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ABSTRACT

There are many organizations which provide om—site
servicas that must be scheduled on an adhoc or real-
time basis. Increasingly, the dispatch or
communication centers in these organizaticns are in-
stalling on-line, computer-aided dispatch (CAD)
systems. Given timely information regarding the state
of the system (e.g., how many response units are busy,
how many calls are in gueue awaiting service, etc.),
together with appropriate assumptions concerning the
call arrival and service patterns, a model-based,
response time algoritim could be developed and coded in
a CAD system. Such a computer-assisted response time
(CART) algoritim is developed herein. The algorithm
can be straightforwardly implemented in an existent CAD
system, and would support the call-taker in making an
appropriate decision regarding the response time to
each call for service.

L.  INTRODUCTION

There are many organizations which provide on-site
services that must be scheduled on an adhoc or real~
time basis; they include services in both the public
{e.g., police, ambulance, fire, etc.) and private
(e.g., delivery/pick-up, repair/maintenance,-etc.)
sectors. Increasingly, the dispatch or commnication
centers in these organizations are installing on-line.
computer—aided dispatch (CAD) systems. Yet, in reply-
ing to a call for service, the call~-taker in such a
modernized center is still being nor—specific in advis-
ing the caller as to when a response unit will be on-
site to handle the call. Certainly, given timely
information regarding the state of the system (e.g.,
how many response units are busy, how many calls are in
queue awaiting service, etc.), together with ap-
propriate assumptions concerning the call arrival and
service patterns, a model-based, response time algo-
rithm could be developed and coded in a CAD system.
Thus, when a call arrives and is entered into the CAD
system, a corresponding response time can be estimated;
the call~taker can then’ transmit this estimate to the
caller. Moreover, because calls can be generally clas~
sified as being gritical (i.e., requiring an immediate
response} or non-critical (i.e., not requiring ai. im
mediate response), formal dispatch procedures can also
be identified for handling these two types of calls in
ar optimum manner, given the available resources. A
family of such procedures is modeled in the computer~
assisted response time (CART) algorithm that is
The algorithm can be straightfor~
wardly implemented in an existent CAD system, and would
support the call-taker in making an appropriate deci-
sion. regarding the response time to each call for
service.

In order to provide a context within which to view
CART, we describe the problem that motivated this re—
search —— a problem in the police dispatch area.
Typically, as Tien and Valiante note [1979], citizens
who call for police service are always being advised
that a "patrol car will be right out", even though con-
siderable delays may occur either because no patrol
cars are available for dispateh, or because the few
cars that are available are being reserved for dispatch
to more crtical calls for service, or because the car
that is assigned to the geographic sector in which the
call originates is busy. Whatever the reason, citizens
are being needlessly frustrated. Certainly, the
frustration can be mitigated, if not eliminated, by
formally advising citizens of potential delays.
Indeed, because citizen satisfaction is a function of

expectation [Ransas Clty Police Department, 1977; Tien
et al., 1978; Tien and Valiante, 1979] and because some
86.1 percent of all calls for police service are non-
critical in nature [Tien et al., 1978; Sumrall et al.,
15880], a considerable portion of police demand can be
"managed” and, more specifically, a formal delay proce—
dure is one approach for managing such demand.

In 1976, the Wilmington Department of Police
(WDP) , Wilmington, Delaware, implemented a formal delay
procedure; that is, when all patrol cars were busy,
callers requesting service for a non-critical matter
were told by the call-taker to expect a 30-minute
delay. As an element of both the Wilmington split-
force patrol experiment [Tien et al., 1978] and the
Wilmington management of demand program [Cahn and Tiern,
1981}, this formal delay procedure was judged to be

very effective; the citizens' attitude toward a delay -

- of which they were formally advised —— is best
summarized by one of the telephcne survey respondents
who said, "I am a taxpayer. If it helps to keep my
taxes down, then I'm all for the police to take thei:r
time in showing up to non~emergency situations — but I
would like to be told of such a delay so that I'm no=
waiting around for them" [Tien and Valiante, 1979, .
23].

It should, however, be noted that Wilmington's
formal delay procedure is fixed or static; that is.
callers receiving a formal delay are each advised of
the same constant delay -- a 30-minute delay.
Certainly, this need not and should not be the case.
As alluded to earlier, the expected delay for a non-
critical call is variable and is dependent or
conditioned on the state of the system, together with
appropriate assumptions concerning the call arrival and
service patterns. Thus, what is needed is a dynamic
(i.e., state or queue dependent) procedure for delaying
responses to non—critical calls. Moreover, the proce-
dure must simultaneously satisfy two conflicting
objectives: first, the probability of a critical or
high priority call being delayed must be small, and,
second, the delay of a non-critical or low priority
call must not be excessive.

A family of such dynamic delay procedures are
modeled and discussed in Section II, followed by a
review of the corresponding algorithmic developments  in
Section III and simulation results in Section IV. Some
concluding remarks are contained in Section V.

1L, Model

There are, of course, several approaches to model-
ing a dynamic delay procedure that must simultaneocusly
satisfy the two above stated objectives. However,
after reviewing the literature and considering practi-
cal requirements of implementation, we decided on the
following dynamic delay procedure. Simply stated, if,
in temms of the police response envirorment, the call-
taker receives a high priority (i.e., critical) call
and at least one of the N total patrol cars is not
busy, then the call-taker would inform the caller that
a patrol car will respond with an expected (with, say,
95 percent confidence) response time equal to the ex-—
pected travel time. If, on the other hand, there is no
free patrol car, then the high priority (BP) call is
quened in the HP queue and the caller is advised of an
gxpected response time equal to the expected delay time
in the HP queue and the expected travel time. If the
call-taker receives a low priority (i.e., non-critical)
call and n, the number of busy patrol cars, is less
than some parameter R, then the call-taker would inform
the caller that a patrol car will respond with an ex-
pected response time equal to the expected travel time.
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ir, on the other hand, n > R, then the low priority
(LP) call is queued in the LP queue and the caller is
advised of an expected response time equal to the ex~
pected delay time in the LP queue and the expected
travel time. Whenever a patrol car becomes free, it
attempts, first, to service the next HP call if there
is any; second, if n < R or if the LP queue length is
greater tharn some parameter M, it attempts to serve the
~ext LP call, if there is any; otherwise, it remains
tree until the next call arrives.

Notationally, the delay component of the abowe
described procedure can be defined as D(N:R.M:Q.Q),
where

N = total number of patrol cars;

R = cut~off for the number of busy patrol cars; if
the number of busy patrol cars is equal to or
greater than R, then only HP calls are served;

M = cut-~off for the number of calls in the LF
queue; if the number of calls in the LP queue
is greater than ¥, then the R cut-off dees not
apply and LP calls are served as long as there
is no HP calls waiting to be served and as
long as there is at least one free patrol car;
ard

Q = designation that the calls are queued (and
served on a first~come, first-served basis) —
the first "Q" indicates that HP calls are
queued, while the second "Q" indicates that LP
calls are queued. (In some sitvations, an "L"
designation is employed for the HP calls to
reflect the fact that these calls are "lost”
if they cannot be served immediately.)

It can be seen that the procedure is guite mindful
of the need to have enough patrol cars available to
respond to high priority calls (i.e., the R cut-off),
while at the same time not allow the low priority calls
to be gueued for too long (i.e., the M cut-off).
Additionally, we note that i) when M ==, the R cut—off
is always in force; and ii) when ¥ = 0, the R cut—off
is always turned off and the procedure is equivalent to
a procedure with R = N and M == . Moreover, the proce-
dure actually describes a family of similarly
structured procedures, depending on the particular
values of the R and M parameters.

In an initial attempt to develop a tractable model
of the procedure, as is the case in Section III, the
following three assumptions can be made. First, the
arrival of HP and LP calls are independent, homogeneocus
Poisson processes with average rates }‘1 and DY

respectively. Second, all calls within each priority
are served on a first-come, first—served basis, with
the 'HP calls being served before the LP calls. Third,
each patrol car takes an exponentially distributed time
-- with average 1A - to serve a call. Fourth, each
call requires only a sirgle patrol car response. While
the first two assumptions are gquite appropriate
{Larson, ‘1972; Taylor, 1976; Green, 1978], the latter
two assumptions do not hold in general; that is, the
service time is less ramdom then an exponentially dis-
tributed random variable and calls for service do
sometimes require a miltiple car response. These two
assumptions are appropriately relaxed in Section IV.
Not surprisingly, the related models in the
literature are, for the most part, also based on the
four stated assumptions. For the sake of brevity,
Exhibit 1 contains a summary of our literature review;
it focuses on four distributions across three sets
(i.e., no cut-off, one cut-off, and two cut-off) of
queueing models, with each set containing both the
situations of HP loss and HP queue. Two important
points should be made concerning Exhibit 1. First, al-
though four distributions are considered in the
exhibit, the real purpose of our effort is to obtain
the first distribution (i.e., distribution of condi-
tional delay times); nevertheless, for purpose of
validation, we also obtain the second distributiocn
{i.e., distribution of steady state probabilities) in’

order to derive the third distribution (i.e., distribu-
tion of unconditional delay times), which can likewise
be directly obtained -- through a transform relatiom .
ship of Little's {1961} formula -- from the fourth
distribution (i.e., distribution of busy servers). The
fact is, however, that, except in the simple situation
of no cut-off, the literature does not address cordi~
tional delay times; instead, the literature
concentrates on unconditicnal delay times, which is the
reason we also obtain these times -- for purpose of
validation. Second, Exhibit 1 also indicates that the
literature is devoid of any reference to the
D(N;R,M;Q,0) model. In sum, the focus of our research
has not been dealt with in the literature; conse-
guently, our results are not only valuable from a
decision support pergpective, but alseo constitute &
contribution to the gqueueing literature.
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Exhibit 1. Summary of Literature Review

III. ALGORITEVS

The state of the D(N;R.M;Q,Q) model can be denoted
by three variables; that is, (n,h,2), where n is the
number of busy servers in the system, h is the HP queue
length, and ¢ is the LP queue length. The conditional
delay times for the HP calls or customers in the
D(N:R,M;Q,Q) models are exactly the same as those in
the D(N;R,=;Q,Q) model. More specifically, because of
the prioritized first-come, first-served queue dis-
cipline, the conditional delay time distribution of the
kth customer in the HP queue at state (N,h,t) is Erlang
of order k distributed with scale parameter equal to
N.. (Obviously, if n < N, then there would be no HP
queue and an arriving HP call would experience no
delay.)

The LP conditional delay times are considerable
more difficult to obtain. Indeed, these times cannot
be analytically derived; instead, we have been able to
develop several numerical algorithms to approximate the
first and second moments of these times, as well as the
systemwide LP unconditional delay time. These algo-
rithms are guite invelved and lengthy; they are not
contained herein but may be in found in Chou [1984].
In brief, the first algorithm includes 22 steps and is
focused on finding LD?n,h,z;k;s), the Laplace or s
transform of the conditional delay time of the kth cus~
tomer in the LP queue at state (n,h,i). Several




insights contributed to the development of this key al-
gorithm. First, our scritiny of the underlying state
transition diagram of the D(N;R,M;Q,Q) model helped us
both to group similar states and to sequence the steps
of the algorithm. Second, we recognized that one and
only one of the following three events could occur at
any instant in time: i) a server cumpletes a service
and beccmes available for assignment; ii) an HP cus-~
tomer arrives; or iii) an LP custoamer arrives. Third,
we noted that, unlike the one cut-off situation, an ar-
riving LP customer may have an effect on the
conditional delay times of those customers who are al-
ready. in the LP queue. More specifically, an arriving
LP customer would have i) an effect on the conditional
delay times of all customers in the LP queue if 2 < M;
ii) no effect on the first (2-M) customers in the LP
gueue if 2 > M; apd iii) and effect on the remaining M
customers (i.e., the (L-M+l)st to the th customer) in
the LP queue if ¢ > M. Consequently, if D{(n,h,2;k)
dehotes the conditional delay time distribution of the
kth customer in the LP queue at .state (n,h,%), then
D{N,h,2;k) = D{N,h,¥;k) for h = 0,1,2,...; (1)
L= M+k,l‘§+k+l,...;
k= lpZ'nso
Fourth, we showed that the following property holds for
1<kg2:
LD(N:-h,2skys) = Wis) LD(N,r-1,%7k;8) ~ O

uniformly for all se[0,1] as h+=, (2)
where
Wis) = [(s + Mu+ ) -
2
(s + Nu+ A - 4Nuxlj/2 N {3)

This property provided a means to approximate the in-
finite state structure of the D(N;R.M;Q,Q) model.

The Laplace transform algorittm served as a basis
for the subsequent develcpment of algorithms for com
puting ED(n,h, 2;k), the expected value of the
conditional delay time of the kth customer in the LP
queue at state (n;h,2), and SD(n,h,2;k), the standard
deviation of the conditional delay time of the kth cus-
tomer in the LP queue, given the system is at state
(n;h,2). In order to illustrate these algorithms, the
ED and SD values are noted in Exhibit 2 for the
D(25;22,3;0,Q) model. A number of interesting observa~
tions emerae from Exhibit 2. First, as expected, the
busier the system, the longer the LP delay. For ex~
ample, ED(23,0,1;1) = 2.62 > ED(22,0,1;1) = 1l.42.
Second, surprisingly, the ED and SD valueg are depend~
ent not only on the number of busy servers and the
queue position but also on the LP queue length. In
particular, the longer the LP queue, the shorter the LP
delay; this is because of the likelihood of the M cut-
off being triggered when the LP queue length is longer.
For example, ED(22,0,3;1) = 0.91 < ED(22,0,2;1) = 1.27
< ED(22,0,1;1) = l.42. Third, in contrast to the pre-
vious observations and as indicated in (1), whenever
there are at least M - in this.case, 3 -- customers
behind the kth customer in the LP queue, a longer LP
.queve length would not affect the customer's condi~
tional delay time. - Fourth, again surprisingly, the
coefficient of variation of the conditional delay time
of the kth customer in the LP queue decreases as the
gystem gets busier but increases as the LP queue length
increases.

Finally, a 29-step numerical algorithm has been
developed to approximate p(n,h,%), the steady state
probabilities. In turn, the systemwide, expected un-

conditional delay time can be c¢btained from the

following expression:
Expected Unconditional Delay Time =

M-1 N-1
e
LA A
£=0 n=R

N:l
) p(n,h,MED(n+1, h,;M:M) +
n=R

pin, b, 2)ED(n, b, 4417 241) +
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Exhibit 2, D(25;22,3;Q,Q) : Expected Value and Standard
Deviation of Low Priority Conditional Delay

Times (In Minutes)
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o o phy i) ED(N,h, +1;i41) (4)
=0 h=0

Qur approximate numerical algorithms have at least been
partially validated by comparing the results using (4)
with the exact solutions cbtained for the special case
of M=l — that is, for the D(¥;R,1;Q,Q) model. Our ap-
proach to finding the exact solution of the LP
unconditional delay time for D(N;R,1;Q,Q) has been,
first, to define the probability generating function
over the LP queue length; second, to solve these prob-—
ability generating functions for the distribution of
busy servers; third, to use the distribution of busy
servers to compute the expected LP queue length; and,
fourth, to use Little's [1961] formula to compute the
expected value of the LP unconditional delay time.
Actuvally, this is a typical approach to cbtaining the
expected unconditional delay; as documented in the
queuing literature. Such an approach, however, cannot
be successfully applied to the géneral D(N:R,M;Q,0)
model. .

IV, STMOLATION

OQur approximate numerical algorithms have been
further validated by the results of our simulation
analysis, which has employed the General Purpose
Simulation System (GPSS) language. We have simulated
the transitions in the D(N;R,M;Q,Q) model using a
second as the basic time unit of simulation. S$ix runs,
each run for 10 days and using different sets of in-
itialization seeds for the HP and LP customer arrival
and service complétion processes, have been made.
Infortunately, since the GPSS output does not summarize




‘et al., 1978; Cahn and Tien, 1981}.

the conditional delay time statistics in terms of
{n,h,:), the state variables, and k, the queue position
of the LP customer, we have had to develop a major
FORIRAN program to collect from the GPSS all the in-
dividual simulated results and then to summarize the
results appropriately.

Our'simulation analysis has also been used to
relax the service time assumption. Several researchers
have shown that the service time expended on a call is
much less random than that suggested by an exponen-
tially distributed random variable [Taylor, 1976; Tien
Indeed, in the
police enviromment, the service time is almost constant
at about 25 minutes; in actuality, most calls take less
time to serve, but the patrol officer would tend to
take a "deserved preak” in the remaining time before
calling the radic dispatcher to report the completion
of service. In comparing the simulation results and as
expected, the ED and SD vaiues for the LP conditional
delay time are significantly larger in the constant
service time situation than the corresponding values in
the exponential service time situation.

Similarly, our simulation analysis has been ex—
tended to allow for the fact that a call for service
may require the assistance of more than one response
unit [Tien et al., 1977; Green, 1980; Green, 1981;
Green and Kolegar, 1984]. Furthermore, the first or
"primary” response unijt has a longer service time than
the backup or “assist" unit(s), as the latter unit(s)
could leave the scene as soon as the incident is under
control. Interestingly and as illustrated in Exhibit
3, when we used as input to our multiple-response
simulation the empirically obtained data by Tien et al.
{19771 — in which i) the distribution of response unit
requirements (for the police emviromment) is such that
74.2% of all customers or calls require 1 unit, 18.2%
require 2 units, and 7.6% require 3 units, and ii) the
service times of both primary and assist units are ap-
proximately constant at 24 and 15 minutes, respectively
— we found that the resultant conditional delay time
statistics are, for the most part, somewhat comparable
to the corresponding results obtained by our numerice:
algorithms (which consider the single-response, ex-
ponential service time situation). This somewhat
surprising result can bé explained by the fact that
while the multiple-response requirement tends to in-
flate the LP conditional delay times, the constant
service times of the multiple responders tend to
deflate those same statistics, with the net impact
being somewhat of a cancellation of the two effects.

Finally, our simulation analysis has been used to
obtain the underlying distribution of the conditional
response times in a multiple-response environment, as-—
suming that the travel time is Erlang of order 2
digtributed [Tien et al., 1977] and independent of the
délay time. In particular, we have sought to obtain a
conservative estimate of the conditional response time
so that the probability that the response is within the
estimate is 0.95. If the conditional response times
were normally distributed, then the 0.95 quantile would
be at a distance of 1.65 times the standard deviation
to the right of the expected value. However, because
the response time distributions are skewed to the
right, we have found that a factor of 1.95 is more
appropropriate; that is,

R095=(ED+EI‘)+1.95 YVD + VT {5)
where Rg 95 = 0.95 quantile of conditional
response time
ED = Expected value of conditional delay
time
ET = Expected value of travel time
vD = Variance of conditional delay time
vr = Variance of travel time
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Exhibit 3. D(25;23,5;0,Q0): Comparison of Algorithmic

Single-Response and Simulated Multiple-
Response Results

V. CONCLUSION

The above sections describe the essential elements
of our computer-assisted response time (CART) algo-
rithm, while Exhibit 4 summarizes the algorithm. As
depicted in the exhibit, at the beginning of each tour,
a dispatcher enters into CART the delay-related and
travel-related parameter values. Then, CART computes
and stores the expected values and variances of the HP
and LP conditional delay times. When a call arrives
at, say, state (n',h',2'), the call-taker detemmines
the priority of the call and enters it into CART, which
then retrieves the corresponding HP or LP conditional
delay time, as well as travel time, statistics from its
‘memory bank and computes the R0 05 value using (5).

This value is then provided to the call-taker who, in
turn, advises the caller.

_ As indicated in Exhibit 4, the module for comput-
ing .the expected value and variance of the HP
condz:t@onal delay times is straightforward. More
specifically, the HP conditional delay time of the jth
customer in the HP queuwe is Erlang of order j dis-
tributed with scale parameter equal to Nu. Hence, the

expected value and variance are j/Nu and j/(Nu)z,
respect.wely.. The modules for computing the expected
value and variance of the LP conditional delay times

_are those outlined in Section II. However, an effi-

cient mapping technique can be employed so that only
the first M LP conditional delay times-need to be
calculated. In particular, if we denote D(N,h,k;k) as
the conditional delay time distribution of .the kth cus-
tomer in the LP queue state (N,h,k) and if k is greater
than M by an amount i, we can think of the first i LP
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BExhibit 4. A Computer-Assisted Response Time (CART) Algorithm

customers as HP customers. The reason is because when
any of these i LB custamers takes the first queue posi-
tion in the LP queue, there are definnitely more than ¥
customers remaining in the LP queue, and this implies
that the R cut-off is still turned off by the M cut-
off. Hence,

D(N,h'k:k) = D(Nlh“'i,k—i;k-i) = D(Nlh“'ilM:M) ’

for k = MHi {6)

This efficient mapping technique can have a significant
impact on both computation time and memory space. For
example, in the case of the D(25;23,10;Q,0) model; less
than 6,000 — instead of some 25,000 — real values
need to be stored for figuring out the delay time
statistics for the first 50 LP customers. In cum, CART
can be implemented on a microcompirtter with no more than
48K bytes of memory.

Two additional remarks should be made regarding
CART. First, although not indicated in Exhibit 4, CART
can provide an updated response time to any caller who
calls back to ask for an updated response time. Based
on the name of the caller, CART can identify the
caller's position in the queue, so that an updated
response time can be appropriately obtained. Second,
again although not indicated in Exhibit 4, CART can
keep track of the response time provided to each LP
caller, and, whenever it seems like a response time
might be exceeded, CART can change the call's priority
to that of an HP so that it can be more immediately
dispatched. Inasmuch as the initial response time
provided to the c¢aller is a 0.95 quantile estimate, we
can expect that such priofity changes would occur with
no more than 5% of all LP calls.

In terms of future reseapch, one possible exten-
sion to the D(N;R,M;Q,Q) model is for M to be a
function of n, the number of busy servers. That is, we
can define an increasing function M(n) (for n =
G,1,...,N) such that if 2, the number of customers in
the LP queue, is greater than M(n) and less than or
equal to M(n+l}, then (N-n) — instead of a fixed (N-R)

~ gervers are set aside for HP customers. In this ex-
tension, the LP gueue length builds up graduallv
instead of suddenly at n=R, which is the case con-
sidered herein.

Another effort that can be undertaken concerns
further calibrating our approximate numerical algo-
rithms so that the results would more closely
correspond to situations with service times that are
less random than exponential and calls for service
which require multiple responses. One could either ap-
propriately modify the values of the input parameter
values — as considered by Green and Kolesar [1984] —--
or change the basic mechanics of the algorithms.

Finally, it should again be stated that although
this effort is motivated in the police emviromment,
there are similar situations in other response-oriented
systems that would benefit from the results reported in
this paper.
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