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Abstract 

In this paper~ we propose and estimate a simple distributed lag model 

to explain a court's pending caseload as a multiplicative function of the 

number of new filings and the average case processing time. Using data 

from Detroit's Recorder1s Court~ we estimate the model on a time-series 

of 24 monthly observations. As it turns out~ the model as estimated fits 

the data very closely. Given its explanatory success~ we suggest that it 

has both theoretical and practical uti11ty--the first in specifying just 

how variations in new filings and case processing times combine to affect 

caseload~ and the second in helping courts (and others) predict the magnitude 

and timing of the effects of such changes as may occur or be expected to 

occur in either new filings or mean processing time or both. 
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Among the most salient of the variables commonly used to characterize 

and explain the operations of courts is the number of cases pending, or 

caseload. Descriptively, it is a measure of the burden of work the court 

has to shoulder (in which role, it is often normed against the resources 

available--principally, the number of judges hearing cases--or weighted 

by complexity, as defined by types of cases). Other uses are evaluative. 

Caseload is a frequent criterion of court performance. When courts seek 

to demonstrate their accomplishments (as, for example, to legislatures), 

they commonly point to graphs showing decreases in the "backlog" of cases, 

which is to say, caseload. If, on the other hand, the backlog is on the 

rise, it may be cited as evidence of the inadequacy of present resources 

relative to demand, and hence of the need for more resources. 

Still other uses are explanatory. Caseload has long been presumed 

to have a major impact on various other aspects of court performance and 

behavior, including the attractiveness of plea bargains offered, the propor­

tion of cases ending in pleas (and on the other side of the same coin the 

proportion of cases going to trial), and the length of time it takes the 

court to process a case. The actual evidence is mixed,l and much of it 

methodologically flawed. Many of the relevant studies are entirely or 

essentially bivariate, many of the samples are hopelessly small, the depen­

dent variable is not always the number of cases actually pending, and so 

on. But enough of the results are positive, and positive enough, to suggest 

that caseload does have some, at least, of the effects traditionally ascribed 

to it--if perhaps not all of them, or not under all conditions, or not 

to the degree once generally thought. 
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Explaining Caseload 

That is as much as we need say about caseload f s effects on other 

variables 2--enough merely to establish that it is a variable worth looking 

at, and its own antecedents worth looking into. Here, our concern is with 

the explanation and prediction of caseload, not the other variables it 

may help to explain and predict in turn. 

2 

In a rather distant way, caseload is of course a function of the legal 

system and the social, economic, and technological environment in which 

it operates, since they affect both the rates at which people engage in 

various behaviors and the behaviors that get defined as criminal or 

actionable. In short, these factors affect the potential inflow of cases, 

and thus, other things being equal, the number of cases on the docket. 

Previous attempts to account for caseload have drawn upon variables of 

this general sort (Goldman et £1., 1976, and Casper and Posn2r, 1916). 

But here we shall focus on more proximate causes. We take the number of 

new cases arriving as given, ignoring the prior variables th.at may influence 

caseload through it. 

The Model 

At this level of proximity, there are exactly two variables on which 

caseload (abbreviated hereafter as C) depends. One, as we have already 

indicated, is the number of cases arriving (call it A). The other is the 

rate at which the court has managed to dispose of the cases arriving (call 

it P, for processing time). The effect of each should be spread over the 

recent past. The greater the number of recent arrivals, and the less rapidly 

they are handled, the larger the accumUlation of cases pending should be. 

Moreover, these effects should be nonadditive. 3 The smaller the number 

of cases arriving, the less it should matter how fast they are processed, 
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and the faster they are processed, the less it should matter how numerous 

they are. At the extremes, if no new cases arrive, the rate at which they 

are (or would be) processed is irrelevant, and, if all new cases are 

processed instantaneouslv, the number arriving is irrelevant. 

This is more than merely plausible. The relationship is almost an 

accounting one, giving the "Accounting" of the title, which is used there 

3 

in the extended and more usual sense of explanation, something of its literal 

meaning as well. Let us denote the caseload at the end of some given 

time-period t--for consistency with the analysis below, let us say a given 

month, although it could as easily be a day, a week, or a quartel~--by Ct , 

We may suppose that we have data on series of T time-points in all, so 

that t=l ,2, ... ,T. Similarly, we may denote the number cases arriving during 

any previous month, say, the ith one before, by At - i , where i=O}l, •.. ,t. 

Finally, let us suppose--unrealistically, of course--that every case arriving 

during the (t_i)th time-period takes the same time to be processed. Let 

us denote that time as Pt '. 
-1 

Now consider what would happen to the caseload Ct if the number of 

cases arriving during the ;th prior month At - i were increased by some 

number--call it b.A. If P t-i < i (where i is the time difference between 

t and t-i), all the cases arriving in month t-i will have passed out of 

the system by month t regardless, so that the addition of b.A or any other 

number of cases makes no difference to Ct. On the other hand, if Pt - i ~ i, 

the cases introduced in month t-i will still be on the docket at the 

beginning of month t. In that event. b.A additional cases arriving in month 

t-i will increase Ct by b.A cases, In short, there is either a zero or a 

one-to-one increase in Ct , depending on the processing time Pt - i , 
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Next consider the effect of a change in Pt ., say, by ~P months. 
-1 

If Pt ' < i ~ Pt . + ~P, so that cases introduced in month t-; would have 
-1 -1 

passed from the docket by the beginning of month t before the increase 

but would still be on it after, the increase would augment Ct by At - i , 
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the number of cases involved. But if Pt . ~ i, so that the cases introduced 
-1 

in month t-i would still be on the docket at the beginning of month t either 

with or without the increase in Pt" or if i~Pt' +~P (which implies 
-1 -1 

i< Pt - i ), so that cases introduced in month t-i would be over and done 

with either with or without the increase, the effect of the increase on 

Ct is obviously O. In short, the effect of variations in prior processing 

times is either zero or the number of cases involved (At_i)' depending 

on what the processing time is before it is v~ried (Pt - i ) and on the size 

of the variation (~P). 

These relationships are instructive, but not really useful. Even if 

the assumption of uniform Pt - l were accurate, they would only be useful 

postdictively, as a means of assessing the hypothetical impact of variations 

in past arrivals or processing times. Since we cannot know how long cases 

presently arriving will take, we cannot generate predictions as to what 

would happen to the caseload if they were more or less numerous or took 

longer or shorter to complete. Another problem is that for a given lag 

i the effects of variations in Pt - i and At - i on Ct will be different for 

each t, which makes for unparsimonius and unwieldy explanation. Finally, 

cases introduced in a given month do not all have the same processing time. 

To allow processing times to vary would make the accounting unwieldier 

still. But not to allow it maKes the accounting inaccurate. 

Perhaps the best solution, if we are interested in prediction and 

more concise explanation, is to substitute the average processing time 
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in the (t_i)th period (call it Pt .) for Pt . and to develop a model that 
-1 -1 

essentially averages the effects of both Pt - i and At - i over a number of 

time-periods, i.e., over a number of values of t. How much, on the average, 

can Ct be expected to increase when At - i increases by X cases, or when 

Pt - i increases by Y days? A model that can tell us that can enable us to 

predict and understand variations in caseload in the near future. 

This argument suggests a tldistributed lag" model. Clearly, the effects 

of both A and P must occur either "contemporaneouslyll (given that Ct is 

defined as of the end of the month) or with some lag. Clearly, too, the 

effects must be spread or distributed over a number" of lagged observations. 

The number of arrivals will matter for several previous months, and so 

will speed with which they are processed. 

Together, these considerations lead us to a distributed lag model 

in which the variables A and P are combined multiplicatively. Specifically, 

the model is 

where a and the S's are unknown parameters to be estimated, M is the lag 

before which A and P have no effect, and u is an unmeasured disturbance 

summarizing the causative factors of which the model takes no explicit 

account. 4 (We assume that they are uncorrelated with the At-;Pt-i' so that 

their having been omitted is not an obstacle to estimation.)5 

Under this simple model, the effect of the number of arraignments 

in the (t_i)th month is 

(2) 13. P
t 

. 
1 -1 

and the effect of the mean processing time in the same month is 



(3) a.A
t 

., 
1 -1 
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where, in both cases, i=O,l, ... ,M. Provided that ~i > 0, each quantity is 

both positive and an increasing function of the value of the other variable 

in the same month. 6 

The Data 

The data here come from Detroit Recorder's Court--the municipal criminal 

court of Detroit--and span the two-year period from April, 1976 through 

March, 1978. Among other things, the data include the number of initial 

arraignments (lion the arrest warrant") each month and the number of cases 

(of defendents, actually) on the docket as of the end of the month~ both 

taken directly from pretabulated court records. For our purposes, however, 

the data from the records are not sufficient. The caseload, as Recorder's 

Court reckons it, includes only those cases which have made it past the 

preliminary examination. This means that the "arrivals" variable is most 

appropriately the number not of the initial arraignmen~s lion the arrest 

warrant" but of the post-preliminary examination arraignments lion the infor-

mation." But one deficiency of the pretabulated records is that they afford 

no count of the latter. Another is that they do not include anything in 

the way of case processing time. 

Nonetheless, A and P can be estimated. The data also comprise a (random) 

sample, stratified by month, of all of the cases begun within the two-year 

period, and two of the case-wise variables recorded are the length of time 
II 

to completion and whether or not the case is disposed of before or at the 

preliminary examination. Since the sample size is adequately large--about 

85 cases each month--we may readily compute estimates of the monthly mean 

processing time and of the number of arraignments each month, the former 

directly, and the latter as the number of arraignments on the arrest warrant 
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times the sample proportion surviving the preliminary examination. 

We end up with a monthly time-series of 24 months. The variables l 

minima, means, and maxima over this period (and over the somewhat shorter 

period on which we actually estimate the model--see below) are given by 

Table 1. In passing, we may note that this period saw the introduction 

of a number of structural innovations that were specifically designed to, 

and did, reduce processing times, with the result that both processing 

times and caseloads were as a rule substantially lower toward the end of 

the period than toward the beginning. Thus, since the sample on which we 

estimate the model consists of the last 17 observations, the means and 

minima of C and P are lower there than in the sample as a whole. 

Table 1 About Here 

Estimation 

7 

The estimation of equations such as (1) ;s typically hindered by the 

presence of extreme col linearity among the lagged values of the explanatory 

variable: in this model, the product term Zt . = At 'Pt " which 1 for pur--1 -1-1 

poses of estimation, is most conveniently treated as a single variable 

at each i. The variables Zt' Zt-l' ... Zt-M are in general so many and 

so similar that it is impossible to distinguish their individual effects 

very wel1. But by ~dopting some simplifying assumptions about the SIS, 

we can reduce the number of regressors and the col linearity among them. 

Here, we assume that the SIS can be sufficiently approximated by a polynomial 

in the lags (in i) of some pre-specified degree. This assumption, which 

results in what is known as a "polynomial" or "Almon" lag scheme (after 
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Almon, 1965; see also, e.g., Johnston, 1972 or Pindyck and Rubinfeld, 1981), 

has the advantage of being relatively flexible, in that it permits various 

patterns of effects over varying lags. 

Admittedly, the results may to some extent depend on several additional 

and mostly nontheoretical specifications; the length of the maximum effective 

lag M, the degree--call it F--of the polynomial that approximates the SiS, 

and the further restrictions, if any, that are placed on the latter. Of 

necessity, the choice of M and F is generally made on empirical grounds. 

First, M ;s generally set so as to maximize the proportion of variance 

explained, but without excessive cost in degrees of freedom, col linearity, 

or plausibility of results. Here, the proportion of variance explained 

is maximized at M=6, but is only trivially (.004) lower at M=7, where the 

col linearity is substantially lower and the precision of the estimates 

correspondingly greater. Thus we set M=7. Once given M, the choice of F 

is a matter of whether the necessarily higher proportion of variance 

explained with successively higher Fls is statistically worthwhile, a 

criterion that leads here to F=2. We may note that F=2 compels the pattern 

of effects over i to be either flat or more or less U- or inverted-U-shaped, 

with at most one turning point. 

That leaves the question of whether to constrain the SiS, and, if 

so, how. A common practice is to set S_l and/or SM+l equal to O--which 

in the present model would be to assert that the values of the explanato~x 

variables in the future (at times t+l and after) and/or their values more 

than M months in the past (at times t-(M+l) and before) have no effect 

on caseload. These have a certain intuitive appeal, but are also capable 

of exerting a heavy--critics say excessive--influence on the estimates 

of the other, nonzero effects. With F=2, the pattern of effects is forced 
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to be symmetrical, with Si = SM-i and the peak (or nadir) pre~isely in 

the middle. Thus, in the interest of letting the data speak more nearly 

for themselves, we leave the model unfettered. The one constraint we do 

adopt is less confining, and is in fact suggested by the data themselves. 

Without constraints, the estimate of So is anomalously but insigificantly 

negative, the likeliest inference from which is that So is some small posi­

tive number. Thus strictly as a means of tidying up the results, we do 

impose the one restriction that SO=O. Since the unconstrained estimate 

is insignificantly different from 0 anyway, the effect on the rest of the 

estimates is slight. Indeed, no reasonable specification--of M, of F (for 

which F=2 is the only reasonable choice), or of the values of the SIS (not 

even S-l = SM+l = O)--produces results too greatly different. 

The final choice to be made is of estimator. This is not an open-a1d-­

shut matter either. As always with time-series data, one cannot but suspect 

the disturbance of being autoregressive and should usually make statistical 

allowances if it is. Here, however, it is not clear whether disturbance 

is autoregressive, or if so in what way. The relatively small number of 

observations--the lagging of Z up to i=7 reduces the effective N from 24 

to l7--makes such determinations difficult. The evidence of autoregression 

is weak and murky. The Durbin-Watson test for the first-order variety ;s 

inconclusive (DW=l .34). And although the correlations between (the ordinary 

least squares-generated estimates of) ut and ut - i are not tiny (averaging 

a bit below .3) and seem to display the damped sinusoidal pattern charac­

teri~tic of second- or higher-order autoregreSSion, they are neither 

individually nor collectively significant. Similarly, some of the partial 

outocorrelations are not really small, but none is significant either. 7 

lven if we were to conclude on this tenuous evidence that the distur­

bance is autoregressive, it would still be unc1ear what, if anything, to 
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do about it. The usual Y'emedy is to use generalized instead of ordinary 

least squares to estimate the equation (GLS instead of OLS). But the ~dv8n­

tages of GLS are only asymptotic, emerging only as the sample size becomes 

infinitely large. Whether they would emerge here, given the limited number 

of observations and the apparent mildness of whatever autoregression there 

may be, is uncertain (see Rao and Griliches, 1969). Furthermore, the partial 

autocorrelation function rapidly runs out of degrees of freedom, making 

the specification of the order of the autoregression involved a more than 

usua1ly risky business. If it is not accurately specified, the move from 

OLS to GLS may do more statistical harm than good. The results, in this 

instance--we have in fact seen them for both estimators--do not differ 

too dramatically.8 But, given, as we have noted, that the data do not exactly 

cry out for a correction for autoregression, we are likely, we think, to 

do best by opting for OlS. 

Results 

The estimates we thus obtain are displayed in Table 2, along with 

their estimated standard errors9 and the R2. 

Table 2 About Here 

The first thing to observe is the size of the R2. At .975, it could 

hardly be larger. The model as estimated explains the variation in caseload 

almost perfectly. True, the smallness of the sample does make explanation 

easier, but even the ~adjusted R2" (where the adjustment is in essence 

for the smallness of the sample in relation to the number of independent 
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parameters)lO is fully .972. This is high even for time-series data, though 

given the near-accounting relationships behind the model not entirely 

surprising. 

Consider next the estimates of the coefficients,ll In accordance with 

(2) and (3), these reveal the impact of any given change in the value of 

either of the explanatory variables, for any given value of the other, 

in each and any of the months preceding. If, for example, the number of 

arraignments is a constant 1000, the current caseload can be expected to 

increase by 45 cases for each day's increase in the meaTi processing time 

of the cases begun in the month before, by 78 cases for each day's increase 

in the mean processing time of the cases begun two months before, and so 

on, By the same token, the coefficients also reveal the effect of a change 

in the value of either of the explanatory variables (again for a fixed 

value of the other) in a given month on the caseload in the same or any 

subsequent month. Thus, if the number of arraignments is again a constant 

1000, and the mean processing time in a given month were to increase by 

one day, the caseload could be expected to increase by 45 cases at the 

end of the next month, by 78 cases at the end of the month after that, 

and so on. Notice by the way, that the coefficients trace out an essentially 

inverted-U-shaped pattern as they vary over the length of the lag involved. 

The effect of each of the explanatory variables, gi.ven a constant value 

of the other, is smallest in both the most immediate and most distant past, 

reaching its peak roughly mid-way between. 

In a sense each variable's effects can be summarized by caseload's 

"long-run response" to it. Adapting the usual definition to this multiplica­

tive model, this is simply the amount of change that can be expected to 

occur in response to a constant unit change, at every effectual lag, in 



the value of the one explanatory variable, for a given, constant value 

of the other. Thus the long-run response to the number' of arraignments 

is 

7 
(4 ) ( 1: Si) P, 

;=0 

while that to the mean case processing time is 

7 
(5) ( E f\) A, 

;=0 

where P and A (note the absence of a subscript) are constant values of 
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the Il other" variable. For a given value of the other variable, the long-run 

responses can be estimated by simply substituting estimated for actual 

SIS in (4) and (5). This gives, as the long-run response to arraignments, 

(.0607) P, and, as the long-run response to mean processing time, (.0607) A. 

Let us consider some p1ausible numbers. Suppose, for example, that 

the number of arraignments increased by 100 in everyone of the preceding 

months. This is only a 12 percent increase over the average monthly level 

in this court during this period, and is thus by no means so big as to 

be at all unlikely. If the average case processing time was, say, 44 days 

(which was the shortest we observed in the period we studied), the long-run 

response would be (100) (.0607) (44) = 267. In other words, we ought to 

expect an increase of 267 cases in the caseload as a result. This, from 

a practical point of view, ;s in the nature of a lower bound. Mean processing 

times much shorter than 44 days are possible but not likely. If, on the 

other hand, the court averaged as much as 158 days per case (the highest 

monthly average we observed), the additional 100 cases per month in the 

prrceding seven months would result in an addition of 959 cases to the 

caseload. 



Or, again, consider the long-run response to mean processing time. 

Suppose the mean processing time increased by 10 days per case in each 

of the seven months before. This is again a shift of roughly '\2 (actually, 

13) percent of the the mean over the entire period, and not unlikely to 

occur. If the number of arraignments each month were a constant 543 (the 

lowest number in this period), the result would be another 330 cases on 

the current docket. If, at the other end of the range of likely responses, 

the number of new cases each month were at its observed maximum of 1133, 

the result would be instead another 688 cases. 

Still other estimates can be formed for other combinations of changes 

in the one variable and values of the other. But the main points to be 
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made are, first, that the model enables one to form such estimates by simply 

plugging in the appropriate values of A and P, and, second, that even very 

modest changes in A and P have a very substantial impact on caseload. 

Summary and Conclusions 

To sum up, then: we have developed and estimated a simple, theoretically 

appealing, and empirically successful model of caseload as a multiplica­

tive, lagged function of the number of cases arriving and the speed with 

which they are processed. The effect of each is (a) substantial, though 

spread over a number of lags; (b) dependent, at a given lag, on the value 

of the other at the same lag; and (c) at its peak in the middle temporal 

distance. 

The major practical use of this model is to generate predictions of 

caseloads. Given estimates of the parameters, one need only plug in the 

actual or anticipated (or feared Of hoped-for) mean processing times and 

numbers of new cases in each of a series of seven consecutive months in 

order to project the caseload at the end of the eighth. 12 In similar fashion, 
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the increments or decrements that would occur in response to changes in 
, . 

the number of arraignments or mean processing time can also be estimated. 

This is true both of transient changes occurring in only a single month 

and of long-term changes occurring over any subset of the preceding months. 

For any such change(s), it is possible to trace the time-path of the result­

ing changes in caseload, and thus to see,when it peaks and what it is at 

the peak. Such estimates should enable a court to anticipate its workload 

more accurately. And to control it, to the extent that it can control the 

number of incoming cases or (more likely) the time it takes to dispose 

of them. 

Of course, we have estimated the model for one possibly atypical court 

only. In other courts, the number of lags over which both arraignments 

and processing times have their effects can be expected to differ. Similarly, 

the magnitudes of tre effects will doubtless vary from court to court and 

even, perhaps, from period to period within this court. One would not want 

to use these data to make predictions for other courts, or even for this 

court too far in the future. But judging from the R2, the model seems to 

approximate an averaging out of the underlying near-accounting relationships 

very nicely, which suggests that it should be predictively useful wherever 

appropriate data are available. 
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lsee, on caseloadls relation to plea bargaining and the relative 

frequency of trials, Feeley (1979), Heumann (1975, 1978, and 1979), 

Nardulli (1979), Rhodes (1978), and Hausner and Seidel (1979); on its 

relation to the decision to prosecute, Rhodes (1976); on its relation 

to bail-setting policy, Fleming (1979) and Feeley (1979); on its relation 

to sentencing, Feeley (l979) and Nardulli (1979'); on its relation to 

court IIproductivity,tI Gillespie (1976); and on its relation to case 

processing time, Gillespie (1977), Church et~. (1978), Martin and 

Prescott (1981), and Luskin and Luskin (1983). 

2Except for n. 5 below. 

3Rough1y speaking, the effect that one variable has on another ;s 

the amount of change that can be expected to occur in the one as a result 

of each unit of change in the other, other things being equal--i.e., 
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again roughly, the partial derivative of the one with respect to the 

other (see Luskin, 1983). Accordingly, the effect of arraignments on 

caseload is the number of additional cases we can expect there to be 

on the docket as a result of each additional arraignment, and the effect 

of case processing time is the number of additional cases we can expect 

there to be as a result of each additional day the court takes, on the 

average, to process its cases. 
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4This model bears a strong resemblance to the queuing theory equation 

known as IlLittle's formula. 1I Specifically, Little's formula is L=;\W, 

where L in this context denotes the expected caseload, A the expected 

number of arraignments, and W the expected processing time. (See Hillier 

and Lieberman, 1980, eg.) Plainly, L corresponds to C, ;\ to A, and W 

to P. But there are differences too. L, ~, and Ware in the nature of 

expected values, whereas C, A, and P are not, and partly because of that 

(1) is stochastic (i.e., includes a disturbance), whereas Little's formula 

is not. Further, Little's formula is derived--indeed L, A, and Ware 

defined--on the assumption of a "steady-II or equilibrium state. In (1), 

in contract, the time-invariant quantities L, A, and Ware replaced by 

the time-subscripted C, A, and P, with the effects of the second two 

on the first allowed to vary with the time elapsed, and apportioned over 

a set of lags. 

5We are of course aware that mean processing time may depend on 

the caseload as well as vice versa (see the discussion in Luskin and 

Luskin, 1983). Given that Ct indicates the caseload at the end of the 

tth month, Pt may be a function, among a good many other things, of Ct -1. 

Nevertheless, we consciously ignore this additional equation, and thus 

avoid the complications that the combination of multiple equations with 



lagged endogenous variables and autoregressive disturbances, not to mention 

nonadditivities in the endogenous variables, would bring. We feel justified 

and tolerably safe in doing so because the dependence of processing times 

on caseloads seems to be slight (Luskin and Luskin, 1983), with the result 

that the system consisting of both equations is practically recursive. 

6Admittedly, these effects and the equation that implies them do 

not quite capture all the subtleties of the near-accounting relationships 

described above. But to judge from the R2 below, the approximation of 

an averaged-out version of them must be close. 

7The .3 figure and the tests of significance are based on the auto­

correlations between ut and ut - l through ut -4 only, in keeping with the 

rule-of-thumb of considering only the first N/4 elements of the series 

(Hibbs, 1974), For larger i, the pattern is much the same, however. For 

more on these sorts of diagnostics, see Hibbs again. 

8The GLS R2 (defined as the squared correlation between the predicted 

and actual values of caseload) differs by only .007, and the GLS and 

OLS estimates of the coefficients show broadly similar profiles, The 

biggest differences are that the GLS estimates rise and then fall a bit 

more sharply with increasing lags and that the GLS estimate for 7 is 

substantially smaller (in fact, insignificant at the .05 level). The 

long-run response is a trifle larger, at .0639. 

9Estimated as in Johnston (1972). 

10For this model, F+l less the number of additional constraints 

on the B's: here, since we constrain 80=0, (F+l)-1=F=2. 

llOespite its size, the estimate of the IIconstant term'l (about 

which we shall not bother to comment apart from this note) is a small 

fraction of its standard error, and thus statistically indistinguishable 
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· . 
from zero. This, too, is an attractive result, since, under the purely 

hypothetical scenario in which the court either received no additional 

cases or processed all the cases it received instantaneously in each 

of the previous months, we should expect the caseload, which in that 

18 

event would simply be a, to be O. Not that it would tell very much against 

the model if atO. That would merely mean that the actual regression hyper­

surface bent toward the origin as it approached it, and hence away from 

the regression hyperplane of our linear model--i.e., that the model did 

not apply so far outside the range of values we actually observe. 
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