage X or cage Y is being used for a par
ticular run. The cage to be used is randomly selected by the computer at 
the start of each run. We will tell you the odds that cage X will be chosen 
and the odds that cage Y will be chosen at the start of each run. 

We will now walk through a complete run of the experiment to make sure 
that you understand the procedure. Remember, cage X has 3 N balls (failures) 
-and 3 G balls (successes) and cage Y has 1 N (failure) and 5 G balls (successes 
For run # 0 a series of A and 8 responses were randomly chosen in order 
to illustrate the procedure. 

Hit the RETURN key to continue with instructions --
RUN NUM8ER 0: 

CAGE X - 1 in 3 chance of selection 
CAGE Y - 2 in 3 chance of selection 
Option A yields $0.25 
Option 8 yields a $1.00 gain (G) or $2.00 loss (N) 

PERIOD CHOICE DRAW(IF 8 CHOSEN) PROFIT OR LOSS 

1 A or 87 > A 
$ 0.25 

2 A or 87 > 8 
G $ 1.00 

3 A or 87 > A 
$ 0.25 

4 A or 87 > 8 
N $-2.00 

5 A or 87 > 8 
G $ 1.00 

-- Hit the RETURN key- to continue with instructions 



6 A or 8? > A 
$ 0.25 

7 A or 8? > A 
$ 0.25 

8 A or 8? > 8 
G $ 1.00 

9 A or 8? > 8 
1'1 $-2.00 

10 A or 8? > A 
$ 0.25 

1 1 A or 8? :> 8 
G $ 1.00 

12 A or 8? > A 
$ 0.25 

NOTE - Since it is possible for you to lose money in the experiment, you 
are given $4.00 with which to begin the experiment. 

-- Hit the RETURN key to begin run number one --
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TABLE 1 

NOTATION 

utility as a function of net income 

income from outside opportunity 

monetary gain from crime 

monetary fine if crime is detected 

probability that a crime is detected, 

l/(l+r) - discount factor, O<y~l. 

length of time horizon, l<T<OO 

---~-----
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TABLE 2 

PARAMETER VALUES FOR EXPERIMENTS 
i. 

BL TRl TRZ 

z $1.00 $1.00 $1.00 

Y $0.25 $0.25 $0.25 

e $1.40 $2.20 $1.40 

T 12 12 12 

m 1/4 1/4 1/2 

ql 
1/2 1/2 1/2 

q2 1/6 1/6 1/6 

P
l 

1/4 1/4 1/3 

V (0,0) $5.29 $3.78 $3.85 
1 
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TABLE 3 

STATISTICAL TESTS FOR DETERRENCE EFFECTS 

z 

Impact of lligher Fine (TRl/BL) -3.42 

Impact of Higher Probability (TR2/BL) -4.07 

n = 30 n = 60 a 'b 

a and b denote treatment and baseline, respectively 
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TABLE 4 

STATISTICAL TESTS FOR THE RISK NEUTRAL MODEL 

Experiment X xP z 

BL 0.66 0.85 -6.11 
(n=60) 

TRl 0.48 0.73 -5.81 
Cn=30) 

TR2 0.42 0.64 -4.43 
(n=30) 

X and xP are observed and predicted mean X-values 

z = x - xP • Iri 
8 

x 
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